請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78583完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林琬琬(Wan-Wan Lin) | |
| dc.contributor.author | Yi-Chu Hung | en |
| dc.contributor.author | 洪翊筑 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:05:28Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | Abdul-Sater, A.A., Said-Sadier, N., Lam, V.M., Singh, B., Pettengill, M.A., Soares, F., Tattoli, I., Lipinski, S., Girardin, S.E., Rosenstiel, P., et al. (2010). Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1. J Biol Chem 285, 41637-41645.
Adib-Conquy, M., Scott-Algara, D., Cavaillon, J.M., and Souza-Fonseca-Guimaraes, F. (2014). TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 92, 256-262. Aikawa, C., Nakajima, S., Karimine, M., Nozawa, T., Minowa-Nozawa, A., Toh, H., Yamada, S., and Nakagawa, I. (2018). NLRX1 negatively regulates group A streptococcus invasion and autophagy induction by interacting with the beclin 1-UVRAG complex. Front Cell Infect Microbiol 8, 403. Allen, I.C., Moore, C.B., Schneider, M., Lei, Y., Davis, B.K., Scull, M.A., Gris, D., Roney, K.E., Zimmermann, A.G., Bowzard, J.B., et al. (2011). NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 34, 854-865. Alvarez, C.A., Ramirez-Cepeda, F., Santana, P., Torres, E., Cortes, J., Guzman, F., Schmitt, P., and Mercado, L. (2017). Insights into the diversity of NOD-like receptors: Identification and expression analysis of NLRC3, NLRC5 and NLRX1 in rainbow trout. Mol Immunol 87, 102-113. Archer, S.L. (2013). Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369, 2236-2251. Arnoult, D., Soares, F., Tattoli, I., Castanier, C., Philpott, D.J., and Girardin, S.E. (2009). An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci 122, 3161-3168. Arnoult, D., Soares, F., Tattoli, I., and Girardin, S.E. (2011). Mitochondria in innate immunity. EMBO Rep 12, 901-910. Arulkumaran, N., Deutschman, C.S., Pinsky, M.R., Zuckerbraun, B., Schumacker, P.T., Gomez, H., Gomez, A., Murray, P., Kellum, J.A., and Workgroup, A.X. (2016). Mitochondrial function in sepsis. Shock 45, 271-281. Barbieri, E., Battistelli, M., Casadei, L., Vallorani, L., Piccoli, G., Guescini, M., Gioacchini, A.M., Polidori, E., Zeppa, S., Ceccaroli, P., et al. (2011). Morphofunctional and biochemical approaches for studying mitochondrial changes during myoblasts differentiation. J Aging Res 2011, 845379. Baseler, W.A., Davies, L.C., Quigley, L., Ridnour, L.A., Weiss, J.M., Hussain, S.P., Wink, D.A., and McVicar, D.W. (2016). Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production. Redox Biol 10, 12-23. Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., and Johansen, T. (2009). Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452, 181-197. Borish, L.C., and Steinke, J.W. (2003). 2. Cytokines and chemokines. J Allergy Clin Immunol 111, S460-475. Brookes, P.S. (2005). Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med 38, 12-23. Calandra, T., Baumgartner, J.D., Grau, G.E., Wu, M.M., Lambert, P.H., Schellekens, J., Verhoef, J., and Glauser, M.P. (1990). Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis 161, 982-987. Chen, X., Song, M., Zhang, B., and Zhang, Y. (2016). Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev 2016, 1580967. Cloonan, S.M., and Choi, A.M. (2013). Mitochondria: sensors and mediators of innate immune receptor signaling. Curr Opin Microbiol 16, 327-338. Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R., Corrado, M., Cipolat, S., Costa, V., Casarin, A., Gomes, L.C., et al. (2013). Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160-171. Corral, J., Yelamos, J., Hernandez-Espinosa, D., Monreal, Y., Mota, R., Arcas, I., Minano, A., Parrilla, P., and Vicente, V. (2005). Role of lipopolysaccharide and cecal ligation and puncture on blood coagulation and inflammation in sensitive and resistant mice models. Am J Pathol 166, 1089-1098. Czaja, M.J., Ding, W.X., Donohue, T.M., Jr., Friedman, S.L., Kim, J.S., Komatsu, M., Lemasters, J.J., Lemoine, A., Lin, J.D., Ou, J.H., et al. (2013). Functions of autophagy in normal and diseased liver. Autophagy 9, 1131-1158. D'Autreaux, B., and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8, 813-824. De Biasi, S., Gibellini, L., and Cossarizza, A. (2015). Uncompensated polychromatic analysis of mitochondrial membrane potential using JC-1 and multilaser excitation. Curr Protoc Cytom 72, 7 32 31-11. Delettre, C., Lenaers, G., Griffoin, J.M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., et al. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26, 207-210. Desdin-Mico, G., Soto-Heredero, G., and Mittelbrunn, M. (2018). Mitochondrial activity in T cells. Mitochondrion 41, 51-57. Ding, W.X., and Yin, X.M. (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393, 547-564. Diskin, C., and Palsson-McDermott, E.M. (2018). Metabolic modulation in macrophage effector function. Front Immunol 9, 270. Eitas, T.K., Chou, W.C., Wen, H., Gris, D., Robbins, G.R., Brickey, J., Oyama, Y., and Ting, J.P. (2014). The nucleotide-binding leucine-rich repeat (NLR) family member NLRX1 mediates protection against experimental autoimmune encephalomyelitis and represses macrophage/microglia-induced inflammation. J Biol Chem 289, 4173-4179. Faix, J.D. (2013). Biomarkers of sepsis. Crit Rev Clin Lab Sci 50, 23-36. Ferguson, K.L., and Brown, L. (1996). Bacteremia and sepsis. Emerg Med Clin North Am 14, 185-195. Forrester, S.J., Kikuchi, D.S., Hernandes, M.S., Xu, Q., and Griendling, K.K. (2018). Reactive oxygen Sspecies in metabolic and inflammatory signaling. Circ Res 122, 877-902. Franchi, L., Warner, N., Viani, K., and Nunez, G. (2009). Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227, 106-128. Fujita, K., and Srinivasula, S.M. (2011). TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS). Autophagy 7, 552-554. Gao, Z., Li, Y., Wang, F., Huang, T., Fan, K., Zhang, Y., Zhong, J., Cao, Q., Chao, T., Jia, J., et al. (2017). Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nat Commun 8, 1805. Garrabou, G., Moren, C., Lopez, S., Tobias, E., Cardellach, F., Miro, O., and Casademont, J. (2012). The effects of sepsis on mitochondria. J Infect Dis 205, 392-400. Gilmore, T.D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684. Heckmann, B.L., and Green, D.R. (2019). LC3-associated phagocytosis at a glance. J Cell Sci 132. pii: jcs231472. Hsu, H.Y., and Wen, M.H. (2002). Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem 277, 22131-22139. Huang, J.H., Liu, C.Y., Wu, S.Y., Chen, W.Y., Chang, T.H., Kan, H.W., Hsieh, S.T., Ting, J.P., and Wu-Hsieh, B.A. (2018). NLRX1 facilitates Histoplasma capsulatum-induced LC3-associated phagocytosis for cytokine production in macrophages. Front Immunol 9, 2761. Hung, S.C., Huang, P.R., Almeida-da-Silva, C.L.C., Atanasova, K.R., Yilmaz, O., and Ojcius, D.M. (2018). NLRX1 modulates differentially NLRP3 inflammasome activation and NF-kappaB signaling during Fusobacterium nucleatum infection. Microbes Infect 20, 615-625. Imbeault, E., Mahvelati, T.M., Braun, R., Gris, P., and Gris, D. (2014). Nlrx1 regulates neuronal cell death. Mol Brain 7, 90. Ishihara, N., Fujita, Y., Oka, T., and Mihara, K. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25, 2966-2977. Iskander, K.N., Osuchowski, M.F., Stearns-Kurosawa, D.J., Kurosawa, S., Stepien, D., Valentine, C., and Remick, D.G. (2013). Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev 93, 1247-1288. Jaworska, J., Coulombe, F., Downey, J., Tzelepis, F., Shalaby, K., Tattoli, I., Berube, J., Rousseau, S., Martin, J.G., Girardin, S.E., et al. (2014). NLRX1 prevents mitochondrial induced apoptosis and enhances macrophage antiviral immunity by interacting with influenza virus PB1-F2 protein. Proc Natl Acad Sci U S A 111, E2110-2119. Kadl, A., Pontiller, J., Exner, M., and Leitinger, N. (2007). Single bolus injection of bilirubin improves the clinical outcome in a mouse model of endotoxemia. Shock 28, 582-588. Katoh, M., Wu, B., Nguyen, H.B., Thai, T.Q., Yamasaki, R., Lu, H., Rietsch, A.M., Zorlu, M.M., Shinozaki, Y., Saitoh, Y., et al. (2017). Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. Sci Rep 7, 4942. Kawai, T., and Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13, 460-469. Kelly, B., and O'Neill, L.A. (2015). Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25, 771-784. Kim, S.Y., Jeong, J.M., Kim, S.J., Seo, W., Kim, M.H., Choi, W.M., Yoo, W., Lee, J.H., Shim, Y.R., Yi, H.S., et al. (2017). Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun 8, 2247. Kim, Y.K., Shin, J.S., and Nahm, M.H. (2016). NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 57, 5-14. Kors, L., Rampanelli, E., Stokman, G., Butter, L.M., Held, N.M., Claessen, N., Larsen, P.W.B., Verheij, J., Zuurbier, C.J., Liebisch, G., et al. (2018). Deletion of NLRX1 increases fatty acid metabolism and prevents diet-induced hepatic steatosis and metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 1864, 1883-1895. Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W., and Khrapko, K. (2006). Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38, 518-520. Kufer, T.A., Nigro, G., and Sansonetti, P.J. (2016). Multifaceted functions of NOD-like receptor proteins in myeloid cells at the intersection of innate and adaptive immunity. Microbiol Spectr 4. doi: 10.1128/microbiolspec.MCHD-0021-2015. Lamark, T., Svenning, S., and Johansen, T. (2017). Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem 61, 609-624. Leber, A., Hontecillas, R., Tubau-Juni, N., Zoccoli-Rodriguez, V., Abedi, V., and Bassaganya-Riera, J. (2018). NLRX1 modulates immunometabolic mechanisms controlling the host-gut microbiota interactions during inflammatory bowel disease. Front Immunol 9, 363. Lee, H., and Yoon, Y. (2016). Mitochondrial fission and fusion. Biochem Soc Trans 44, 1725-1735. Lei, Y., Wen, H., Yu, Y., Taxman, D.J., Zhang, L., Widman, D.G., Swanson, K.V., Wen, K.W., Damania, B., Moore, C.B., et al. (2012). The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36, 933-946. Li, H., Zhang, S., Li, F., and Qin, L. (2016). NLRX1 attenuates apoptosis and inflammatory responses in myocardial ischemia by inhibiting MAVS-dependent NLRP3 inflammasome activation. Mol Immunol 76, 90-97. Li, J.L., Li, G., Jing, X.Z., Li, Y.F., Ye, Q.Y., Jia, H.H., Liu, S.H., Li, X.J., Li, H., Huang, R., et al. (2018). Assessment of clinical sepsis-associated biomarkers in a septic mouse model. J Int Med Res 46, 2410-2422. Li, X.B., Gu, J.D., and Zhou, Q.H. (2015). Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac Cancer 6, 17-24. Liesa, M., Borda-d'Agua, B., Medina-Gomez, G., Lelliott, C.J., Paz, J.C., Rojo, M., Palacin, M., Vidal-Puig, A., and Zorzano, A. (2008). Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta. PLoS One 3, e3613. Liesa, M., and Shirihai, O.S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17, 491-506. Liu, P.S., and Ho, P.C. (2018). Mitochondria: A master regulator in macrophage and T cell immunity. Mitochondrion 41, 45-50. Liu, S.F., and Malik, A.B. (2006). NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290, L622-L645. Liu, W., Guo, J., Mu, J., Tian, L., and Zhou, D. (2017). Rapamycin protects sepsis-induced cognitive impairment in mouse hippocampus by enhancing autophagy. Cell Mol Neurobiol 37, 1195-1205. Ma, D., Zhao, Y., She, J., Zhu, Y., Zhao, Y., Liu, L., and Zhang, Y. (2019). NLRX1 alleviates lipopolysaccharide-induced apoptosis and inflammation in chondrocytes by suppressing the activation of NF-kappaB signaling. Int Immunopharmacol 71, 7-13. MacVicar, T., and Langer, T. (2016). OPA1 processing in cell death and disease - the long and short of it. J Cell Sci 129, 2297-2306. Madrigal-Matute, J., and Cuervo, A.M. (2016). Regulation of liver metabolism by autophagy. Gastroenterology 150, 328-339. Mantzarlis, K., Tsolaki, V., and Zakynthinos, E. (2017). Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev 2017, 5985209. McCarron, E.P., Williams, D.P., Antoine, D.J., Kipar, A., Lemm, J., Stehr, S., and Welters, I.D. (2015). Exploring the translational disconnect between the murine and human inflammatory response: analysis of LPS dose-response relationship in murine versus human cell lines and implications for translation into murine models of sepsis. J Inflamm Res 8, 201-209. Melser, S., Lavie, J., and Benard, G. (2015). Mitochondrial degradation and energy metabolism. Biochim Biophys Acta 1853, 2812-2821. Meylan, E., and Tschopp, J. (2008). NLRX1: friend or foe? EMBO Rep 9, 243-245. Mills, E.L., Kelly, B., and O'Neill, L.A.J. (2017). Mitochondria are the powerhouses of immunity. Nat Immunol 18, 488-498. Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873. Mizushima, N., and Yoshimori, T. (2007). How to interpret LC3 immunoblotting. Autophagy 3, 542-545. Mohanty, A., Tiwari-Pandey, R., and Pandey, N.R. (2019). Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal. Moore, C.B., Bergstralh, D.T., Duncan, J.A., Lei, Y., Morrison, T.E., Zimmermann, A.G., Accavitti-Loper, M.A., Madden, V.J., Sun, L., Ye, Z., et al. (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451, 573-577. Ni, H.M., Bockus, A., Wozniak, A.L., Jones, K., Weinman, S., Yin, X.M., and Ding, W.X. (2011). Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 7, 188-204. Parvatiyar, K., and Cheng, G. (2011). NOD so fast: NLRX1 puts the brake on inflammation. Immunity 34, 821-822. Peralta, S., Wang, X., and Moraes, C.T. (2012). Mitochondrial transcription: lessons from mouse models. Biochim Biophys Acta 1819, 961-969. Philipson, C.W., Bassaganya-Riera, J., Viladomiu, M., Kronsteiner, B., Abedi, V., Hoops, S., Michalak, P., Kang, L., Girardin, S.E., and Hontecillas, R. (2015). Modeling the regulatory mechanisms by which NLRX1 modulates innate immune responses to Helicobacter pylori infection. PLoS One 10, e0137839. Putti, R., Migliaccio, V., Sica, R., and Lionetti, L. (2015). Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source. Front Physiol 6, 426. Qiu, P., Liu, Y., and Zhang, J. (2019). Review: the role and mechanisms of macrophage autophagy in sepsis. Inflammation 42, 6-19. Ren, C., Zhang, H., Wu, T.T., and Yao, Y.M. (2017). Autophagy: A potential therapeutic target for reversing sepsis-induced immunosuppression. Front Immunol 8, 1832. Riffelmacher, T., Richter, F.C., and Simon, A.K. (2018). Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy 14, 199-206. Rogatzki, M.J., Ferguson, B.S., Goodwin, M.L., and Gladden, L.B. (2015). Lactate is always the end product of glycolysis. Front Neurosci 9, 22. Rongvaux, A. (2018). Innate immunity and tolerance toward mitochondria. Mitochondrion 41, 14-20. Sardesai, V.M. (1995). Role of antioxidants in health maintenance. Nutr Clin Pract 10, 19-25. Saxena, M., and Yeretssian, G. (2014). NOD-Like Receptors: Master Regulators of Inflammation and cancer. Front Immunol 5, 327. Sebastian, C.L., Fontaine, N.M., Bird, G., Blakemore, S.J., Brito, S.A., McCrory, E.J., and Viding, E. (2012). Neural processing associated with cognitive and affective theory of mind in adolescents and adults. Soc Cogn Affect Neurosci 7, 53-63. Seemann, S., Zohles, F., and Lupp, A. (2017). Comprehensive comparison of three different animal models for systemic inflammation. J Biomed Sci 24, 60. Seo, A.Y., Joseph, A.M., Dutta, D., Hwang, J.C., Aris, J.P., and Leeuwenburgh, C. (2010). New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123, 2533-2542. Sha, Z., Abernathy, J.W., Wang, S., Li, P., Kucuktas, H., Liu, H., Peatman, E., and Liu, Z. (2009). NOD-like subfamily of the nucleotide-binding domain and leucine-rich repeat containing family receptors and their expression in channel catfish. Dev Comp Immunol 33, 991-999. Shrum, B., Anantha, R.V., Xu, S.X., Donnelly, M., Haeryfar, S.M., McCormick, J.K., and Mele, T. (2014). A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes 7, 233. Singh, K., Roy, M., Prajapati, P., Lipatova, A., Sripada, L., Gohel, D., Singh, A., Mane, M., Godbole, M.M., Chumakov, P.M., et al. (2019). NLRX1 regulates TNF-alpha-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells. Biochim Biophys Acta Mol Basis Dis 1865, 1460-1476. Singh, K., Sripada, L., Lipatova, A., Roy, M., Prajapati, P., Gohel, D., Bhatelia, K., Chumakov, P.M., and Singh, R. (2018). NLRX1 resides in mitochondrial RNA granules and regulates mitochondrial RNA processing and bioenergetic adaptation. Biochim Biophys Acta Mol Cell Res 1865, 1260-1276. Stokman, G., Kors, L., Bakker, P.J., Rampanelli, E., Claessen, N., Teske, G.J.D., Butter, L., van Andel, H., van den Bergh Weerman, M.A., Larsen, P.W.B., et al. (2017). NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J Exp Med 214, 2405-2420. Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin Immunol 16, 3-9. Tattoli, I., Carneiro, L.A., Jehanno, M., Magalhaes, J.G., Shu, Y., Philpott, D.J., Arnoult, D., and Girardin, S.E. (2008). NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9, 293-300. Theus, M.H., Brickler, T., Meza, A.L., Coutermarsh-Ott, S., Hazy, A., Gris, D., and Allen, I.C. (2017). Loss of NLRX1 exacerbates neural tissue damage and NF-kappaB signaling following brain injury. J Immunol 199, 3547-3558. Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62, 341-360. Ting, J.P., Lovering, R.C., Alnemri, E.S., Bertin, J., Boss, J.M., Davis, B.K., Flavell, R.A., Girardin, S.E., Godzik, A., Harton, J.A., et al. (2008). The NLR gene family: a standard nomenclature. Immunity 28, 285-287. Toscano, M.G., Ganea, D., and Gamero, A.M. (2011). Cecal ligation puncture procedure. J Vis Exp. 51, pii: 2860. Turvey, S.E., and Broide, D.H. (2010). Innate immunity. J Allergy Clin Immunol 125, S24-32. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., and Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44-84. Van de Ven, R.A.H., Santos, D., and Haigis, M.C. (2017). Mitochondrial Sirtuins and molecular mechanisms of aging. Trends Mol Med 23, 320-331. Van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5. pii: a011072. Varga, G., Gattorno, M., Foell, D., and Rubartelli, A. (2015). Redox distress and genetic defects conspire in systemic autoinflammatory diseases. Nat Rev Rheumatol 11, 670-680. Waltz, P., Carchman, E.H., Young, A.C., Rao, J., Rosengart, M.R., Kaczorowski, D., and Zuckerbraun, B.S. (2011). Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7, 315-320. Weinberg, S.E., Sena, L.A., and Chandel, N.S. (2015). Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406-417. West, A.P. (2017). Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 391, 54-63. West, A.P., Shadel, G.S., and Ghosh, S. (2011). Mitochondria in innate immune responses. Nat Rev Immunol 11, 389-402. Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884. Yellen, G. (2018). Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217, 2235-2246. Yin, H., Sun, G., Yang, Q., Chen, C., Qi, Q., Wang, H., and Li, J. (2017). NLRX1 accelerates cisplatin-induced ototoxity in HEI-OC1 cells via promoting generation of ROS and activation of JNK signaling pathway. Sci Rep 7, 44311. Yin, H., Yang, Q., Cao, Z., Li, H., Yu, Z., Zhang, G., Sun, G., Man, R., Wang, H., and Li, J. (2018). Activation of NLRX1-mediated autophagy accelerates the ototoxic potential of cisplatin in auditory cells. Toxicol Appl Pharmacol 343, 16-28. Zhang, Y., Yao, Y., Qiu, X., Wang, G., Hu, Z., Chen, S., Wu, Z., Yuan, N., Gao, H., Wang, J., et al. (2019). Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat Immunol 20, 433-446. Zheng, J. (2012). Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol Lett 4, 1151-1157. Zhong, Y., Kinio, A., and Saleh, M. (2013). Functions of NOD-Like receptors in human diseases. Front Immunol 4, 333. Zorzano, A., Hernandez-Alvarez, M.I., Palacin, M., and Mingrone, G. (2010). Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim Biophys Acta 1797, 1028-1033. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78583 | - |
| dc.description.abstract | NLRX1為先天免疫受體中NOD類受體(NLR)的一員,過去主要被報導位於粒線體,並涉及免疫細胞中的多種免疫反應,包括抑制RIG-I誘導的第一型干擾素產生,抑制RIG-I-MAVS和TLR4-TRAF6-NF-κB的訊息傳遞路徑,增強活性氧化物質(ROS)而促進腫瘤壞死因子(TNF-α),志賀氏菌和雙鏈RNA誘導的NF-κB和JNK的活化。過去研究指出NLRX1會與TUFM產生交互作用,進一步活化小鼠胚胎成纖維細胞的自噬途徑,然而透過與Beclin 1-UVRAG複合物的相互作用而負調節Hela細胞的自噬功能。最近的研究表明NLRX1可藉由與LC3蛋白的作用而為粒線體自噬受體。另外,NLRX1也對粒線體功能扮演調控的角色,包含藉由Drp1的磷酸化來誘導神經元細胞的粒線體分裂,調控肝臟細胞的粒線體呼吸鏈等。迄今為止,NLRX1對調控先天免疫反應的兩項因素,即粒線體功能及細胞自噬的作用尚未完全清楚闡明。因此,在本研究中,我們使用盲腸結紮穿刺作為體內敗血症的小鼠模型及小鼠骨髓衍生的巨噬細胞,比較野生型和NLRX1基因剔除對於盲腸結紮穿刺及脂多醣誘導的發炎反應和自噬激活的作用。接著,我們也使用LPS處理的巨噬細胞以了解NLRX1調節粒線體功能的機制。首先我們在盲腸結紮穿刺誘導的敗血症模型中觀察小鼠的肝和肺組織,發現NLRX1基因剔除小鼠能產生更嚴重的發炎反應但未能誘導LC3II蛋白的積累,顯示NLRX1基因剔除使敗血症惡化可能與自噬功能的失調有關。此外,我們發現在巨噬細胞NLRX1基因剔除也會增強LPS誘導的發炎反應,然而LC3II的蛋白表現量因缺乏NLRX1而降低。後者的結果並非基於基因表現量降低或經增強溶酶體之分解而來。此外,我們發現NLRX1基因剔除會降低靜止狀態及LPS激活之細胞質的ROS產生,及改善LPS誘導粒線體膜電位的下降,但並沒有顯著改變粒線體的ROS水平。除此之外,NLRX1基因剔除會減少靜止狀態粒線體質量,及抑制LPS誘導的粒線體質量減少。共軛焦顯微鏡的結果顯示NLRX1基因剔除會增加巨噬細胞粒線體的融合。值得注意的是,NLRX1基因剔除會同時促進粒線體的呼吸作用及LPS誘導的糖解作用。總的來說,NLRX1在敗血症及LPS誘導的發炎反應中扮演負調節的作用,此作用除了源自NF-B抑制外,亦與誘導細胞自噬及影響能量代謝有關。我們的研究提供NLRX1藉由調節粒線體功能參與發炎反應的新見解,未來有必要進一步研究NLRX1調控粒線體合成、能量代謝和細胞自噬之間相互作用的分子機制。 | zh_TW |
| dc.description.abstract | NLRX1, which belongs to NOD-like receptors (NLR) family, is mostly localized at the mitochondria and involves in multiple responses in immune cells. These include inhibition of RIG-I-induced type I IFNs production, interference with the RIG-I-MAVS and TLR4-TRAF6-NF-κB signaling pathways, but enhancement of ROS-mediated NF-κB and JNK activation induced by TNF-, shigella infection and double-stranded RNA. Moreover, NLRX1 associates with the mitochondrial Tu translation elongation factor (TUFM) to activate autophagic pathway in MEFs, but interacts with the Beclin 1-UVRAG complex to negatively regulate autophagy in Hela cells. A recent study reveals that NLRX1 serves as a mitophagy receptor through interaction with LC3. In addition, NLRX1 can be a modulator of mitochondrial functions by inducing mitochondrial fission in neuronal cells via Drp1 phosphorylation and controlling mitochondrial respiration in hepatocytes. To date, the roles of NLRX1 in innate immune response and underlying mechanisms related to mitochondrial functions and autophagy have not been fully elucidated. Therefore, in this study we used cecal ligation and puncture (CLP) as a sepsis model in vivo and cultured bone marrow-derived macrophages (BMDMs) to determine the functional role of NLRX1 in innate response. We found that NLRX1 deficiency induced higher inflammatory responses but failed to induce LC3II accumulation in both liver and lung tissues in mice after CLP surgery. These findings suggest that NLRX1 deficiency worsens the pathological status of sepsis possibly owing to dysfunctional autophagy. In addition, LPS-induced inflammatory responses and LC3II protein expression at resting state were decreased in NLRX1-/- BMDMs. The latter event is not related to the gene expression nor lysosomal degradation of LC3. The NLRX1 deficiency also decreased basal and LPS-induced cytosolic ROS production as well as LPS-induced mitochondrial membrane potential loss, but it had no effect on mitochondrial ROS level. Furthermore, NLRX1 deficiency attenuated mitochondrial mass and prevented the inhibition of this event in response to LPS. The data from confocal microscopy revealed the higher mitochondrial fusion in NLRX1 deficienct macrophages. Of note, NLRX1-/- BMDMs displayed higher mitochondrial respiration before and after LPS stimulation, as well as higher glycolysis after LPS stimulation. Taken together, our data indicate that NLRX1 is a negative regulator of inflammation in septic mice and LPS-stimulated macrophages, and these effects might ascribe to the effects of NLRX1 on inhibition of NF-B pathway as previously observed, induction of autophagy and regulation of metabolism as observed in our work. This study expands the knowledge of NLRX1 in regulation of mitochondrial functions during inflammation. It is necessary to further investigate the molecular mechanisms and signaling interplay in mitochondrial biogenesis, metabolism and autophagy regulated by NLRX1. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:05:28Z (GMT). No. of bitstreams: 1 ntu-108-R06443005-1.pdf: 5196103 bytes, checksum: c12ebf1080473093d78ad7bece6fc318 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 …………………………………………………………………………………………………….i
誌謝 .................................................................................................................................ii Abbreviations .................................................................................................................. iii Abstract ........................................................................................................................vii中文摘要 ......................................................................................................................ix Introduction ......................................................................................................................1 Materials and Methods ....................................................................................................14 Specific Aims ..................................................................................................................28 Results .............................................................................................................................30 Discussion .......................................................................................................................42 Figures and Legends ........................................................................................................51 References .......................................................................................................................71 Appendix ……………………………………………………………………………….80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 先天免疫 | zh_TW |
| dc.subject | 粒線體功能 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | innate immune | en |
| dc.subject | macrophage | en |
| dc.subject | NLRX1 | en |
| dc.subject | mitochondria | en |
| dc.title | 探討NLRX1在巨噬細胞中調控粒線體功能及參與先天免疫反應的角色 | zh_TW |
| dc.title | The Roles of NLRX1 in Regulation of Mitochondrial Function and Innate Immune Response in Macrophages | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐立中(Li-Chung Hsu),楊鎧鍵(KAI-CHIEN Yang),曾賢忠(Shiang-Jong Tzeng) | |
| dc.subject.keyword | 粒線體功能,先天免疫,巨噬細胞, | zh_TW |
| dc.subject.keyword | NLRX1,macrophage,mitochondria,innate immune, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201903659 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06443005-1.pdf 未授權公開取用 | 5.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
