Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78575
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡文聰zh_TW
dc.contributor.advisorAndrew M. Woen
dc.contributor.author鍾博文zh_TW
dc.contributor.authorPo-Wen Chungen
dc.date.accessioned2021-07-11T15:04:57Z-
dc.date.available2024-08-16-
dc.date.copyright2019-08-22-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Swaminathan VV, Shannon MA, Bashir R., Enhanced Sub-Micron Colloidal Particle Separation with Interdigitated Microelectrode Arrays Using Mixed AC/DC Dielectrophoretic Scheme. Biomed Microdevices. 2015 Apr., 17(2):29.
[2] Lewpiriyawong N, Yang C, Lam YC., Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3‐D conducting PDMS composite electrodes. Electrophoresis. Electrophoresis. 2010 Aug., 31(15), pp. 2622-31.
[3] Park S, Zhang Y, Wang TH, Yang S., Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip. 2011 Sep. 7, 11(17), pp. 2893-900.
[4] Han SI, Soo Kim H, Han A., In-droplet cell concentration using dielectrophoresis. Biosens Bioelectron. 2017 Nov., 97, pp. 41-45.
[5] Hsiung LC, Chiang CL, Wang CH, Huang YH, Kuo CT, Cheng JY, Lin CH, Wu V, Chou HY, Jong DS, Lee H, Wo AM., Dielectrophoresis-based cellular microarray chip for anticancer drug screening in perfusion microenvironments. Lab Chip. 2011 Jul. 21, 11(14), pp. 2333-42.
[6] Stuart D. Ibsen, et al., Rapid Isolation and Detection of Exosomes and Associated Biomarkers from Plasma. ACS Nano. 2017 Jul., pp. 1176641-6651.
[7] Zellner P, Shake T, Hosseini Y, Nakidde D, Riquelme MV, Sahari A, Pruden A, Behkam B, Agah M., 3D Insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping. Electrophoresis. 2015 Jan., 36(2), pp. 277-83.
[8] Diana Nakidde, Phillip Zellner, Mohammad Mehdi Alemi, Tyler Shake, Yahya Hosseini, Maria V. Riquelme, Amy Pruden, and Masoud Agah., Three dimensional passivated-electrode insulator-based dielectrophoresis. Biomicrofluidics. 2015 Jan., 9(1): 014125.
[9] Eiji Nakamachi, Shinya Murakami, Hirotaka Koga, Yusuke Morita., Development of a bio-microelectromechanical system device for axonal extension evaluation by PC12D patterning using a dielectrophoresis method. J. of Micro/Nanolithography, MEMS, and MOEMS. 2015 June, 14(2), 025004.
[10] T.M. Squires, Bazant M.Z., Induced-charge electro-osmosis. J Fluid Mech, 2004 June, pp. 217-252.
[11] Probstein., R. F., Physicochemical Hydrodynamics: An Introduction, 2nd ed., New York. 1994, pp. 190-202.
[12] G Yossifon., I Frankel, T Miloh., On electro-osmotic flows through microchannel junctions. Physics of Fluids, 2006 Nov., 18, 117108.
[13] Harnett CK, Templeton J, Dunphy-Guzman KA, Senousy YM, Kanouff MP., Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip. 2008 Apr., 8(4), pp. 565-72.
[14] Yukun Ren, Weiyu Liu, Ye Tao, Meng Hui, and Qisheng Wu., On AC-Field-Induced Nonlinear Electroosmosis next to the Sharp Corner-Field-Singularity of Leaky Dielectric Blocks and Its Application in on-Chip Micro-Mixing. Micromachines (Basel). 2018 Mar., 9(3), p. 102.
[15] Ren Y, Liu J, Liu W, Lang Q, Tao Y, Hu Q, Hou L, Jiang H., Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab Chip. 2016 Aug 7, 16(15), pp. 2803-12.
[16] Yankai Jia, Yukun Ren and Hongyuan Jiang., Continuous-flow focusing of microparticles using induced-charge electroosmosis in a microfluidic device with 3D AgPDMS electrodes. RSC Adv., 2015 Jul., 5, pp. 66602-66610.
[17] Ketan H. Bhatt, Sonia Grego and Orlin D. Velev., An AC Electrokinetic Technique for Collection and Concentration of Particles and Cells on Patterned Electrodes. Langmuir. 2005 June, pp. 6603-6612.
[18] Ramos A, Morgan H, Green NG, Castellanos A., AC electrokinetics: a review of forces in microelectrode structures. J. Phys. 1998 Jan., pp. 2338–2353.
[19] Chen X, Ren Y, Liu W, Feng X, Jia Y, Tao Y, Jiang H., A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Anal. Chem. 2017 Sep.,89, 17, pp. 9583-9592.
[20] Nili H., Green N.G., AC Electrokinetics of Nanoparticles. In: Bhushan B. (eds) Encyclopedia of Nanotechnology. Springer , 2012, Dordrecht.
[21] David J. Griffiths., Introduction to electrodynamics 3rd. 1999, p. 321.
[22] Green, N.G., A. Ramos, and H. Morgan, Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. Journal of Electrostatics, 2002. 56(2), pp. 235-254.
[23] David J. Griffiths., Introduction to electrodynamics 3rd. 1999, p. 146.
[24] David J. Griffiths., Introduction to electrodynamics 3rd. 1999, p. 38.
[25] David J. Griffiths., Introduction to electrodynamics 3rd. 1999, p. 141.
[26] T. B. Jones., Electromechanics of particles. 1995, p.7.
[27] N.G. Greena,b, A. Ramosa, H. Morganb., Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. Journal of Electrostatics, 56, 2002 Jan., pp. 235–254.
[28] D. Liu et al., Microfluidic Pumping Based on Traveling-Wave Dielectrophoresis. Nanoscale and Microscale Thermophysical Engineering, 2009 May, 13, pp. 109-133.
[29] TB Jones., Basic theory of dielectrophoresis and electrorotation. 2003 Nov., pp. 33-42.
[30] J. Appl. Phys., Size based separation of microparticles using a dielectrophoretic activated system. 2010 May, 108, 034904.
[31] Li Cui, David Holmes and Hywel Morgan., The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis, 2001 Oct., 22, pp. 3893-3901.
[32] Ronald F. Probstein., Physicochemical Hydrodynamics: An Introduction, 2nd Edition. 2003, pp.190-202.
[33] Ben, Y., Nonlinear Electrokinetic Phenomena in Microfluidic Devices, Ph.D. Dissertation, University of Notre Dame. 2004.
[34] Bazant MZ, Ben Y., Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab Chip. 2006 Nov., 6(11), pp. 1455-61.
[35] Yukun Ren et al., Induced-charge electroosmotic trapping of particles. Lab Chip, 2015 Mar.,15, pp. 2181-2191.
[36] Batchelor, G. K., Introduction to Fluid Mechanics. 2000, pp. 109-115.
[37] C. E. Lapple, Dust and Mist collection, in Chemical Engineers Handbook. McGraw Hill, 1950, Third edition, p.1018.
[38] Khashayar Khoshmanesh et al., Size based separation of microparticles using a dielectrophoretic activated system. Journal of Applied Physics 108, 034904, 2010 May., pp.1-8.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78575-
dc.description.abstract生物微流體晶片於醫學檢驗的應用,在這幾年越來越被重視,傳統的檢測方法,有檢測儀器過大、耗時耗力、繁瑣的步驟等缺點,隨著微小化技術的進步與其應用的普及,可以改善上述問題。整合多種生物、化學分析等功能於單一微小型晶片(lab-on-a-chip)因此被開發,是各團隊致力研究的目標。此外在某些應用上,快速收集與準確定位的粒子操控技術通常是生物檢測晶片的核心技術。
本論文藉由非線性電動力學(electrokinetic)中的誘導電滲(induced-charge electro-osmosis)與絕緣介電泳(insulator-based dielectrophoresis),開發一個操縱聚苯乙烯微球的微流晶片,應用於收集(放大標的粒子的螢光訊號和後端定量分析)與釋放(回收與再分析)低濃度懸浮生物粒子。此晶片使用經過雕刻的絕緣膠帶(厚度約40 μm)當作絕緣體,並置於上下電極中間來產生不均勻的電場。此外透過往復式運動流體來提高顆粒的抓取效率。通過實驗和COMSOL Multiphysics模擬軟體分析絕緣體的幾何形狀、上下電極間距及交流訊號後,結果顯示在低頻率的時候,電滲的力量使懸浮粒子收集在裸露電極中間的表面停滯區域上,而在高頻率的時候,介電泳主導粒子的運動,使聚集在裸露電極正上方的粒子釋放到流速大的上方區域。透過控制絕緣體之幾何參數與交流電訊號,可以影響不同電動力之間的強度,而在特定參數組合下,使晶片達到最佳抓取與釋放效率。
zh_TW
dc.description.abstractDue to the progress of microfabrication technology, a wide range of bioengineering applications including high throughput drug-screening chips, miniature diagnostic kits, and biochips have been developed. A microfluidic chip, or so-called lab-on-a-chip, has the advantage of reduced labor, time, cost, and reagent consumption. Furthermore, in some applications, particle manipulation to enable accurate localization of target particle is a significant core technology for bio-particle collection and concentration.
This thesis presents a microfluidic chip combined with two electrokinetic phenomenon – induced-charge electro-osmosis (IC-EO) and insulator-based positive dielectrophoresis (i-pDEP) – to manipulate polystyrene particles, particularly to collect and release bio-particles with low concentration. Collection of these elements is often to enable subsequent analysis and quantification, where release is for recovery and further analysis. Non-uniform electric field is generated from patterned double-sided adhesive tape (about 40 μm) as insulator between the top-and-bottom electrodes. In addition, features to realize reciprocating flow is designed to increase the collection efficiency of the particles. The geometry of the insulator, distance between top-and-bottom electrodes, and the AC signal were analyzed by the COMSOL Multiphysics software.
Results show at low frequency, the suspended polystyrene particles are collected at the stagnation region on the surface of the bottom naked electrode. On the contrary, at the high frequency, the i-pDEP would dominate the movement of particles and further release the particles from accumulation region to upper region where the flow velocity is high. The strength of the electokinetic forces are affected by controlling the geometry parameters of the insulator and the electric signal. Results should contribute to improved understanding of the interaction of electrokinetic forces in a microfluidic chip.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:04:57Z (GMT). No. of bitstreams: 1
ntu-108-R06543045-1.pdf: 7983184 bytes, checksum: 9713d466f84e0f659bd578a6acb89ccf (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract iv
目錄 Table of Contents vi
圖目錄 List of figures viii
表目錄 List of tables xi
Chapter 1. Introduction 1
Chapter 2. Theory 5
2.1 Dielectrophoresis 5
2.1.1 Electrostatatic theory 6
2.1.2 Electric Potential of a Dipole 8
2.1.3 Polarization between particles and medium 9
2.1.4 Dieletrophoresis force 13
2.1.5 Clausius-Mossotti factor 16
2.2 Insulator‐based positive dielectrophoresis 19
2.3 Fluid motion caused by Electrical double layer 21
2.3.1 Electric double layer 21
2.3.2 Classic electro-osmosis 24
2.3.3 AC electro-osmosis (AC-EO) 26
2.3.4 Induced-charged electro-osmosis (IC-EO) 30
2.4 Drag force 33
2.5 The governing equation of the particle 35
Chapter 3. Materials and methods 36
3.1 Materials 36
3.1.1 Chip fabrication 36
3.1.2 Sample preparation 39
3.1.3 Experimental system setup 39
3.2 Methods 41
3.2.1 Preload the PS suspension and DI water into syringes 41
3.2.2 Catch the PS balls by IC-EO 42
3.2.3 Reciprocating program 43
3.2.4 Washing step 44
3.2.5 Release the accumulative PS balls by i-pDEP 45
Chapter 4. Results and Discussion 46
4.1 Optimization design 46
4.1.1 Comsol simulation of IC-EO flow and i-pDEP 47
4.1.2 Insulator thickness (T) 64
4.1.3 Insulator width (W) 72
4.1.4 Distance between insulator (D) 80
4.1.5 Distance between top-and-bottom electrodes (Z) 88
4.2 Different strength of i-DEP force and IC-EO flow with different applied voltage (V) 96
4.3 Different strength of IC-EO flow with different frequency. 104
4.4 Catch-and-release 107
4.5 Increase the catching efficiency with W-baffles and reciprocating movement 109
Chapter 5. Conclusions 112
References 114
-
dc.language.isoen-
dc.subject非線性電動力學zh_TW
dc.subject電滲zh_TW
dc.subject介電泳zh_TW
dc.subject粒子操控zh_TW
dc.subjectinduced-charge electro-osmosisen
dc.subjectElectrokineticen
dc.subjectinsulator-based dielectrophoresisen
dc.subjectparticle manipulationen
dc.title電動微流晶片之粒子操控與分析zh_TW
dc.titleAn electrokinetically driven microfluidic chip for manipulation and analysisen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李雨;許聿翔zh_TW
dc.contributor.oralexamcommitteeU. Lei;Yu-Hsiang Hsuen
dc.subject.keyword介電泳,電滲,粒子操控,非線性電動力學,zh_TW
dc.subject.keywordElectrokinetic,induced-charge electro-osmosis,insulator-based dielectrophoresis,particle manipulation,en
dc.relation.page117-
dc.identifier.doi10.6342/NTU201903737-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2024-08-22-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
7.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved