請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78590完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施養信 | zh_TW |
| dc.contributor.advisor | Yang-Hsin Shih | en |
| dc.contributor.author | 歐明翰 | zh_TW |
| dc.contributor.author | Ming-Han Ou | en |
| dc.date.accessioned | 2021-07-11T15:05:54Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Abe, R., H. Takami, N. Murakami & B. Ohtani (2008) Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc., 130, 7780-7781.
Abellán, M. N., J. Giménez & S. Esplugas (2009) Photocatalytic degradation of antibiotics: The case of sulfamethoxazole and trimethoprim. Catal. Today, 144, 131-136. Adams, M. J., J. G. Highfield & G. F. Kirkbright (1980) Determination of the absolute quantum efficiency of luminescence of solid materials employing photoacoustic spectroscopy. Anal. Chem., 52, 1260-1264. Al-Gaashani, R., S. Radiman, A. R. Daud, N. Tabet & Y. Al-Douri (2013) XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int., 39, 2283-2292. Amano, F., E. Ishinaga & A. Yamakata (2013) Effect of particle size on the photocatalytic zctivity of WO3 particles for water oxidation. J. Phys. Chem. C, 117, 22584-22590. Anandan, S., N. Ohashi & M. Miyauchi (2010) ZnO-based visible-light photocatalyst band-gap engineering and multi-electron reduction by co-catalyst. Appl. Catal. B., 100, 502-509. Anastasio, C. & B. Matthew (2006) A chemical probe technique for the determination of reactive halogen species in aqueous solution: part 2–Chloride solutions and mixed bromide/chloride solutions. Atmos. Chem. Phys., 6, 2439-2451. Ashkarran, A. A., A. Iraji Zad, M. M. Ahadian & S. A. Mahdavi Ardakani (2008) Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water. Nanotechnology, 19, 195709. Assi, N., A. Mohammadi, Q. S. Manuchehri & R. B. Walker (2015) Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and catalytic activity for the removal of ortho-nitrophenol. Desalin Water Treat, 54, 1939-1948. Bahnemann, D., C. Kormann & M. Hoffmann (1987) Preparation and characterization of quantum size zinc oxide a detailed spectroscopic study. J. Phys. Chem., 91, 3789-3798. Bai, S., K. Zhang, X. Shu, S. Chen, R. Luo, D. Li & A. Chen (2014) Carboxyl-directed hydrothermal synthesis of WO3 nanostructures and their morphology-dependent gas-sensing properties. CrystEngComm, 16, 10210-10217. Bamwenda, G. & H. Arakawa (2001) The visible light induced photocatalytic activity of tungsten trioxide powders. Appl. Catal. A: Gen., 210, 181-191. Baran, W., J. Sochacka & W. Wardas (2006) Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere, 65, 1295-1299. Barazesh, J. M., C. Prasse & D. L. Sedlak (2016) Electrochemical transformation of trace organic contaminants in the presence of halide and carbonate ions. Environ. Sci. Technol., 50, 10143-52. Bu, Y., L. Wang, B. Chen, R. Niu & Y. Chen (2018) Effects of typical water components on the UV 254 photodegradation kinetics of haloacetic acids in water. Sep. Purif. Technol., 200, 255-265. Buxton, G. V., C. L. Greenstock, W. P. Helman & A. B. Ross (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O−) in aqueous solution. J. Phys. Chem. Ref. Data, 17, 513-886. Calza, P., C. Massolino, E. Pelizzetti & C. Minero (2008) Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Sci. Total Environ., 398, 196-202. Caregnato, P., J. A. Rosso, J. M. Soler, A. Arques, D. O. Martire & M. C. Gonzalez (2013) Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: role of Cl2•- radical. Water Res., 47, 351-62. Carp, O. (2004) Photoinduced reactivity of titanium dioxide. Prog. Solid State Ch., 32, 33-177. Chen, C., W. Ma & J. Zhao (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev., 39, 4206-19. Cheng, M. & A. Bakac (2008) Photochemical oxidation of halide ions by a nitratochromium(III) complex. kinetics, mechanism, and intermediates. J. Am. Chem. Soc., 130, 5600-5605. Cho, M., H. M. Chung, W. Y. Choi & J. Y. Yoon (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol., 71, 270-275. Daneshvar, N., S. Aber, M. S. S. Dorraji, A. R. Khataee & M. H. Rasoulifard (2007) Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Sep. Purif. Technol., 58, 91-98. Daniel, M., B. Desbat, J. Lassegues, B. Gerand & M. Figlarz (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates. J. Solid State Chem., 67, 235-247. De Luca, A., X. He, D. D. Dionysiou, R. F. Dantas & S. Esplugas (2017) Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate. Chem. Eng. J., 318, 206-213. Demas, J. N. & G. A. Crosby (1971) Measurement of photoluminescence quantum yields - review. J. Phys. Chem., 75, 991-&. Deng, X., H. Zhang, R. Guo, X. Cheng & Q. Cheng (2018) Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties. Appl. Surf. Sci., 441, 420-428. Ding, S. Y., J. F. Niu, Y. P. Bao & L. J. Hu (2013) Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst. J. Hazard. Mater., 262, 812-818. Dirany, A., I. Sirés, N. Oturan, A. Özcan & M. A. Oturan (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ. Sci. Technol., 46, 4074-4082. Dodd, A. C., A. J. McKinley, M. Saunders & T. Tsuzuki (2006) Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J. Nanopart. Res., 8, 43-51. Dodd, M. C. & C.-H. Huang (2004) Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms, and pathways. Environ. Sci. Technol., 38, 5607-5615. Dong, P. Y., G. H. Hou, X. U. Xi, R. Shao & F. Dong (2017) WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ. Sci-Nano, 4, 539-557. Eaton, A. D., L. S. Cleseri & A. E. Greenberg. 1995. Standard methods for the examination of water and wastewater. Washington, D.C.: American Water Works Association. Eigen, M. & K. Kustin (1962) The kinetics of halogen hydrolysis. J. Am. Chem. Soc., 84, 1355-1361. Emerson, D. W. (1994) Microdetermination of bromine, chlorine, and chlorine dioxide in water in any combination. Microchem. J., 50, 116-124. Erdem, B., R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie & M. S. El-Aasser (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir, 17, 2664-2669. Ershov, B. G. (2004) Kinetics, mechanism and intermediates of some radiation-induced reactions in aqueous solutions. Russ. Chem. Rev., 73, 101-113. Fan, G. Z., S. S. Luo, Q. Wu, T. Fang, J. F. Li & G. S. Song (2015) ZnBr2 supported on silica-coated magnetic nanoparticles of Fe3O4 for conversion of CO2 to diphenyl carbonate. Rsc Adv., 5, 56478-56485. Fox, M. A. & T. L. Pettit (1985) Use of organic molecules as mechanistic probes for semiconductor-mediated photoelectrochemical oxidations: bromide oxidation. J. Org. Chem., 50, 5013-5015. Fujishima, A., X. T. Zhang & D. A. Tryk (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 63, 515-582. Gallard, H., A. Leclercq & J. P. Croue (2004) Chlorination of bisphenol A: kinetics and by-products formation. Chemosphere, 56, 465-73. Gao, B., Y. Ma, Y. Cao, W. Yang & J. Yao (2006) Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. J. Phys. Chem. B, 110, 14391-14397. Geng, Y., G. Lei, Y. Liao, H.-Y. Jiang, G. Xie & S. Chen (2017) Rapid organic degradation and bacteria destruction under visible light by ternary photocatalysts of Ag/AgX/TiO2. J. Environ. Chem. Eng., 5, 5566-5572. Gilbert, B. C., J. K. Stell, W. J. Peet & K. J. Radford (1988) Generation and reactions of the chlorine atom in aqueous solution. J. Chem. Soc., Faraday Trans. 1, 84, 3319-3330. Goh, F. W. T., Z. L. Liu, T. S. A. Hor, J. Zhang, X. M. Ge, Y. Zong, A. S. Yu & W. Khoo (2014) A near-neutral chloride electrolyte for electrically rechargeable zinc-air Batteries. J. Electrochem. Soc., 161, A2080-A2086. González, O., C. Sans & S. Esplugas (2007) Sulfamethoxazole abatement by photo-Fenton: toxicity, inhibition and biodegradability assessment of intermediates. J. Hazard. Mater., 146, 459-464. Grebel, J. E., J. J. Pignatello & W. A. Mitch (2010) Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Environ. Sci. Technol., 44, 6822-6828. Greenberg, A. E. T., R. Rhodes., L. S. Clesceri & M. A. H. Franson. 1985. Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association. Guha, S. N., C. Schoneich & K. D. Asmus (1993) Free radical reductive degradation of vic-dibromoalkanes and reaction of bromine atoms with polyunsaturated fatty acids: possible involvement of Br. in the 1, 2-dibromoethane-induced lipid-peroxidation. Arch. Biochem. Biophys., 305, 132-140. Gunti, S., A. Kumar & M. K. Ram (2017) Nanostructured photocatalysis in the visible spectrum for the decontamination of air and water. Int. Mater. Rev., 63, 257-282. Halling-Sorensen, B., S. N. Nielsen, P. F. Lanzky, F. Ingerslev, H. C. H. Lutzhoft & S. E. Jorgensen (1998) Occurrence, fate and effects of pharmaceutical substances in the environment - A review. Chemosphere, 36, 357-394. Hao, W., S. Zheng, C. Wang & T. Wang (2002) Comparison of the photocatalytic activity of TiO2 powder with different particle size. J. Mater. Sci. Lett., 21, 1627-1629. Hasnat, M. A., M. M. Uddin, A. U. Samed, S. S. Alam & S. Hossain (2007) Adsorption and photocatalytic decolorization of a synthetic dye erythrosine on anatase TiO2 and ZnO surfaces. J. Hazard. Mater., 147, 471-477. Helmers, H., C. Karcher & A. W. Bett (2013) Bandgap determination based on electrical quantum efficiency. Appl. Phys. Lett., 103, 032108. Hepel, M. & J. Luo (2001) Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochimica Acta, 47, 729-740. Hirsch, R., T. Ternes, K. Haberer & K. L. Kratz (1999) Occurrence of antibiotics in the aquatic environment. Sci. Total Environ., 225, 109-118. Hong, R., T. Pan, J. Qian & H. Li (2006) Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J., 119, 71-81. Hsieh, P. T., Y. C. Chen, K. S. Kao & C. M. Wang (2007) Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A, 90, 317-321. Hsiung, C. E., H. L. Lien, A. E. Galliano, C. S. Yeh & Y. H. Shih (2016) Effects of water chemistry on the destabilization and sedimentation of commercial TiO2 nanoparticles: Role of double-layer compression and charge neutralization. Chemosphere, 151, 145-51. Hsiung, C. E. & Y. H. Shih. 2015. The aggregation of titanium dioxide nanoparticle and its degradation of bisphenol A in the presence of electrolytes. In Department of Agricultural Chemistry National Taiwan University. Hu, L., P. M. Flanders, P. L. Miller & T. J. Strathmann (2007) Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res., 41, 2612-26. Huang, Y. Z. & D. J. Blackwood (2005) Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochimica Acta, 51, 1099-1107. Hurum, D. C., A. G. Agrios & K. A. Gray* (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B, 107, 4545-4549. Iguchi, S., K. Teramura, S. Hosokawa & T. Tanaka (2015) Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO2 in an aqueous solution over Ni-Al layered double hydroxides. Phys. Chem. Chem. Phys., 17, 17995-8003. Ingerslev, F. & B. Halling‐Sørensen (2000) Biodegradability properties of sulfonamides in activated sludge. Environ. Toxicol. Chem., 19, 2467-2473. Isse, A. A., C. Y. Lin, M. L. Coote & A. Gennaro (2010) Estimation of standard reduction potentials of halogen atoms and alkyl halides. J. Phys. Chem. B, 115, 678-684. Jang, H. D., S.-K. Kim & S.-J. Kim (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res., 3, 141-147. Janotti, A. & C. G. Van de Walle (2009) Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys., 72. Jayson, G. G., B. J. Parsons & A. J. Swallow (1973) Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter. J. Chem. Soc., Faraday Trans. 1, 69, 1597-1607. Jia, J., J. Zhang, F. Wang, L. Han, J. Z. Zhou, B. W. Mao & D. Zhan (2015) Synergetic effect enhanced photoelectrocatalysis. Chem Commun (Camb), 51, 17700-3. Kansal, S. K., M. Singh & D. Sud (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J. Hazard. Mater., 141, 581-90. Khuzwayo, Z. & E. M. N. Chirwa (2017) The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol. J. Hazard. Mater., 321, 424-431. Kim, K.-S., S. K. Kam & Y. S. Mok (2015) Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system. Chem. Eng. J., 271, 31-42. Klán, P. & J. Wirz. 2009. Photochemistry of organic compounds: from concepts to practice. John Wiley & Sons. Kläning, U. K. & T. Wolff (1985) Laser flash photolysis of HClO, ClO−, HBrO, and BrO− in aqueous solution. reactions of Cl‐ and Br‐ atoms. Berichte der Bunsengesellschaft für physikalische Chemie, 89, 243-245. Kolpin, D. W., E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber & H. T. Buxton (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol., 36, 1202-1211. Koyuncu, I., O. A. Arikan, M. R. Wiesner & C. Rice (2008) Removal of hormones and antibiotics by nanofiltration membranes. J. Membr. Sci., 309, 94-101. Krivec, M., R. Dillert, D. W. Bahnemann, A. Mehle, J. Strancar & G. Drazic (2014) The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys., 16, 14867-73. Kudo, A. & Y. Miseki (2009) Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 38, 253-278. Kumar, A., A. Kumar, G. Sharma, A. a. H. Al-Muhtaseb, M. Naushad, A. A. Ghfar & F. J. Stadler (2018) Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment. Chem. Eng. J., 334, 462-478. Le Bellac, D., A. Azens & C. G. Granqvist (1995) Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering. Appl. Phys. Lett., 66, 1715-1716. Lee, J., W. Choi & J. Yoon (2005) Photocatalytic degradation of N-nitrosodimethylamine: mechanism, product distribution, and TiO2 surface modification. Environ. Sci. Technol., 39, 6800-6807. Lee, K. M., C. W. Lai, K. S. Ngai & J. C. Juan (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res., 88, 428-448. Leghari, S. A. K., S. Sajjad, F. Chen & J. Zhang (2011) WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem. Eng. J., 166, 906-915. Lewandowski, M. (2003) Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants: rate enhancement, rate inhibition, and a thermodynamic rationale. J. Catal., 217, 38-46. Lewera, A., L. Timperman, A. Roguska & N. Alonso-Vante (2011) Metal–support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J. Phys. Chem. C, 115, 20153-20159. Li, F., Q. Kong, P. Chen, M. Chen, G. Liu, W. Lv & K. Yao (2017) Effect of halide ions on the photodegradation of ibuprofen in aqueous environments. Chemosphere, 166, 412-417. Li, Y. J., X. L. Qiao, Y. N. Zhang, C. Z. Zhou, H. J. Xie & J. W. Chen (2016) Effects of halide ions on photodegradation of sulfonamide antibiotics: formation of halogenated intermediates. Water Res., 102, 405-412. Li, Y. Z., X. Zhou, X. L. Hu, X. J. Zhao & P. F. Fang (2009) Formation of surface complex leading to efficient visible photocatalytic activity and improvement of photostabilty of ZnO. J. Phys. Chem. C, 113, 16188-16192. Liang, H. C., X. Z. Li, Y. H. Yang & K. H. Sze (2008) Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere, 73, 805-12. Lim, S. P., A. Pandikumar, H. N. Lim, R. Ramaraj & N. M. Huang (2015) Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N,S-Co-doped-TiO2 photoanode. Sci. Rep., 5, 11922. Lin, H., C. Huang, W. Li, C. Ni, S. Shah & Y. Tseng (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B., 68, 1-11. Liu, H., H. Zhao, X. Quan, Y. Zhang & S. Chen (2009) Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation. Environ. Sci. Technol., 43, 7712-7717. Long, S. P. & J. E. Hallgren. 1985. Chapter 6 - Measurement of CO2 assimilation by plants in the field and the laboratory. In Techniques in Bioproductivity and Photosynthesis (Second Edition), eds. J. Coombs, D. O. Hall, S. P. Long & J. M. O. Scurlock, 62-94. Pergamon. Luther, G. W., C. B. Swartz & W. J. Ullman (1988) Direct determination of iodide in seawater by cathodic stripping square wave voltammetry. Anal. Chem., 60, 1721-1724. Méndez-Díaz, J. D., K. K. Shimabuku, J. Ma, Z. O. Enumah, J. J. Pignatello, W. A. Mitch & M. C. Dodd (2014) Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine. Environ. Sci. Technol., 48, 7418-7427. Ma, H., N. J. Kabengi, P. M. Bertsch, J. M. Unrine, T. C. Glenn & P. L. Williams (2011) Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ. Pollut., 159, 1473-80. Maira, A., K. L. Yeung, C. Lee, P. L. Yue & C. K. Chan (2000) Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal., 192, 185-196. Marques, A. C., L. Santos, M. N. Costa, J. M. Dantas, P. Duarte, A. Goncalves, R. Martins, C. A. Salgueiro & E. Fortunato (2015) Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes. Sci. Rep., 5, 9910. Matthew, B. & C. Anastasio (2006) A chemical probe technique for the determination of reactive halogen species in aqueous solution: part 1–bromide solutions. Atmos. Chem. Phys., 6, 2423-2437. Matthew, B. M., I. George & C. Anastasio (2003) Hydroperoxyl radical (HO2•) oxidizes dibromide radical anion (•Br2−) to bromine (Br2) in aqueous solution: Implications for the formation of Br2 in the marine boundary layer. Geophys. Res. Lett., 30. Merenyi, G. & J. Lind (1994) Reaction mechanism of hydrogen abstraction by the bromine atom in water J. Am. Chem. Soc., 116, 7872-7876. Miao, X. S., F. Bishay, M. Chen & C. D. Metcalfe (2004) Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ. Sci. Technol., 38, 3533-3541. Moberg, L. & B. Karlberg (2000) An improved N,N'-diethyl-p-phenylenediamine (DPD) method for the determination of free chlorine based on multiple wavelength detection. Anal. Chim. Acta, 407, 127-133. Moore, H. E., M. J. Garmendia & W. J. Cooper (1984) Kinetics of monochloramine oxidation of N,N'-diethyl-p-phenylenediamine. Environ. Sci. Technol., 18, 348-353. Mopper, K. & X. Zhou (1990) Hydroxyl radical photoproduction in the sea and its potential impact on marine processes. Science, 250, 661-664. Muruganandham, M., K. Selvam & M. Swaminathan (2007) A comparative study of quantum yield and electrical energy per order (E(Eo)) for advanced oxidative decolourisation of reactive azo dyes by UV light. J. Hazard. Mater., 144, 316-22. Nakata, K. & A. Fujishima (2012) TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C., 13, 169-189. Nasuhoglu, D., V. Yargeau & D. Berk (2011) Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (lambdamax=254 nm). J. Hazard. Mater., 186, 67-75. Newton, G. L. & J. R. Milligan (2006) Fluorescence detection of hydroxyl radicals. Radiat. Phys. Chem., 75, 473-478. Nosaka, Y. & A. Y. Nosaka (2017) Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev., 117, 11302-11336. Olmsted, J. (1979) Calorimetric determinations of absolute fluorescence quantum yields. J. Phys. Chem., 83, 2581-2584. Ozgur, U., Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho & H. Morkoc (2005) A comprehensive review of ZnO materials and devices. J. Appl. Phys., 98, 103. Pérez, S., P. Eichhorn & D. S. Aga (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ. Toxicol. Chem., 24, 1361-1367. Padhye, L. P., H. Yao, F. T. Kung'u & C. H. Huang (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res., 51, 266-76. Palin, A. (1975) Current DPD methods for residual halogen compounds and ozone in water. J. Am. Water Works Assoc., 67, 32-33. Park, Y., W. Kim, D. Monllor-Satoca, T. Tachikawa, T. Majima & W. Choi (2013) Role of interparticle charge transfers in agglomerated photocatalyst nanoparticles: demonstration in aqueous suspension of dye-sensitized TiO2. J. Phys. Chem. Lett., 4, 189-94. Parker, K. M. & W. A. Mitch (2016) Halogen radicals contribute to photooxidation in coastal and estuarine waters. PNAS, 113, 5869-5873. Parks, G. A. (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev., 65, 177-198. Peng, Y.-H., Y.-C. Tsai, C.-E. Hsiung, Y.-H. Lin & Y.-h. Shih (2017) Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. J. Hazard. Mater., 322, 348-356. Peng, Y.-H., C.-p. Tso, Y.-c. Tsai, C.-m. Zhuang & Y.-h. Shih (2015) The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water. Sci. Total Environ., 530, 183-190. Peternel, I. T., N. Koprivanac, A. M. L. Bozic & H. M. Kugic (2007) Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J. Hazard. Mater., 148, 477-484. Petosa, A. R., S. J. Brennan, F. Rajput & N. Tufenkji (2012) Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res., 46, 1273-85. Pignatello, J. J. (1992) Dark and photoassisted iron3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol., 26, 944-951. Pratt, K. A., K. D. Custard, P. B. Shepson, T. A. Douglas, D. Pöhler, S. General, J. Zielcke, W. R. Simpson, U. Platt & D. J. Tanner (2013) Photochemical production of molecular bromine in Arctic surface snowpacks. Nature Geosci., 6, 351. Reichman, B. & C. E. Byvik (1981) Photoproduction of I2, Br2, and Cl2 on n-semiconducting powder. J. Phys. Chem. , 85, 2255-2258. Reyes-Gil, K. R., C. Wiggenhorn, B. S. Brunschwig & N. S. Lewis (2013) Comparison between the quantum yields of compact and porous WO3 photoanodes. J. Phys. Chem. C, 117, 14947-14957. Rodríguez, E. M., G. Márquez, M. Tena, P. M. Álvarez & F. J. Beltrán (2015) Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: the case of ofloxacin. Appl. Catal. B., 178, 44-53. Ross, A. B., B. H. J. Bielski, G. V. Buxton, D. E. Cabelli, W. P. Helman, R. E. Huie, J. Grodkowski, P. Neta, Q. G. Mulazzani & F. Wilkinson. 1998a. NIST standard reference database 40: NDRL/NIST solution kinetics database V. 3.0. Gaithersburg, MD. Ross, A. B., W. G. Mallard, W. P. Helman, G. V. Buxton, R. E. Huie & P. Neta. 1998b. NDRL-NIST solution kinetics database. In Ver 2 NIST standard reference data. Savory, D. M., D. S. Warren & A. J. McQuillan (2010) Shallow electron trap, interfacial water, and outer-sphere adsorbed oxalate IR absorptions correlate during UV irradiation of photocatalytic TiO2 films in aqueous solution. J. Phys. Chem. C, 115, 902-907. Shaw, H., H. D. Perlmutter & C. Gu (1997) Free-radical bromination of selected organic compounds in water. J. Org. Chem., 62, 236-237. Sojic, D. V., V. B. Anderluh, D. Z. Orcic & B. F. Abramovic (2009) Photodegradation of clopyralid in TiO2 suspensions: identification of intermediates and reaction pathways. J. Hazard. Mater., 168, 94-101. Song, Y., J. Tian, S. Gao, P. Shao, J. Qi & F. Cui (2017) Photodegradation of sulfonamides by g-C3N4 under visible light irradiation: effectiveness, mechanism and pathways. Appl. Catal. B., 210, 88-96. Su, Y.-f., G.-B. Wang, D. T. F. Kuo, M.-l. Chang & Y.-h. Shih (2016) Photoelectrocatalytic degradation of the antibiotic sulfamethoxazole using TiO2/Ti photoanode. Appl. Catal. B., 186, 184-192. Subash, B., B. Krishnakumar, M. Swaminathan & M. Shanthi (2013) Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag-ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir, 29, 939-49. Sutton, H. C., G. E. Adams, J. W. Boag & B. D. Michael (1965) Radical yields and kinetics in the pulse radiolysis of potassium bromide solutions. Pulse Radiolysis (M. Ebert, JP Keene, AJ Swallow, and JH Baxendale, Eds.), 61-81. Swanson, H. E., H. F. McMurdie, M. C. Morris, E. H. Evans & B. Paretzkin. 1974. Standard X-ray diffraction powder patterns. Institute for Materials Research National Bureau of Standards Washington, D.C. Szilagyi, I. M., B. Forizs, O. Rosseler, A. Szegedi, P. Nemeth, P. Kiraly, G. Tarkanyi, B. Vajna, K. Varga-Josepovits, K. Laszlo, A. L. Toth, P. Baranyai & M. Leskela (2012) WO3 photocatalysts: influence of structure and composition. J. Catal., 294, 119-127. Tseng, I.-H., W.-C. Chang & J. C. S. Wu (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal. B., 37, 37-48. Uetrecht, J. P., N. H. Shear & N. Zahid (1993) N-chlorination of sulfamethoxazole and dapsone by the myeloperoxidase system. Drug Metab. Dispos., 21, 830-834. Vijay, M., K. Ramachandran, P. V. Ananthapadmanabhan, B. Nalini, B. C. Pillai, F. Bondioli, A. Manivannan & R. T. Narendhirakannan (2013) Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Curr. Appl. Phys., 13, 510-516. Vikesland, P. J., E. M. Fiss, K. R. Wigginton, K. McNeill & W. A. Arnold (2013) Halogenation of bisphenol-A, triclosan, and phenols in chlorinated waters containing iodide. Environ. Sci. Technol., 47, 6764-72. Wagner, I. & H. Strehlow (1987) On the flash photolysis of bromide ions in aqueous solutions. Berichte der Bunsengesellschaft für physikalische Chemie, 91, 1317-1321. Waller, M. R., T. K. Townsend, J. Zhao, E. M. Sabio, R. L. Chamousis, N. D. Browning & F. E. Osterloh (2012) Single-crystal tungsten oxide nanosheets: photochemical water oxidation in the quantum confinement regime. Chem. Mater., 24, 698-704. Wang, C.-y., C. Böttcher, D. W. Bahnemann & J. K. Dohrmann (2003) A comparative study of nanometer sized Fe(iii)-doped TiO2 photocatalysts: synthesis, characterization and activity. J. Mater. Chem., 13, 2322-2329. Wang, C., R. Pagel, D. Bahnemann & J. Dohrmann (2004) Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation. J. Phys. Chem. B, 108, 14082-14092. Wang, G. B. & Y. H. Shih. 2017. The effect of electrolytes on the photodegradation of phenol with TiO2 nanoparticles under UV irradiation. In Department of Agricultural Chemistry National Taiwan University. Wang, N., X. Li, Y. Wang, Y. Hou, X. Zou & G. Chen (2008) Synthesis of ZnO/TiO2 nanotube composite film by a two-step route. Mater. Lett., 62, 3691-3693. Wang, P. (2017) Ag-AgBr/TiO2/RGO nanocomposite: synthesis, characterization, photocatalytic activity and aggregation evaluation. J. Environ. Sci. (China), 56, 202-213. Wang, Z. G., X. T. Zu, S. Zhu & L. M. Wang (2006) Green luminescence originates from surface defects in ZnO nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 35, 199-202. Wang, Z. L. (2004) Zinc oxide nanostructures: growth, properties and applications. Journal of Physics-Condensed Matter, 16, R829-R858. Weber, G. & F. W. J. Teale (1957) Determination of the absolute quantum yield of fluorescent solutions. J. Chem. Soc. Faraday Trans., 53, 646-655. Wenderich, K. & G. Mul (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev., 116, 14587-14619. Weon, S., J. Kim & W. Choi (2018) Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Appl. Catal. B., 220, 1-8. Wu, Z., K. Guo, J. Fang, X. Yang, H. Xiao, S. Hou, X. Kong, C. Shang, X. Yang, F. Meng & L. Chen (2017) Factors affecting the roles of reactive species in the degradation of micropollutants by the UV/chlorine process. Water Res., 126, 351-360. Xekoukoulotakis, N. P., C. Drosou, C. Brebou, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos & D. Mantzavinos (2011) Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices. Catal. Today, 161, 163-168. Yang, S. Y., Y. X. Chen, L. P. Lou & X. N. Wu (2005) Involvement of chloride anion in the photocatalytic process. J. Environ. Sci., 17, 761-765. Yang, Y. & J. J. Pignatello (2017) Participation of the halogens in photochemical reactions in natural and treated waters. Molecules, 22. Yu, H., C. J. Miller, A. Ikeda-Ohno & T. D. Waite (2014) Photodegradation of contaminants using Ag@AgCl/rGO assemblages: possibilities and limitations. Catal. Today, 224, 122-131. Yuan, R., T. Chen, E. Fei, J. Lin, Z. Ding, J. Long, Z. Zhang, X. Fu, P. Liu & L. Wu (2011) Surface chlorination of TiO2-based photocatalysts: a way to remarkably improve photocatalytic activity in both UV and visible region. ACS Catal., 1, 200-206. Yurdakal, S., V. Loddo, B. B. Ferrer, G. Palmisano, V. Augugliaro, J. G. Farreras & L. Palmisano (2007) Optical properties of TiO2 suspensions: influence of pH and powder concentration on mean particle size. Ind. Eng. Chem. Res., 46, 7620-7626. Zabicky, J. & M. Nutkovitch (1986) Reactions of bromine and cyclohexene in aqueous media. selectivity of bromohydrin vs. dibromo adduct formation. Ind. Eng. Chem. Prod. Res. Dev., 25, 372-375. Zafiriou, O. C. (1974) Sources and reactions of OH and daughter radicals in seawater. J. Geophys. Res., 79, 4491-4497. Zehavi, D. & J. Rabani (1972) Oxidation of aqueous bromide ions by hydroxyl radicals. Pulse radiolytic investigation. J. Phys. Chem., 76, 312-319. Zhang, J. & Y. Nosaka (2013) Quantitative detection of OH radicals for investigating the reaction mechanism of various visible-light TiO2 photocatalysts in aqueous suspension. J. Phys. Chem. C, 117, 1383-1391. Zhang, J. & Y. Nosaka (2014) Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types. J. Phys. Chem. C, 118, 10824-10832. Zhang, J. & Y. Nosaka (2015) Photocatalytic oxidation mechanism of methanol and the other reactants in irradiated TiO2 aqueous suspension investigated by OH radical detection. Appl. Catal. B., 166-167, 32-36. Zhang, Y. & S. R. Meshnick (1991) Inhibition of plasmodium falciparum dihydropteroate synthetase and growth In vitro by sulfa drugs. Antimicrob. Agents Chemother, 35, 267-271. Zhang, Z., C.-C. Wang, R. Zakaria & J. Y. Ying (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B, 102, 10871-10878. Zhou, X. & K. Mopper (1990) Determination of photochemically produced hydroxyl radicals in seawater and freshwater. Marine chemistry, 30, 71-88. Zhu, C. M., L. Y. Wang, L. R. Kong, X. Yang, L. S. Wang, S. J. Zheng, F. L. Chen, M. Z. Feng & H. Zong (2000) Photocatalytic degradation of azo dyes by supported TiO2 + UV in aqueous solution. Chemosphere, 41, 303-309. Zhu, H. Y., J. A. Orthman, J. Y. Li, J. C. Zhao, G. J. Churchman & E. F. Vansant (2002) Novel Composites of TiO2 (anatase) and silicate nanoparticles. Chem. Mater., 14, 5037-5044. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78590 | - |
| dc.description.abstract | 氧化鎢(tungsten trioxide, WO3)、二氧化鈦(titanium dioxide, TiO2)以及氧化鋅(zinc oxide, ZnO)奈米顆粒(nanoparticles, NPs)等均具無毒、高穩定性以及高反應性等優點,本篇以此三種顆粒作為光催化材料。磺胺甲噁唑(Sulfamethoxazole, SMZ)為一種臨床上常見的磺胺類抗生素,然而其廣泛使用導致SMZ流布至環境水體當中,且當前廢水處理與微生物降解SMZ均無法有效移除之,光催化降解被視為最快速有效移除SMZ的方法之一。水體中的常見鹵素離子對光降解可能有正向或負向的影響,本研究則關注於其與不同光催化劑的互動。隨著氯與溴離子濃度的提高,WO3、商用TiO2 (commercial TiO2, CTiO2)以及ZnO NPs聚集與沉降的現象逐步明顯。無鹽類情況下,三者降解SMZ之速率常數分別為0.0081、0.0065以及0.022 min-1。當系統中存在氯離子,其可能於過程中轉為自由基捕捉者,導致WO3與ZnO NPs對SMZ的降解能力減弱。然而CTiO2提供的酸性環境 (pH 4.4 to 4.6 ),可將其轉為活性鹵素物種,可於500 mM NaCl下提高降解速率至0.023 min-1。溴離子同樣使WO3對SMZ的降解能力減弱。然而在500 mM NaBr下,CTiO2與ZnO的降解速率明顯提高至0.21 min-1與0.056 min-1。此些促進的原因可能來自於活性鹵素物種的生成,其生成又與環境的酸鹼值、顆粒表面電荷以及光催化劑的量子產率等有關,故本研究目的為證明鹵素鹽類促進SMZ降解的原因與其機制。光致激發光譜中,高濃度NaBr下可明顯降低CTiO2與ZnO電子電洞對的重組,因而增加催化能力。以coumarin與courmain-3-carboxylic acid (CCA)分別測定溶液中與顆粒表面的•OH,在無鹽類的情況下均可測定到此二者。然而系統中含NaBr的情況下,則無法測得,顯示溴離子會與•OH發生反應。另外藉自由基捕捉的實驗顯示,在含有NaBr的情況下,不論系統是否有•OH清除劑 (methanol),SMZ的降解均被提升,顯示•OH對其降解影響較小。但系統中具電洞清除劑 (sodium oxalate, Na2C2O4)的情況下,則均會明顯抑制SMZ的降解,顯示活性鹵素物種的形成與電洞息息相關。此外allyl alcohol (AA)作為顆粒表面活性物種(•OH、•Br等)的捕捉者,tert-butyl alcohol (t-BuOH)作為溶液中活性物種的捕捉者的實驗中,CTiO2與ZnO的光催化反應均會被抑制。然而當系統中含有NaBr時,加入AA組具有明顯的抑制,而t-BuOH組則無,證明活性物種應大量存在於顆粒表面。本篇中也藉由N,N-diethyl-p-phenylenediamine (DPD)實驗,證實CTiO2與ZnO於紫外光下可將溴離子反應為活性鹵素物種。而cyclohexene會與Br2反應形成dibromocyclohexane,同時也證實Br2會於系統中生成。在上述兩實驗中,若添加甲醇則會抑制活性溴物種的產量,顯示出其生成亦受到•OH的影響。最後以HPLC-MS分析降解副產物,發現兩種SMZ的溴化產物。分別為在苯環或胺基上接上一個溴,與在苯環位置接上兩個溴。此結果亦直接證明系統中的溴離子將被反應成為一高活性的物種,並具有攻擊SMZ的能力。 | zh_TW |
| dc.description.abstract | Tungsten trioxide (WO3), titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) are chosen as photocatalysts in this study. The widespread detection of antibiotics in aquatic environments is raising public health concerns. Sulfamethoxazole (SMZ) was chosen as a target compound because it is one antibiotic extensively applied in human and animals. Photocatalysis is regarded as a green technology to treat the wastewater with SMZ. The presence of halide anions which are common in the water body has both positive and negative influence on the photocatalytic performance. This study aims to investigate the photocatalytic degradation mechanism of SMZ by different photocatalysts with the presence of halide salts. With the increase of chloride or bromide concentration, the aggregation and sedimentation of WO3, commercial TiO2 (CTiO2) and ZnO NPs become more significantly. In the condition without electrolytes, the rate constants of SMZ photodegradation were 0.0081, 0.0065 and 0.022 min-1, respectively. Chloride ions in the systems might scavenge active radicals during the photocatalytic reactions, hence the photodegradation efficiency of SMZ by WO3 and ZnO decreased. However, UV/CTiO2 system provided an acid condition (pH 4.4 to 4.6) to transform chloride ions to reactive halogen species (RHS), thus increased the removal rate constant to 0.023 min-1 in the presence of 500 mM NaCl. When there were bromide ions, the degradation rate of SMZ by WO3 decreased, while the rate constants in UV/CTiO2 and UV/ZnO systems enhanced to 0.21 and 0.056 min-1, respectively. The enhancement of degradation could be attributed to the generation of RHS which were relative to the pH in the systems, particle surface charges and quantum yields of photocatalyst. This study studied why the photodegradation of SMZ enhanced with halide ions. First, with a high NaBr concentration (≥100 mM), the decrease in the intensity of photoluminescence (PL) peaks was observed, which depicted less charge recombination in the presences of NaBr. Second, dissolved and surface hydroxyl radicals (•OH) measured by coumarin and coumarin-3-carboxylic acid, respectively, were both increased gradually during photocatalytic process, but were both totally suppressed with the addition of NaBr, elucidating that bromide ion could react with •OH. Third, after adding different oxidants scavengers, methanol (•OH scavenger), allyl alcohol (AA) (surface-bound oxidants scavenger) and tert-butyl alcohol (t-BuOH) (dissolved oxidants scavenger), the photodegradation of SMZ was inhibited in absence of NaBr; however, SMZ could be removed after NaBr addition, implying the existence of RHS that was generated more on the surface of CTiO2 or ZnO because the inhibition of degradation by AA was much more significant than t-BuOH. Besides, it was further confirmed that the creation of these RHS should be more relative to photogenerated hole than •OH because the degradation rate of SMZ significantly reduced in the presence of Na2C2O4, hole scavenger, whether there was NaBr or not. Furthermore, the results of N,N-diethyl-p-phenylenediamine tests depicted RHS generated in both UV/ CTiO2 and UV/ZnO systems with NaBr. By the cyclohexene test, the production of bromide on the surface of CTiO2 and ZnO with NaBr was confirmed by dibromocyclohexane. Moreover, RHS generation was influenced by the amount of •OH, hence RHS yields decreased in the presence of methanol. RHS can react with unsaturated bonds and electron-rich moieties such as aromatic rings to form halogenated products. There were two halogenated byproducts, mono- and di-brominated derivatives of SMZ in the photodegradation process of SMZ by CTiO2 and ZnO in the presence of NaBr, confirmed by HPLC-MS. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:05:54Z (GMT). No. of bitstreams: 1 ntu-108-R06623005-1.pdf: 5844824 bytes, checksum: 67b117031dedf4b3e4fed540c5fa6994 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV Table of contents VI List of Tables IX List of Figures XI Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Introduction of sulfamethoxazole (SMZ) 4 2.1.1 The application of SMZ and its environmental issue 4 2.1.2 The removal of SMZ 5 2.2 Introduction of different photocatalysts 7 2.2.1 Tungsten trioxide (WO3) 7 2.2.2 Titanium dioxide (TiO2) 7 2.2.3 Zinc oxide (ZnO) 9 2.3 Introduction of photocatalytic degradation of organic pollutants 9 2.4 Introduction of quantum yield of photocatalyst 12 2.5 Effect of particle size on photocatalytic degradation 15 2.6 Effect of halide ions on photocatalytic degradation 17 2.6.1 Chloride 17 2.6.2 Bromide 19 2.7 Reactive halogen species (RHS) 19 2.7.1 Introduction of RHS 19 2.7.2 The formation of RHS 20 2.7.3 Photocatalytic transformation of organic compounds with halide ions 23 Chapter 3 Materials and Methods 26 3.1 Chemicals 26 3.2 Synthesis of NaBr-ZnO, NaCl-ZnO, HBr-ZnO and HCl-ZnO 27 3.3 Characterization 27 3.3.1 Dynamic light scattering 27 3.3.2 Transmission electron microscope 28 3.3.3 Field-emission scanning electron microscope 28 3.3.4 X-ray diffraction 28 3.3.5 Fourier transform infrared spectroscopy 29 3.3.6 X-ray photoelectron spectroscopy 29 3.3.7 Electron probe X-ray microanalyzer 30 3.4 Aggregation and sedimentation experiments 30 3.5 Photocatalytic experiments 30 3.6 Photoluminescence 32 3.7 ROS measurements 32 3.7.1 Scavenger experiments of radicals and holes 32 3.7.2 The measurement of •OH 33 3.7.3 The measurement of bromine species 34 3.7.4 The measurement of bromine by dibromocyclohexane test 35 3.8 Analytical methods 36 3.8.1 High-performance liquid chromatography 36 3.8.2 Byproducts analysis 37 3.9 Calculation 37 3.9.1 SMZ degradation rate constants 37 3.9.2 Quantum yields of different photocatalysts 38 Chapter 4 Results and Discussion 39 4.1 Characterization 39 4.1.1 WO3 39 4.1.1.1 DLS and SEM 39 4.1.1.2 XRD 39 4.1.1.3 FT-IR 40 4.1.1.4 XPS 41 4.1.2 CTiO2 42 4.1.2.1 DLS and TEM 42 4.1.2.2 XRD 44 4.1.2.3 FT-IR 44 4.1.2.4 XPS 45 4.1.3 ZnO and modified ZnO 46 4.1.3.1 DLS, SEM-EDX and EPMA 46 4.1.3.2 XRD 51 4.1.3.3 FT-IR 52 4.1.3.4 XPS 54 4.2 Aggregation and sedimentation of nanoparticles 56 4.2.1 The effect of sodium halides 56 4.2.1.1 WO3 57 4.2.1.2 CTiO2 58 4.2.1.3 ZnO 59 4.2.2 Modified ZnO by NaCl, NaBr, HCl, and HBr 67 4.3 Photocatalytic degradation of SMZ with nanoparticles 68 4.3.1 The effect of dosages 68 4.3.1.1 WO3 68 4.3.1.2 CTiO2 70 4.3.1.3 ZnO 71 4.3.2 The effect of sodium halides 73 4.3.2.1 The effect of NaCl concentration on the removal of SMZ by WO3, CTiO2 and ZnO 73 4.3.2.1.1 WO3 73 4.3.2.1.2 CTiO2 76 4.3.2.1.3 ZnO 78 4.3.2.2 The effect of NaBr concentration on the removal of SMZ by WO3, CTiO2 and ZnO 81 4.3.2.2.1 WO3 81 4.3.2.2.2 CTiO2 84 4.3.2.2.3 ZnO 86 4.3.2.3 NaCl, NaBr, HCl, and HBr modified ZnO 90 4.4 Mechanism of photocatalytic degradation 92 4.4.1 The effect of different scavengers on the removal of SMZ 92 4.4.1.1 The effect of oxidants’ scavengers on the removal of SMZ 92 4.4.1.1.1 CTiO2 93 4.4.1.1.2 ZnO 97 4.4.1.2 The effect of photogenerated hole scavenger on the removal of SMZ 101 4.4.1.2.1 CTiO2 102 4.4.1.2.2 ZnO 102 4.4.2 Photoluminescence spectrum 105 4.4.3 Radical measurements 107 4.4.3.1 The measurement of OH radical by coumarin and CCA 107 4.4.3.2 The measurement of reactive halogen species (RHS) by DPD method 111 4.4.3.3 The measurement of bromine by dibromocyclohexane test 114 4.4.4 Byproducts analysis 117 Chapter 5 Conclusion 121 References 125 Appendix 139 | - |
| dc.language.iso | en | - |
| dc.subject | 磺胺甲噁唑 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 光催化降解 | zh_TW |
| dc.subject | 氧化鎢 | zh_TW |
| dc.subject | 活性鹵素物種 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | reactive halogen species (RHS) | en |
| dc.subject | tungsten trioxide (WO3) | en |
| dc.subject | titanium dioxide (TiO2) | en |
| dc.subject | zinc oxide (ZnO) | en |
| dc.subject | sulfamethoxazole (SMZ) | en |
| dc.subject | photocatalytic degradation | en |
| dc.title | 鹵素離子對光催化劑降解磺胺甲噁唑之影響與機制 | zh_TW |
| dc.title | The effect and mechanism of halide ions on the photocatalytic degradation of sulfamethoxazole by photocatalysts | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳先琪;張淑閔 | zh_TW |
| dc.contributor.oralexamcommittee | Shian-Chee Wu;Sue-Min Chang | en |
| dc.subject.keyword | 氧化鎢,二氧化鈦,氧化鋅,磺胺甲噁唑,光催化降解,活性鹵素物種, | zh_TW |
| dc.subject.keyword | tungsten trioxide (WO3),titanium dioxide (TiO2),zinc oxide (ZnO),sulfamethoxazole (SMZ),photocatalytic degradation,reactive halogen species (RHS), | en |
| dc.relation.page | 147 | - |
| dc.identifier.doi | 10.6342/NTU201903341 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 5.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
