Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78572
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳zh_TW
dc.contributor.advisorHsiao-Feng Loen
dc.contributor.author徐鈺庭zh_TW
dc.contributor.authorYu-Ting Xuen
dc.date.accessioned2021-07-11T15:04:46Z-
dc.date.available2024-08-01-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation林子凱、蕭吉雄. 1995. 胡瓜. 台灣農家要覽:農作篇(二) 475-480.
陳令錫、戴振洋、田雲生、何榮祥. 2009. 自動注入式施肥灌溉系統使用於介質槽耕栽培胡瓜之研究. 臺中區農業改良場研究彙報104:29-37.
經濟部水利署. 2015. 農業用水量統計報告. 經濟部水利署. 臺北. 臺灣.
李旺霞、陈彦云. 2014. 土壤水分及其测量方法的研究进展. 江苏农业科学42:335-339.
邓英春、许永辉. 2007. 土壤水分测量方法研究综述. 水文27:20-24.
江昭輝. 2015. 臺灣地區土壤含水率觀測網之建置與模擬. 國立中興大學環境工程碩士論文. 臺中. 臺灣.
王月雲、陳是瑩、童武夫. 1990. 葉綠素的吸收光譜與定量測量. 植物生理學實驗(再版) p.93-95. 藝軒圖書出版社 臺北. 臺灣.
許謙信、J.G. Atherton、P.G. Alderson. 2004. 利用葉綠素計量測菊花葉片老化. 臺中區農業改良場研究彙報83:39-51.
劉敏莉. 2008. 高屏地區小胡瓜生產管理技術. 高雄區農技報導90:1-15.
謝明憲. 2001. 花胡瓜設施栽培. 台南區農業專訊35:4-10.
楊清富. 2014. 土壤水分感測技術及應用. 臺南區農業專訊1:18-21.
沈再發. 2009. 培養液組成之理論與實際 (中). 農業試驗所技術服務專刊20:37-41.
廖偉順. 2013. 設施小胡瓜椰纖調配介質與養液之開發. 國立臺灣大學園藝暨景觀學系研究所碩士論文. 臺北. 臺灣.
劉敏莉. 2016.葉綠素螢光在作物耐熱性篩選之應用. 高雄區農業改良場研究彙報21:1-15
劉興隆、白桂芳. 2016. 花胡瓜健康管理技術. 行政院農業委員會臺中區農業改良場. p. 7-20. 臺中. 臺灣.
謝明憲. 2014. 黃金廊道設施果菜滴灌節水栽培之應用. 臺南區農業專訊. 87:12-17.
Abd-Alkarim, E., Y. Bayoumi., E. Metwally, and M. Rakha1. 2017. Silicon supplements affect yield and fruit quality of cucumber (Cucumis sativus L.) grown in net houses. African J. Agr. 12:2518-2523.
Ashraf, M. and S. Mehmood, 1990. Response of four Brassica species to drought stress. Environ. Exp. Bot. 30:93-100.
Bilskie, J. 2005. Soil Water Status: Content and Potentiial. PH.D. Campbell Scientific. Inc.
Buttaro, D., P. Santamaria, A. Signore, V. Cantore, F. Boari, F.F. Montesano, and A. Parente. Irrigation management of greenhouse tomato and cucumber using tensiometer: Effects on yield, quality and water use. 2015. Agric. Sci. Procedia. 4:440-444.
Chartzoulakis, K. and N. Michelakis. 1990. Effects of different irrigation systems on root growth and yield of greenhouse cucumber. Acta Hort. 244(278):237-244.
chlorophyll meter readings in leaves of eight tropical and sub-tropical fruit-tree species. J. Plant. Physio. 138:674-677.
Eduardo, C.O., J.A. Carvalho, W. Silva, F.C. Rezende, and W.D. Almeida. 2011. Effects of water deficit in two phenological stages on production of Japanese cucumber cultived in greenhouse. Eng. Agríc. 31: 676-686.
Fan, H. F., L. Ding, C. X. Du, and X. Wu. 2014. Effect of short-term water deficit stress on antioxidative systems in cucumber seedling roots. Bot Stud. 55:46.
Fanizza, G., Ricciardi. L, and C. Bagnulo. 1991. Leaf greenness measurements to evaluate water stressed genotypes in Vitis vinifera. Euphytica55:27-31.
Ge. Y., G. Bai., V. Stoerger, and J. C. Schnable. 2016. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high through put RGB and hyperspectral imaging. Comput Electron Agric.127:625-632
Georgia, O., G. Anastasia, I. Ilias, and Z. Pantelis. 2016. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz. J. Bot. DOI 10.1007/s40415-016-0274-y
Guo, Y.Y., H. Y. Yu, D.S. Kong, F. Yan, and Y.J. Zhang .2016. Effects of drought stress on growth and chlorophyll fluorescence of Mohammad Ali Jalalpoori seedlings. Photosynthetica54:524-531.
Hagin, J. and A. Lowengart. 1996. Fertigation for minimizing environmental pollution by fertilizers. Fert. Res. 43:5-7.
Imlay, J. A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57:395-418.
Larcher, W. 1995. Physiological Plant Ecology. p. 504.Spring -Verlag, Berlin.
Liang, Y., J. Si, and V. Römheld. 2005. Silicon uptake and transport is an active process in Cucumis sativus. New Phytol. 167:790-804.
Lopes, M.S. and M.P. Reynolds. 2012. Stay-green in spring wheat can be determined
Ma, C.C., Q.F. Li., Y.B. Goa, and T.R. Xin. 2004. Silicon Application and drought resistance in cucumber plants. Soil Sci. Plant Nutr. 50: 623-632.
Ma, J.F. and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 11: 392-397.
Ma, J.F. and N. Yamaji. 2015. A cooperative system of silicon transport in plants. Trends Plant Sci. 20:438-442.
Mahajan, S. and Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444:139-158.
Marcar, N.E. 1993. Waterlogging modifies growth, water use and ion concentrations in seedlings of salt-treated Eucalyptus camaldulensis, E. tereticornis, E. robusta and E. globulus. Aust. J. Plant Physiol. 20:1-13.
Mohmed, A.M.A., J. Cheng, S. Feng, and G. Yi. 2016. Performance of drip irrigation and nitrogen fertilizer in irrigation water saving and nitrogen use efficiency for waxy maize (Zea mays L.) and cucumber (Cucumis sativus L.) under solar greenhouse. Jpn. Soc. Grassland Sci. 62:174-187.
Paknejad, F., M. Nasri., H. Reza., T. Moghadam., H. Zahedi and A. Majid J. 2007. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J. Biol. Sci. 7: 841-847.
Pustovoitova, T. N., I. S. Drozdova., N. E. Zhdanova and V. N. Zholkevich. 2003. Leaf growth, photosynthetic rate, and phytohormone contents in Cucumis sativus plants under progressive soil drought. J. Plant Physiol. 50:496-498.
Rahil, M. H., and A. Qanadillo. 2015. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agric Water Manag. 148:10-15.
Schaper, H. and E. K. Chacko. 1991. Relation between extractable chlorophyll and portable chlorophyll meter readings in leaves of eight tropical and subtropical fruit-tree species. J. Plant. Pysiol.138: 674-677.
Silva, G.F.C., A.C.A. Goncalves., C.A. Silva Junior., M.R. Nanni., C.U. Facco., E. Cezar, and A.S. Anderson 2016. NDVI response to water stress in different phenological stages in culture bean. J. Agron. 15:1-10.
Socias, F.X., F. Pol., F. Aguilo., J. Vadell, and H. Medrano, 1997. Effects of rapidly and gradually induced water stress on plant response in subterranean clover leaves. J. Plant Physiol. 150:212-219.
Solaimalai. A., M. Baskar., A. Sadasakthf, and K. Subburamu. 2005. Fertigation in high value crops-a review. Agric. Rev. 26:1-13.
Sun, H., J. Guo., Y. Duan., T. Zhang., H. Huo, and H. Gong. 2017. Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus. Physiol. Plant. 159:201-214.
Taiichiro, H., K. Sonobe, S. Inanaga, P. An, and S. Morita. 2008. Effects of Silicon on Photosynthesis of Young Cucumber Seedlings Under Osmotic Stress. J. Plant Nutr. 31:1046-1058.
Terhi, S.A., and T. Salo. 2005. Growth and yield of pickling cucumber in different soil moisture circumstances. Sci. Hortic. 107:11-16.
Topp, G.C., J.L. Davis, and A.P. Annan. 1980. Electromagnetic determination of Soil water content: measurement in coaxial transmission lines. Water Resour. Res. 16:574-582.
Wang Z., G. Li., H. Sun., L. Ma., Y. Guo., Z. Zhao., H. Gao, and L. Mei. .2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol. Open. DOI: 10.1242/bio.035279
Wang, S., P. Liu., D. Chen., L. Yin., H. Li, and X. D. 2015. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front. Plant Sci. 6:1-10.
Wang, W., C. Wang, D. Pan, Y. Zang, B. Lou, and J. Ji. 2018. Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings. Int. J. Agric. Biol. 11:196-201.
Wedepohl, K.H. 1995. The composition of the continental crust. Geochim. Cosmochim. Acta. 59:1217-1232.
WWAP (United Nations World Water Assessment Programme). 2017. The United Nations World Water Development Report 2017: Nature-based Solutions. Paris, UNESCO
Zhu, Y. and H. Gong. 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agron. Sustain. Dev. 34:455-472.
Zulini. L., M. Rubinigg., R. Zorer, and M. Bertamini. 2007. Effects of drought stress on chlorophyll fluorescence and photosynthetic pigments in grapevine leaves (Vitis vinifera cv. 'White Riesling'). Acta Hort.754:289-294.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78572-
dc.description.abstract胡瓜為世界重要經濟作物之一,亦為臺灣夏季重要果菜之一,其乾旱耐受性較弱。臺灣受到地理環境限制及氣候變遷影響,水資源供應問題愈趨嚴峻。本研究以花胡瓜‘秀秀’(Cucumis sativus ‘Shiou Shiou’)為試驗材料,探討溫室自動化肥灌栽培之介質體積含水量(volumetric water content, VWC)與養液矽(silicon, Si)添加量對其生長、產量、品質與水分利用效率(Water use efficiency, WUE)之影響,得知適當節水省肥模式。秋作、冬作花胡瓜於營養生長期皆以介質VWC 20 %為肥灌起始閾值,冬作並於養液中添加200 mg·L-1 Si,而於生殖生長期皆以介質VWC 40 %為肥灌起始閾值,皆對單株產量(分別為1690.7 g、504.1 g)、果實外形與單果重皆無負面影響,分別可節省7%與25.95%養液量,但未顯著提升水分利用效率。夏作花胡瓜於營養生長期皆以介質VWC 40 %為肥灌起始閾值,而生殖生長期分別以介質VWC 40 %、VWC 30 %、VWC 20 %、VWC 10 %為肥灌起始閾值;其中VWC 40 %組有最高單株產量2009.5 g與果實總可溶性固形物4.9°Brix;VWC 20 %組有最高水分利用效率29.17 g·L-1,相較於對照組可節省45.52%養液量,雖然單果重116.7 g與VWC 40 %、VWC 30 %兩組無顯著差異,但單株產量1269.1 g顯著低於對照組;而VWC 10 %組產量最低,且平均單株果重顯著低於各組。秋-初冬作花胡瓜於營養生長期皆以介質VWC 40 %為肥灌起始閾值,而生殖生長期以介質VWC 20 %與40 %為肥灌起始閾值,並皆於養液分別添加0、100、200 mg·L-1矽;其中VWC 20 %+200 mg·L-1 Si組之水分利用效率24.2 g·L-1顯著高於VWC 40 %+0 mg·L-1 Si、VWC 40 %+100 mg·L-1 Si以及VWC 40 %+200 mg·L-1 Si組,但與VWC 20 %+0 mg·L-1 Si、VWC 20 %+100 mg·L-1 Si組無顯著差異,其單株產量1008.5 g與其他處理皆無顯著差異,栽培者可視需求施用200 mg·L-1矽。春-初夏作花胡瓜栽培施予5種處理,包括:全期以介質VWC 40 %為肥灌起始閾值(T1)、全生長期以介質VWC 20 %為肥灌起始閾值(T2)、全生長期以介質VWC 20 %為肥灌起始閾值且於生殖生長期養液添加200 mg·L-1矽(T3)、營養生長期以介質VWC 10 %而生殖生長期以介質VWC 20 %為肥灌起始閾值(T4)、營養生長期以介質VWC 10 %而生殖生長期以介質VWC 20 %為肥灌起始閾值且於生殖生長期養液添加200 mg·L-1矽(T5);5種處理之單果重與產量間皆無顯著差異,但T2組於果實官能品評之香氣、甜味與總評,皆比其他處理組佳,且水分利用效率達58.14 g·L-1,相較於對照組可節省51.23 %養液量,單株產量達1794.9 g。故於臺北地區溫室以介質栽培花胡瓜,建議2-5月全生長期以VWC 20 %為肥灌起始閾值;6-10月於營養生長期以VWC 40 %、生殖生長期以VWC 20 %為肥灌起始閾值;8-10月可視需求施用200 mg·L-1矽;上述3種肥灌模式皆不影響單果重且具高水分利用效率,可達到節水省肥目標。而11月至翌年1月因低溫不適合栽培花胡瓜。zh_TW
dc.description.abstractCucumber (Cucumis sativus) is one of the important economic crops in the world. It is also one of the important fruit vegetables in Taiwan, and is sensitive to drought stress. Due to geographical constraints and climate change, water resource supply is becoming more and more restricted in Taiwan. In this study, Cucumis sativus 'Shiou Shiou' was used as experiment material. The effects of substrate volumetric water content (VWC) and the silicon (Si) supplementation in nutrient solution through automatic drip fertigation in the greenhouse on plant growth, yield, quality, and water use efficiency (WUE) were investigated to know the appropriate water- and fertilizer-saving model. Substrate VWC 20 % in vegetative growth stage and substrate VWC 40 % in reproductive stage were set as drip fertigation thresholds both in fall and winter, and 200 mg·L-1 Si was also supplied in nutrient solution in winter. No negative impact was shown on yield per plant, fruit shape and single fruit weight. Although 7 % and 25.95 % of fertigation amount were saved respectively, WUE was not significantly improved. In summer, substrate VWC 40 % in vegetative growth stage, and substrate VWC 40 %, VWC 30 %, VWC 20 % and VWC 10 % in reproductive stage were set as drip fertigation thresholds in summer. VWC 40 % treatment had the highest yield per plant 2009.5 g and fruit tatal soluble solids 4.9 °Brix. However, VWC 20 % treatment showed the highest WUE 29.17 g·L-1, 45.52 % fertigation amount reduced, with fresh weight per fruit 116.7 g not significantly different from that in VWC 40 % and VWC 30% treatments, and yield per plant 1269.1 g significantly lower than control. VWC 10% treatment exhibited the lowest yield and fruit weight per plant. In fall-winter, substrate VWC 40% in vegetative growth stage, and substrate VWC 20 % and 40% in reproductive growth stage were set as fertigation thresholds with 0, 100 and 200 mg·L-1 of Si supplied in nutrient solution for 2 VWC treatments, respectively. The VWC 20 %+200 mg·L-1 Si treatment showed the highest WUE 24.2 g·L-1, which was significantly higher than VWC 40 %+0 mg·L-1 Si, VWC 40 %+100 mg·L-1 Si and VWC 40 %+200 mg·L-1 Si treatments, but not significantly different from that in VWC 20 %+0 mg·L-1 Si, and VWC 20 %+100 mg·L-1 Si treatments. However, the yield per plant 1008.5 g of VWC 20 %+200 mg·L-1 Si treatment was not significant different from others. Therefore, the grower could apply 200 mg·L-1 silicon when needed. Finally, 5 fertigation methods were applied in spring-summer, including T1 and T2: substrate VWC 40 % and 20 % as fertigation thresholds in whole cultivation period, respectively; T3: substrate VWC 20 % as fertigation threshold in whole cultivation period and 200 mg·L-1 Si supplementation in nutrient solution in reproductive stage; T4: substrate VWC 10% in vegetative stage and substrate VWC 20 % in reproductive stage as fertigation threshold; T5: substrate VWC 10 % in vegetative stage and substrate VWC 20 % in reproductive stage as fertigation threshold, and 200 mg·L-1 Si supplementation in nutrient solution in reproductive stage. None significant difference was shown on weight per fruit and yield per plant among 5 treatments. However, T2 treatment showed better aroma, sweetness and overall evaluation in fruit organoleptic evaluation, with WUE 58.14 g·L-1, yield per plant 1794.9 g and 51.23 % fertigation amount saved compared to the control. Hence, for cultivating cucumber with substrate in the greenhouse in Taipei area, from February to May it is suggested VWC 20 % set as drip fertigation threshold in whole cultivation period. While from June to October, VWC 40% in vegetative growth stage and VWC 20 % in reproductive growth stage set as drip fertigation thresholds were recommended. The grower could apply 200 mg·L-1 silicon when needed from August to October. Through 3 models, high WUE and fresh weight per fruit could be obtained, and water- and fertilizer-saving achieved for cucumber. Due to low temperature, from November to next January is not suitable for cultivating cucumber.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:04:46Z (GMT). No. of bitstreams: 1
ntu-108-R06628104-1.pdf: 7088678 bytes, checksum: 6b2aa0b366e42cdb84baa8a401d1a224 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
摘要 i
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 前言 1
第二章 前人研究 2
第一節 胡瓜概述 2
第二節 節水之重要性/缺水現況 3
第三節 胡瓜滴灌節水栽培之應用 3
第四節 灌溉管理之參考 4
第五節 灌溉方法與水量對胡瓜產量之影響 6
第六節 乾旱逆境對胡瓜之影響 7
第七節 水分利用效率(Water use efficiency, WUE) 7
第八節 植物缺水逆境之非破壞性指標 8
第九節 矽對胡瓜生產與果實品質的影響 9
第十節 胡瓜的矽攝取與運輸 9
第十一節 矽提升胡瓜耐鹽性和耐旱性 10
第三章 材料與方法 11
第一節 植物材料 11
第二節 栽培管理 11
第三節 試驗處理 13
第四節 調查項目 15
第五節 統計分析 18
第四章 結果 19
第一節 秋作營養生長期處理介質體積含水量對花胡瓜‘秀秀’生產之影響 19
第二節 冬作營養生長期介質體積含水量與養液添加矽對花胡瓜‘秀秀’生產 之影響 20
第三節 夏作生殖生長期處理介質體積含水量對花胡瓜‘秀秀’生產之影響 21
第四節 秋-初冬作生殖生長期處理介質體積含水量與養液添加矽對花胡瓜 ‘秀秀’生產之影響 22
第五節 春-初夏作栽培全期處理介質體積含水量與養液添加矽花胡瓜‘秀秀’ 生產之影響 23
第五章 討論 25
第一節 於營養生長階段節水省肥處理對花胡瓜‘秀秀’生產之影響 25
第二節 於生殖生長階段節水省肥處理對花胡瓜‘秀秀’生產之影響 26
第三節 養液添加矽對花胡瓜‘秀秀’生產之影響 27
第四節 全生長期節水省肥處理對花胡瓜‘秀秀’生產之影響 28
第五節 比較各試驗節水省肥最佳處理之產量與水分利用效率 29
第六章 結論 31
參考文獻 32
-
dc.language.isozh_TW-
dc.title溫室介質栽培花胡瓜之節水省肥滴灌研究zh_TW
dc.titleStudy on water- and fertilizer-saving fertigation of substrate cultivated cucumber (Cucumis sativus L.) in the greenhouseen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張育森;林淑怡zh_TW
dc.contributor.oralexamcommitteeYu-Sen Chang;Shu-I Linen
dc.subject.keyword體積含水量,水分利用效率,果實品質,產量,zh_TW
dc.subject.keywordvolumetric water content,water use efficiency,fruit quality,yield,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU201903735-
dc.rights.note未授權-
dc.date.accepted2019-08-15-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2024-08-01-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
6.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved