請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78589
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 湯森林 | zh_TW |
dc.contributor.advisor | Sen-Lin Tang | en |
dc.contributor.author | 陳家育 | zh_TW |
dc.contributor.author | Chia-Yu Chen | en |
dc.date.accessioned | 2021-07-11T15:05:50Z | - |
dc.date.available | 2024-08-21 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Appolinario, L. R., Tschoeke, D. A., Rua, C. P., Venas, T., Campeao, M. E., Amaral, G. R., Leomil, L., de Oliveira, L., Vieira, V. V., Otsuki, K., Swings, J., Thompson, F. L., & Thompson, C. C. (2016). Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie Van Leeuwenhoek, 109(3), 431-438
Bartz, J. O., Blom, J., Busse, H. J., Mvie, J. B., Hardt, M., Schubert, P., Wilke, T., Goessmann, A., Wilharm, G., Bender, J., Kampfer, P., & Glaeser, S. P. (2018). Parendozoicomonas haliclonae gen. nov. sp. nov. isolated from a marine sponge of the genus Haliclona and description of the family Endozoicomonadaceae fam. nov. comprising the genera Endozoicomonas, Parendozoicomonas, and Kistimonas. Syst Appl Microbiol, 41(2), 73-84 Bourne, D., Dennis, P., Uthicke, S., Soo, R. M., Tyson, G. W., & Webster, N. (2013). Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J, 7(7), 1452-1458 Bourne, D., Y, I., Uthicke, S., & Smith-Keune, C. (2008). Changes in coral-associated microbial communities during a bleaching event. ISME J, 2(4), 350-363 Bourne, D. G., Morrow, K. M., & Webster, N. S. (2016). Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annu Rev Microbiol, 70, 317-340 Buttner, D. (2012). Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev, 76(2), 262-310 Coombes, B. K. (2009). Type III secretion systems in symbiotic adaptation of pathogenic and non-pathogenic bacteria. Trends Microbiol, 17(3), 89-94 de Campos, S. B., Deakin, W. J., Broughton, W. J., & Passaglia, L. M. (2011). Roles of flavonoids and the transcriptional regulator TtsI in the activation of the type III secretion system of Bradyrhizobium elkanii SEMIA587. Microbiology, 157(Pt 3), 627-635 DeSalvo, M. K., Sunagawa, S., Voolstra, C. R., & Medina, M. (2010). Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser, 402, 97-113 Ding, J. Y., Shiu, J. H., Chen, W. M., Chiang, Y. R., & Tang, S. L. (2016). Genomic Insight into the Host-Endosymbiont Relationship of Endozoicomonas montiporae CL-33(T) with its Coral Host. Front Microbiol, 7, 251-265 Eastmond, P. J., Germain, V., Lange, P. R., Bryce, J. H., Smith, S. M., & Graham, I. A. J. P. o. t. N. A. o. S. (2000). Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. PNAS, 97(10), 5669-5674 Economou, A., Christie, P. J., Fernandez, R. C., Palmer, T., Plano, G. V., & Pugsley, A. P. (2006). Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol, 62(2), 308-319 Frevert, J., & Kindl, H. (1978). Plant Microbody Proteins: Purification and Glycoprotein Nature of Glyoxysomal Isocitrate Lyase from Cucumber Cotyledons. European journal of biochemistry, 92(1), 35-43 Galan, J. E., Lara-Tejero, M., Marlovits, T. C., & Wagner, S. (2014). Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol, 68, 415-438 Galan, J. E., & Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444(7119), 567-573 Green, E. R., & Mecsas, J. (2016). Bacterial Secretion Systems: An Overview. Microbiol Spectr, 4(1) Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., & Caldeira, K. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742 Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B., & Kleypas, J. J. s. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635), 929-933 Hyun, D. W., Shin, N. R., Kim, M. S., Oh, S. J., Kim, P. S., Whon, T. W., & Bae, J. W. (2014). Endozoicomonas atrinae sp. nov., isolated from the intestine of a comb pen shell Atrina pectinata. Int J Syst Evol Microbiol, 64(Pt 7), 2312-2318 Janczarek, M., Rachwał, K., Marzec, A., Grządziel, J., & Palusińska-Szysz, M. (2015). Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions. Appl Soil Ecol, 85, 94-113 Kloepper, J., & Schroth, M. N. (1978). Plant growth-promoting rhizobacteria on radishes. IV international conference on plant pathogenic bacteria (Vol. 2). Käll, L., Storey, J. D., MacCoss, M. J., & Noble, W. S. (2007). Posterior error probabilities and false discovery rates: two sides of the same coin. J Proteome Res, 7(01), 40-44 Kondrashov, F. A., Koonin, E. V., Morgunov, I. G., Finogenova, T. V., & Kondrashova, M. N. (2006). Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct, 1, 31 Kurahashi, M., & Yokota, A. (2007). Endozoicomonas elysicola gen. nov., sp. nov., a gamma-proteobacterium isolated from the sea slug Elysia ornata. Syst Appl Microbiol, 30(3), 202-206 Lee, S. T., Davy, S. K., Tang, S. L., Fan, T. Y., & Kench, P. S. (2015). Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol, 91(12) Lee, S. T., Davy, S. K., Tang, S. L., & Kench, P. S. (2016). Mucus Sugar Content Shapes the Bacterial Community Structure in Thermally Stressed Acropora muricata. Front Microbiol, 7, 371 Liu, X., Chen, Y., Zhao, Y., Liu-Compton, V., Chen, W., Payne, G., & Lazar, A. C. (2019). Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process. J Pharm Biomed Anal, 174, 500-508 Lorenz, M. C., & Fink, G. R. (2002). Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell, 1(5), 657-662 Mainguet, S. E., Gronenberg, L. S., Wong, S. S., & Liao, J. C. (2013). A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab Eng, 19, 116-127 Matsuda, S., Okada, R., Tandhavanant, S., Hiyoshi, H., Gotoh, K., Iida, T., & Kodama, T. (2019). Export of a Vibrio parahaemolyticus toxin by the Sec and type III secretion machineries in tandem. Nat. Microbiol., 4(5), 781-788 Muscatine, L., & Porter, J. W. (1977). Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience, 27(7), 454-460 Neave, M. J., Michell, C. T., Apprill, A., & Voolstra, C. R. (2014). Whole-genome sequences of three symbiotic endozoicomonas strains. Genome Announc, 2(4) Neave, M. J., Michell, C. T., Apprill, A., & Voolstra, C. R. (2017). Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep, 7, 40579 Nishijima, M., Adachi, K., Katsuta, A., Shizuri, Y., & Yamasato, K. (2013). Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int J Syst Evol Microbiol, 63(Pt 2), 709-714 O'Brien, P. A., Morrow, K. M., Willis, B. L., & Bourne, D. G. (2016). Implications of Ocean Acidification for Marine Microorganisms from the Free-Living to the Host-Associated. Front Mar Sci, 3, 47 Parker, C. E., Mocanu, V., Mocanu, M., Dicheva, N., & Warren, M. R. (2010). Mass spectrometry for post-translational modifications. Neuroproteomics, 2010, PMID: 21882444 Peixoto, R. S., Rosado, P. M., Leite, D. C., Rosado, A. S., & Bourne, D. G. (2017). Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front Microbiol, 8, 341 Pieper, R., Huang, S. T., Robinson, J. M., Clark, D. J., Alami, H., Parmar, P. P., Perry, R. D., Fleischmann, R. D., & Peterson, S. N. (2009). Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology, 155(Pt 2), 498-512 Pike, R. E., Haltli, B., & Kerr, R. G. (2013). Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. Int J Syst Evol Microbiol, 63(Pt 11), 4294-4302 Polato, N. R., Altman, N. S., & Baums, I. B. (2013). Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol Ecol, 22(5), 1366-1382 Preston, G. M. (2007). Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe, 2(5), 291-294 Pukatzki, S., Ma, A. T., Revel, A. T., Sturtevant, D., & Mekalanos, J. J. (2007). Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. PNAS, 104(39), 15508-15513 Raina, J. B., Tapiolas, D., Willis, B. L., & Bourne, D. G. (2009). Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol, 75(11), 3492-3501 Raviv, B., Granot, G., Chalifa-Caspi, V., & Grafi, G. (2017). The dead, hardened floral bracts of dispersal units of wild wheat function as storage for active hydrolases and in enhancing seedling vigor. PLoS One, 12(5), e0177537 Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I., & Rosenberg, E. (2006). The coral probiotic hypothesis. Environ Microbiol, 8(12), 2068-2073 Rogers, E. M. (2010). Diffusion of innovations: Simon and Schuster. Rosenberg, E., Koren, O., Reshef, L., Efrony, R., & Zilber-Rosenberg, I. (2007). The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol, 5(5), 355-362 Rua, C. P., Trindade-Silva, A. E., Appolinario, L. R., Venas, T. M., Garcia, G. D., Carvalho, L. S., Lima, A., Kruger, R., Pereira, R. C., Berlinck, R. G., Valle, R. A., Thompson, C. C., & Thompson, F. (2014). Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ, 2, e419 Sato, K. (2011). Por secretion system of Porphyromonas gingivalis. J Oral Biosci, 53(3), 187-196 Schreiber, L., Kjeldsen, K. U., Obst, M., Funch, P., & Schramm, A. (2016). Description of Endozoicomonas ascidiicola sp. nov., isolated from Scandinavian ascidians. Syst Appl Microbiol, 39(5), 313-318 Sheu, S. Y., Lin, K. R., Hsu, M. Y., Sheu, D. S., Tang, S. L., & Chen, W. M. (2017). Endozoicomonas acroporae sp. nov., isolated from Acropora coral. Int J Syst Evol Microbiol, 67(10), 3791-3797 Shiu, J. H., Keshavmurthy, S., Chiang, P. W., Chen, H. J., Lou, S. P., Tseng, C. H., Justin Hsieh, H., Allen Chen, C., & Tang, S. L. (2017). Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep, 7(1), 14933 Smith, R. A., & Gunsalus, I. C. (1954). Isocitritase: A New Tricarboxylic Acid Cleavage System. J Am Chem Soc, 76(19), 5002-5003 Soto, M. J., Sanjuan, J., & Olivares, J. (2006). Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology, 152(Pt 11), 3167-3174 Spalding, M., & Grenfell, A. J. C. R. (1997). New estimates of global and regional coral reef areas. Coral Reefs, 16(4), 225-230 Tandon, K., Chiang, P.-W., Lu, C.-Y., Yang, S.-H., Chan, Y.-F., Wada, N., Chen, P.-Y., Chang, H.-Y., Chou, M.-S., & Chen, W.-M. (2019). Dominant coral bacterium Endozoicomonas acroporae metabolizes Dimethylsulfoniopropionate. bioRxiv, 519546 Vanni, P., Giachetti, E., Pinzauti, G., McFadden, B. A. J. C. B., & Biochemistry, P. P. B. C. (1990). Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comp. Biochem. Physiol, 95(3), 431-458 Vezzulli, L., Pezzati, E., Huete-Stauffer, C., Pruzzo, C., & Cerrano, C. (2013). 16SrDNA Pyrosequencing of the Mediterranean Gorgonian Paramuricea clavata Reveals a Link among Alterations in Bacterial Holobiont Members, Anthropogenic Influence and Disease Outbreaks. PLoS One, 8(6), e67745 Wooldridge, S. A. (2009). A new conceptual model for the enhanced release of mucus in symbiotic reef corals during ‘bleaching’ conditions. Marine Ecology Progress Series, 396, 145-152 Yang, C. S., Chen, M. H., Arun, A. B., Chen, C. A., Wang, J. T., & Chen, W. M. (2010). Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J Syst Evol Microbiol, 60(Pt 5), 1158-1162 Yang, S., Tang, F., Gao, M., Krishnan, H. B., & Zhu, H. (2010). R gene-controlled host specificity in the legume-rhizobia symbiosis. PNAS, 107(43), 18735-18740 Zhou, M., Guo, Z., Duan, Q., Hardwidge, P. R., & Zhu, G. (2014). Escherichia coli type III secretion system 2: a new kind of T3SS? Vet Res, 45(1), 32 Zwietering, M., Jongenburger, I., Rombouts, F., & Van't Riet, K. (1990). Modeling of the bacterial growth curve. Appl Environ Microbiol, 56(6), 1875-1881 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78589 | - |
dc.description.abstract | Endozoicomonas montiporae CL-33T是一株從癭葉表孔珊瑚上所分離出的珊瑚共生菌。根據前人研究發現,E. montiporae的基因體當中編碼有格蘭氏陰性菌特有的第三型分泌系統以及第三型分泌系統效應蛋白。從基因體分析中發現E. montiporae當中一個第三型分泌系統效應蛋白屬於乙醛酸循環中重要酵素之一的異檸檬酸裂解酶。根據其他的文獻指出,當珊瑚處於高溫逆境之下,其體內乙醛酸循環相關的基因表現量也會增加,例如編碼異檸檬酸裂解酶之基因等,這樣的現象推測與調節珊瑚對環境的適應性有關。在本篇研究最初,我們利用專一性抗體透過西方墨點法證明E. montiporae確實具有產生異檸檬酸裂解酶的能力。另外,為了測試專一性抗體是否真能有效地偵測異檸檬酸裂解酶,我們利用液相層析串聯式質譜儀確認了抗體的專一性。在E. montiporae溫度逆境實驗中,首先發現E. montiporae在其適合生長的溫度下,具有分泌異檸檬酸裂解酶的能力;另外,當E. montiporae處於高溫之下能夠大量的分泌異檸檬酸裂解酶到細胞外。在探討珊瑚宿主在溫度逆境下對調節E. montiporae所產生之異檸檬酸裂解酶的研究中,為了找出最佳的實驗條件,我們首先測試了不同的培養時間以及不同宿主體積。根據西方墨點法之結果可見,細菌與珊瑚宿主的共培養時間以及珊瑚宿主的培養體積對於E. montiporae體內異檸檬酸裂解酶的產量影響不甚明顯。但在E. montiporae與逆境珊瑚共同培養的實驗中,隨著溫度增加,比起珊瑚組織以及控制組的海水,珊瑚黏液能夠明顯的改變E. montiporae體內異檸檬酸裂解酶的產量;而在高溫的狀況下,珊瑚組織也改變了異檸檬酸裂解酶的分泌量。根據本篇研究的結果可以得知,珊瑚宿主對於E. montiporae中異檸檬酸裂解酶的產量以及分泌是具有影響力的。總而言之,本篇論文為少數透過分子生物學的方式提供生化證據來探討珊瑚與細菌相互作用的研究,並且提供一個新的觀點來深入瞭解珊瑚與細菌的交互關係。 | zh_TW |
dc.description.abstract | Endozoicomonas montiporae CL-33T is a potential coral symbiotic bacterium, isolated from the reef-building coral Montipora aequituberculata. Previous studies deduced that E. montiporae encodes type III secretion system (T3SS) effectors which could translocate into the coral cell to modulate metabolism or increase its fitness. This study is focused on one of the predicted T3SS effector proteins, isocitrate lyase (ICL), which is a key enzyme in glyoxylation pathway. Glyoxylation pathway genes were known to be highly expressed when the coral is under heat stress and functionally related to increasing coral’s fitness. In order to investigate whether ICL protein can be secreted out of the bacterium, we cultivated E. montiporae at different temperatures, mimicking heat stress conditions in the natural environment. We generated a specific antibody in order to detect the ICL protein. The antibody specificity was experimentally confirmed using polyacrylamide gel electrophoresis (PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS). We established and optimized western blotting technique for detection of the ICL using the specific antibody. According to western blotting results, the ICL protein was detected as a secreted protein in the supernatant, which proves the ICL can be secreted out of the bacterium. In the different temperature treatments, E. montiporae secretes more ICL proteins out of the bacterium under high temperature. Furthermore, we investigated changes in the ICL of E. montiporae incubating with coral cell lysates (i.e., mucus or tissue) under different temperatures. The result revealed that under heat stress, ICL expression change can be induced by coral mucus. Furthermore, the secretion of ICL also can affect by coral tissue lysate under higher temperature. This study provides more insight to understand how the expression of secretory ICL will modulate with heat stress and can be a potential metabolite to govern host response. Taken together, this thesis work is one of few studies to offer potential molecular and biochemical evidence for coral-bacteria interactions. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:05:50Z (GMT). No. of bitstreams: 1 ntu-108-R06241212-1.pdf: 7176662 bytes, checksum: b05b6ece2f4de00c91cbdd47826a0b26 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | CONTENT
誌謝 i 中文摘要 ii ABSTRACT iv CONTENT vi LIST OF FIGURES ix LIST OF APPENDIX xii 1 Introduction 1 1.1 Relationship of coral and coral associated bacteria 1 1.2 Genus Endozoicomonas and its relation with coral host 3 1.3 Introduction to Endozoicomonas montiporae CL-33T 4 1.4 Type Ⅲ secretion system (T3SS) 6 1.5 Metabolic function of isocitrate lyase 7 1.6 Aim of this study 9 2 Materials and Methods 10 2.1 Bacterial strain and culture 10 2.2 Growth curve of E. montiporae 10 2.3 Type Ⅲ secretion system (T3SS) assays 10 2.3.1 Protein extraction from total cell lysate 11 2.3.2 Protein extraction from supernatant 12 2.3.3 SDS Poly-acrylamide-gel-electrophoresis 13 2.3.4 Western blotting assay 14 2.3.5 Antibody generation and specificity test 16 2.4 In vitro temperature treatment on E. montiporae 17 2.5 Host effect on the expression of ICLEMO protein of E. montiporae 18 2.5.1 Preliminary test of co-incubation experiment 18 2.5.2 Expression of ICLEMO protein of E. montiporae incubated with heat-treated coral tissue and mucus lysate 19 3 Results 22 3.1 Growth curve of E. montiporae 22 3.2 Anti-ICLEMO antibody test 22 3.3 Anti- ICLEMO antibody specificity test by LC-MS/MS 23 3.4 Expression of ICLEMO in E. montiporae under temperature treatment 25 3.5 Host effect on expression of ICLEMO in E. montiporae 27 3.5.1 Preliminary test of ICLEMO expression under bacteria-host lysate co-incubation experiment 27 3.5.2 ICLEMO expression under bacteria-host lysate co-incubation experiment 29 4 Discussion 34 4.1 Position of ICLEMO on SDS PAGE gel 34 4.2 Temperature effect on the secreted of ICLEMO in E. montiporae 35 4.3 Host effect on expression of ICLEMO in E. montiporae 36 4.3.1 ICLEMO expression in preliminary experiment 36 4.3.2 Tank effect on the differential expression of ICLEMO in host lysate co-incubation experiment 37 4.3.3 ICLEMO expression in host lysate co-incubation experiment 38 5 Conclusions 40 6 Future works 41 REFERENCES 42 | - |
dc.language.iso | en | - |
dc.title | 溫度逆境下表孔珊瑚內生桿菌中第三型分泌系統效應蛋白異檸檬酸裂解酶之表現 | zh_TW |
dc.title | Differential expression of type Ⅲ secretion system (T3SS) effector isocitrate lyase in Endozoicomonas montiporae CL-33(T) under heat treatment | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 識名信也;楊姍樺 | zh_TW |
dc.contributor.oralexamcommittee | Shinya Shikina;Shan-Hua Yang | en |
dc.subject.keyword | 珊瑚共生菌,第三型分泌系統,乙醛酸循環,異檸檬酸裂解?,西方墨點法, | zh_TW |
dc.subject.keyword | coral associated bacteria,type Ⅲ secretion system,glyoxylate cycle,isocitrate lyase,western blotting, | en |
dc.relation.page | 94 | - |
dc.identifier.doi | 10.6342/NTU201903059 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-14 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
dc.date.embargo-lift | 2024-08-26 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 7.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。