Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78580
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富zh_TW
dc.contributor.advisorChing-Fuh Linen
dc.contributor.author林煜祥zh_TW
dc.contributor.authorYu-Hsiang Linen
dc.date.accessioned2021-07-11T15:05:17Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Newton, I., Shapiro, A.(1984). The optical papers of Isaac Newton. Cambridge [Cambridgeshire]: Cambridge University Press.
[2] W. Herschel, "Experiments on the Refrangibility of the Invisible Rays of the Sun. By William Herschel, LL. D. F. R. S. " Philosophical Transactions of the Royal Society of London, vol. 90, no. 0, pp. 284-292, 1800.
[3] Hung-Chieh Chuang, Cheng-Chun Chang, Chun-Chung Cheng, Meng-Jie Lin, Jin-Hua Zheng, Po-Jui Huang, and Ching-Fuh Lin,“Silicon-based Schottky IR-photodetector”, Optics & Photonics Taiwan, International Conference 2016 (OPTIC 2016), Paper number: 270805, National Taiwan University of Science and Technology, Taipei, Taiwan, December 3-5, 2016.(oral)
[4] B. Welz and M. Sperling, "atomic absorption spectroscopy." John Wiley & Sons, pp. 62-64, 2008.
[5] Stáhlavská, A. (1973). "The use of spectrum analytical methods in drug analysis. 1. Determination of alkaline metals using emission flame photometry." Pharmazie, vol. 28, no. 4, pp. 238-239.
[6] Sands, D. E. (1969). Introduction to crystallography. Courier Corporation.
[7] Bowley, H. J., Gerrard, D. L., Louden, J. D., & Turrell, G. (2012). "Practical raman spectroscopy." Springer Science & Business Media.
[8] A. Watts, "A Window on Water Vapor and Planetary Temperature – Part 2", Watts Up With That?, 2018. [Online]. Available: https://wattsupwiththat.com/2008/ 06/21/a-window-on-water-vapor-and-planetary-temperature-part-2/. [Accessed: 22- Jun- 2018].
[9] Sze, S. M., & Ng, K. K. (2006). "Physics of semiconductor devices", John wiley & sons.
[10] Anderson, B., & Anderson, R. (2004). "Fundamentals of semiconductor devices", McGraw-Hill, Inc., pp.317-333.
[11] R. Tung, "Schottky barrier height—do we really understand what we measure", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 11, no. 4, p. 1546, 1993.
[12] V. Mikhelashvili, G. Eisenstein and R. Uzdin, "Extraction of Schottky diode parameters with a bias dependent barrier height", Solid-State Electronics, vol. 45, no. 1, pp. 143-148, 2001.
[13] I. Jyothi, H. Yang, K. Shim, V. Janardhanam, S. Kang, H. Hong and C. Choi, "Temperature Dependency of Schottky Barrier Parameters of Ti Schottky Contacts to Si-on-Insulator", MATERIALS TRANSACTIONS, vol. 54, no. 9, pp. 1655-1660, 2013.
[14] M. Yeganeh and S. Rahmatollahpur, "Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes", Journal of Semiconductors, vol. 31, no. 7, p. 074001, 2010.
[15] A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim and B. Abay, "Interpreting the nonideal reverse bias C-V characteristics and importance of the dependence of Schottky barrier height on applied voltage", Physica B: Condensed Matter, vol. 205, no. 1, pp. 41-50, 1995.
[16] R. J. Archer and J. Cohen, "Schottky Barrier Monolithic Detector Having Ultrathin Metal Layer, " U.S. Patent 3,757,123, 1973.
[17] M. Kimata, M. Denda, T. Fukumoto, N. Tsubouchi, S. Uematsu, H. Shibata, T. Higuchi, T. Saheki, R. Tsunoda and T. Kanno, "Platinum Silicide Schottky-Barrier IR-CCD Image Sensors", Japanese Journal of Applied Physics, vol. 21, no. 1, p. 231, 1982.
[18] C. Scales and P. Berini, "Thin-Film Schottky Barrier Photodetector Models", IEEE Journal of Quantum Electronics, vol. 46, no. 5, pp. 633-643, 2010.
[19] M. Moskovits, "Surface-Enhanced Spectroscopy", Reviews of Modern Physics, vol. 57, no. 3, pp. 783-826, 1985.
[20] F. Yan and T. Vo-Dinh, "Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor", Sensors and Actuators B-Chemical, vol. 121, no. 1, pp. 61-66, Jan 30 2007.
[21] Y. Gao, H. Cansizoglu, K. Polat, S. Ghandiparsi, A. Kaya, H. Mamtaz, A. Mayet, Y. Wang, X. Zhang, T. Yamada, E. Devine, A. Elrefaie, S. Wang and M. Islam, "Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes", Nature Photonics, vol. 11, no. 5, pp. 301-308, 2017.
[22] K. M. Mayer and J. H. Hafner, "Localized Surface Plasmon Resonance Sensors" , Chemical Reviews, vol. 111, no. 6, pp. 3828-3857, Jun 2011.
[23] D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," (in English), Applied Physics Letters, vol. 86, no. 6, Feb 7 2005.
[24] M. Nazirzadeh, F. Atar, B. Turgut and A. Okyay, "Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection", Scientific Reports, vol. 4, no. 1, 2014.
[25] G. W. Bryant, F. J. G. De Abajo, and J. Aizpurua, "Mapping the plasmon resonances of metallic nanoantennas", Nano Letters, vol. 8, no. 2, pp. 631-636, Feb 2008.
[26] L. Tang, S. Kocabas, S. Latif, A. Okyay, D. Ly-Gagnon, K. Saraswat and D. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna", Nature Photonics, vol. 2, no. 4, pp. 226-229, 2008.
[27] P. Muhlschlegel, "Resonant Optical Antennas", Science, vol. 308, no. 5728, pp. 1607-1609, 2005.
[28] R. Brückner, A. Zakhidov, R. Scholz, M. Sudzius, S. Hintschich, H. Fröb, V. Lyssenko and K. Leo, "Phase-locked coherent modes in a patterned metal–organic microcavity", Nature Photonics, vol. 6, no. 5, pp. 322-326, 2012
[29] W. Huang, H. Hsiao, M. Tang and S. Lee, "Triple-wavelength infrared plasmonic thermal emitter using hybrid dielectric materials in periodic arrangement", Applied Physics Letters, vol. 109, no. 6, p. 063107, 2016.
[30] R. Ameling, L. Langguth, M. Hentschel, M. Mesch, P. V. Braun, and H. Giessen, "Cavity-enhanced localized plasmon resonance sensing", Applied Physics Letters, vol. 97, no. 25, Dec 20 2010.
[31] E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors", Nano Letters, vol. 7, no. 5, pp. 1256-1263, May 2007.
[32] K. Lin, H. Chen, Y. Lai and C. Yu, "Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths", Nature Communications, vol. 5, no. 1, 2014.
[33] 2018. [Online]. Available: https://plasma.oxinst.com/campaigns/technology/pecvd. [Accessed: 29- Jun- 2018].
[34] Bahaa E. A. Saleh, & Malvin Carl Teich,"Fundamentals of photonics", John Wiley & Sons, pp. 86-916, 2007.
[35] M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, "Singly resonant cw OPO with simple wavelength tuning", Optics Express, vol. 16, no. 15, pp. 11141-11146, Jul 21 2008.
[36] D. Creeden et al., "Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 mu m Tm-doped fiber laser", Optics Letters, vol. 33, no. 4, pp. 315-317, Feb 15 2008.
[37] T. S. Chen, S. E. Chiou, and S. T. Shiue, "The effect of different radio-frequency powers on characteristics of amorphous boron carbon thin film alloys prepared by reactive radio-frequency plasma enhanced chemical vapor deposition" , Thin Solid Films, vol. 528, pp. 86-92, Jan 15 2013.
[38] Samco.co.jp, 2019. [Online]. Available: https://www.samco.co.jp/trad_chin-ese/products/02_cvd/02_plasmacvd/pd-220na.php. [Accessed: 14- July- 2019]
[39] Suss.com, 2018. [Online]. Available: https://www.suss.com/tw/products-solutions/mask-aligner/mjb4. [Accessed: 29- Jun- 2018].
[40] Corial.com, 2019. [Online]. Available: https://www.corial.com/en/tech-nologies/reactive-ion-etching-rie/. [Accessed: 1- July- 2019].
[41] Samco.co.jp, 2019. [Oline]. Available: https://www.samco.co.jp/trad_chin-ese/products/01_etching/01_rie/rie-10nr.php. [Accessed: 14- July- 2019]
[42] Invacuo.com, 2019. [Online]. Available: http://invacuo.com/code-less_portfolio/thermal-evaporator/. [Accessed: 1- July- 2019]
[43] Invacuo.com, 2019. [Online]. Available: https://www.jeol.co.jp/en/science/eb.html. [Accessed: 1- July- 2019].
[44] "V-770 UV-visible/NIR spectrophotometer | JASCO", JASCO Inc., 2018. [Online]. Available: https://jascoinc.com/products/spectroscopy/uv-visible-nir-spectrophoto meters/models/v-770-uv-visible-nir-spectrophotometer/. [Accessed: 4- July- 2018].
[45] "Mounted SAF Gain Chip | THORLABS" Thorlabs.com, 2019. [Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=SAF1550S2/. [Accessed: 4-July-2019]
[46] W. L. Huang, H. H. Hsiao, C. Y. Lin, M. R. Tang, and S. C. Lee, "Waveguide resonances with selectable polarization in an infrared thermal emitter", Aip Advances, vol. 7, no. 8, Aug 2017.
[47] Hcphotonics.com, 2019. [Online]. Available: https://www.hcphotonics.com/ppln-guide-overview. [Acessed: 6-July-2019]
[48] 黃柏瑞, "矽基超寬頻紅外光譜偵測器之研究" 國立台灣大學光電工程學研究所碩士論文, 2018年7月。
[49] J. T. Lin, C. C. Lai, C. T. Lee, Y. Y. Hu, K. Y. Ho, and S. W. Haga, "A High-Efficiency HIT Solar Cell With Pillar Texturing", Ieee Journal of Photovoltaics, vol. 8, no. 3, pp. 669-675, May 2018.
[50] Gobrecht, H. "PJ Holmes, The Electrochemistry of Semiconductors. Academic Press, London und New York, 1962; Band X aus der Reihe „Physical Chemistry” ︁. 396 Seiten, 134 Abbildungen, 32 Tabellen, 772 Literaturhinweise. Preis: 84 s." Berichte der Bunsengesellschaft für physikalische Chemie, vol. 66(8‐9), pp. 769-769, 1962.
[51] Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye and S. Hu, "Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells", Applied Surface Science, vol. 264, pp. 761-766, 2013.
[52] "Wet-Chemical Etching and Cleaning of Silicon," Virginia Semiconductor, Inc., Virginia, USA, January, 2003.
[53] R. Legtenberg, H. Jansen, M. Deboer, and M. Elwenspoek, "Anisotropic Reactive Ion Etching of Silicon Using Sf6/O-2/Chf3 Gas Mixtures", Journal of the Electrochemical Society, vol. 142, no. 6, pp. 2020-2028, Jun 1995.
[54] 莊閎傑, "矽基紅外光譜偵測關鍵技術之研究" 國立台灣大學光電工程學研究所碩士論文, 2017年7月。
[55] Thorlabs.com, 2019. [Online]. Available: https://www.thorlabs.com/thorpro-duct.cfm?partnumber=FEL1200. [Acessed: 13-Aug-2019]
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78580-
dc.description.abstract在物質生活快速發展的年代,人們享受方便舒適科技化的生活模式,例如出門只需帶著手機而不用帶錢包就可以進行小額支付,但科技化的環境附帶而來的則是工業汙染、全球暖化、資源匱乏等相關議題,進而使人們逐漸開始重視我們所生活的環境周遭,空氣汙染、PM2.5等環境問題漸漸變得不可忽視且須謹慎看待,為了因應這樣的環境變化,即時偵測便顯得至關重要。市面上氣體偵測設備多半體積過於龐大不易攜帶,而體積小的設備則靈敏度不足,且價格高昂,對於一般民眾無法負擔,因此本論文意在開發一種紅外光偵測器,有利於隨身攜帶、偵測種類多元且精準度高之微型光譜儀系統。
  本論文主要目標為開發寬頻紅外光偵測,搭配矽基金屬半導體二極體技術之偵測器來量測寬頻紅外光,嘗試不同入射方式以及矽基板類型,而成功研發出穩定電性表現、電流差值小且在1550nm光源下有非常高的光電響應之紅外光偵測器。接著我們導入局域表面電漿共振的原理,利用正立金字塔結構以下之特點:具備由頂端至底部之橫向寬度由窄至寬的優點使不同入射光波長對應不同共振位置而可以達到寬頻偵側,並且由COMSOL模擬軟體進行模擬驗證實驗結果,我們使用RIE乾式蝕刻以及KOH濕式蝕刻成功製作出4微米、6微米以及8微米之正立金字塔結構陣列,並優化製程參數,改良元件製程步驟。最後我們將金屬半導體光偵測器與金字塔結構結合,在1550nm入射光波下以週期6微米之正立金字塔元件有最好的響應,響應值為2.5301mA/W。而在3.22μm以及4.16μm光源波段,利用金字塔腔體侷限能量的效應,藉由電場在金字塔腔壁上來回共振並偵側所產生之熱能及光能量,分別於8微米及6微米金字塔元件觀察到最好的響應結果。
zh_TW
dc.description.abstractIn the era of rapid development of high-tech and convenient life, people enjoy comfortable technology, such as going out with a mobile phone instead of using a wallet to make small payments, but the technological environment comes with industrial pollution, the world important issues such as warming and lack of resources have led people to gradually pay attention to the environment around which we live. Environmental problems such as air pollution and PM2.5 have gradually become unnegligible. In response to such environmental changes, instant detection is crucial. Most of the gas detection equipment on the market is too heavy to carry, and the small size equipment is not sensitive enough, and the price of both are too high, which is unaffordable for the general public. Therefore, this paper intends to develop an infrared light detector, which is convenient for carrying and highly accurate miniature spectrometer system.
The main goal of this thesis is to develop broadband infrared light detection, with Si-based metal-semiconductor diode technology to measure broadband infrared light, try different incident modes and silicon wafer type, and successfully develop an infrared detector with stable electrical performance, small current fluctuation and a very high photo-response at 1550 nm laser signal. Then we introduce the principle of local surface plasma resonance(LSPR), using the following characteristics of the upright pyramid structure: the advantage is having a lateral width from the top to the bottom is narrow to wide, so that different incident light wavelengths correspond to different resonance positions, and broadband detection can be achieved. And the results of simulation can verify experiments by COMSOL simulation software, we successfully fabricated 4 micro-meters, 6 micro-meters and 8 micro-meters upright pyramid structure arrays using RIE dry etching and KOH wet etching, and optimized process parameters and improve process steps. Finally, we combine a metal-semiconductor photodetector with a pyramid structure to have the best response with a 6-micron upright pyramid device at 1550 nm incident light, with a response of 2.53 mA/W. In the 3.22μm and 4.16μm source bands, using the effect of the confined energy in pyramid cavity, the electric energy generated by the electric field resonating back and forth on the pyramid wall. The best response are observed in the 8-micron and 6-micron pyramid device respectively.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:05:17Z (GMT). No. of bitstreams: 1
ntu-108-R06941049-1.pdf: 6825091 bytes, checksum: 1915830a56626c21ea44fc24873bd95d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 XII
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文大綱 5
第2章 基礎理論及文獻回顧 7
2.1 蕭特基二極體 7
2.1.1 金屬半導體接面 7
2.1.2 半導體能隙吸收機制 10
2.1.3 內部光激發吸收機制 11
2.2 局域性表面電漿共振 13
2.3 光學參量振盪器 15
第3章 製程及量測設備介紹 18
3.1 電漿增強化學氣相沉積系統 18
3.2 黃光微影系統 20
3.3 反應式離子蝕刻系統 21
3.4 熱蒸鍍系統 22
3.5 電子束蒸鍍系統 23
3.6 分光光譜儀 24
3.7 1550nm雷射二極體光源 25
3.8 中紅外光量測系統架構 26
3.9 光學參量振盪器系統架構 27
3.9.1 簡介 27
3.9.2 共振腔模態 29
3.9.3 光學系統架構 31
第4章 平面型金屬半導體光偵測器 37
4.1 前言 37
4.2 銅/p型矽基金屬半導體光偵測器 39
4.2.1 元件結構及製作流程 39
4.2.2 元件量測及分析 42
4.3 銅/n型矽基金屬半導體光偵測器 48
4.3.1 元件結構及分析 48
4.3.2 元件量測及分析 50
4.4 結論 56
第5章 矽基奈微米金字塔陣列結構模擬及製作 58
5.1 前言 58
5.2 奈微米金字塔結構模擬 60
5.2.1 簡介 60
5.2.2 銅/n型由矽入射之正立金字塔UPA結構元件電場模擬 61
5.3 氫氧化鉀非等向性濕式蝕刻 70
5.4 反應式離子乾式蝕刻 73
5.5 正立金字塔陣列(UPA)結構製作 75
5.5.1 UPA結構製作流程 75
5.5.2 UPA結構製程優化及改良 78
5.5.3 不同週期之UPA結構製作及其分析 86
5.6 結論 91
第6章 正立金字塔金屬半導體光偵測器 93
6.1 前言 93
6.2 元件結構及製程 94
6.3 元件量測及分析 97
6.3.1 單一波長量測 97
6.3.2 響應光譜量測 109
第7章 結論與未來展望 116
7.1 結論 116
7.2 未來展望 120
參考文獻 121
-
dc.language.isozh_TW-
dc.subject蕭特基二極體zh_TW
dc.subject矽基紅外光偵測器zh_TW
dc.subject局域表面電漿共振zh_TW
dc.subjectCOMSOL Multiphysicszh_TW
dc.subject正立金字塔奈微米陣列結構zh_TW
dc.subject內部光激發吸收zh_TW
dc.subject金半介面zh_TW
dc.subjectlocalized surface plasmon resonanceen
dc.subjectSi-based infrared detectoren
dc.subjectSchottky diodeen
dc.subjectmetal–semiconductor junctionen
dc.subjectinternal photoemission absorptionen
dc.subjectupright pyramid array structureen
dc.subjectCOMSOL Multiphysicsen
dc.title矽基金屬半導體光偵測器製作與紅外光量測系統架構之研究zh_TW
dc.titleThe Study of Si-based Metal-Semiconductor Photodetector Fabrication and IR Measuring System Architecturesen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李嗣涔;林致廷;林世明zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword矽基紅外光偵測器,蕭特基二極體,金半介面,內部光激發吸收,局域表面電漿共振,正立金字塔奈微米陣列結構,COMSOL Multiphysics,zh_TW
dc.subject.keywordSi-based infrared detector,Schottky diode,metal–semiconductor junction,internal photoemission absorption,localized surface plasmon resonance,upright pyramid array structure,COMSOL Multiphysics,en
dc.relation.page127-
dc.identifier.doi10.6342/NTU201903700-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2024-08-26-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
6.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved