請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78571
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林美峰 | zh_TW |
dc.contributor.advisor | Mei-Fong Lin | en |
dc.contributor.author | 洪佳琪 | zh_TW |
dc.contributor.author | Chia-Chi Hung | en |
dc.date.accessioned | 2021-07-11T15:04:42Z | - |
dc.date.available | 2024-08-01 | - |
dc.date.copyright | 2019-08-27 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Association for Pet Obesity Prevention. 2019. 2018 Pet Obesity Survey Results. https://petobesityprevention.org/2018
Belzer, C., and W. M. de Vos. 2012. Microbes inside--from diversity to function: the case of Akkermansia. ISME J 6(8):1449-1458. doi: 10.1038/ismej.2012.6. Brahe, L. K., E. Le Chatelier, E. Prifti, N. Pons, S. Kennedy, T. Hansen, O. Pedersen, A. Astrup, S. D. Ehrlich, and L. H. Larsen. 2015. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes 5:e159. doi:10.1038/nutd.2015.9 Cario, E., G. Gerken, and D. K. Podolsky. 2004. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127(1):224-238. doi: 10.1053/j.gastro.2004.04.015 Cario, E., G. Gerken, and D. K. Podolsky. 2007. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132(4):1359-1374. doi: 10.1053/j.gastro.2007.02.056 Chelakkot, C., Y. Choi, D. K. Kim, H. T. Park, J. Ghim, Y. Kwon, J. Jeon, M. S. Kim, Y. K. Jee, Y. S. Gho, H. S. Park, Y. K. Kim, and S. H. Ryu. 2018. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 50(2):e450. doi: 10.1038/emm.2017.282 Claesson, M. J., I. B. Jeffery, S. Conde, S. E. Power, E. M. O'Connor, S. Cusack, H. M. Harris, M. Coakley, B. Lakshminarayanan, O. O'Sullivan, G. F. Fitzgerald, J. Deane, M. O'Connor, N. Harnedy, K. O'Connor, D. O'Mahony, D. van Sinderen, M. Wallace, L. Brennan, C. Stanton, J. R. Marchesi, A. P. Fitzgerald, F. Shanahan, C. Hill, R. P. Ross, and P. W. O'Toole. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178-184. doi: 10.1038/nature11319 Clarke, S. F., E. F. Murphy, O. O'Sullivan, A. J. Lucey, M. Humphreys, A. Hogan, P. Hayes, M. O'Reilly, I. B. Jeffery, R. Wood-Martin, D. M. Kerins, E. Quigley, R. P. Ross, P. W. O'Toole, M. G. Molloy, E. Falvey, F. Shanahan, and P. D. Cotter. 2014. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63(12):1913-1920. doi: 10.1136/gutjnl-2013-306541. D'Souza, W. N., J. Douangpanya, S. Mu, P. Jaeckel, M. Zhang, J. R. Maxwell, J. B. Rottman, K. Labitzke, A. Willee, H. Beckmann, Y. Wang, Y. Li, R. Schwandner, J. A. Johnston, J. E. Towne, and H. Hsu. 2017. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS One 12(7):e0180190. doi: 10.1371/journal.pone.0180190. Dao, M. C., A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E. O. Verger, B. D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M. I.-O. Consortium, M. E. Dumas, S. W. Rizkalla, J. Dore, P. D. Cani, and K. Clement. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426-436. doi: 10.1136/gutjnl-2014-308778. Depommier, C., A. Everard, C. Druart, H. Plovier, M. Van Hul, S. Vieira-Silva, G. Falony, J. Raes, D. Maiter, N. M. Delzenne, M. de Barsy, A. Loumaye, M. P. Hermans, J.-P. Thissen, W. M. de Vos, and P. D. Cani. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25(7):1096-1103 doi: 10.1038/s41591-019-0495-2 Derrien, M., C. Belzer, and W. M. de Vos. 2017. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 106:171-181. doi: 10.1016/j.micpath.2016.02.005. Derrien, M., M. C. Collado, K. Ben-Amor, S. Salminen, and W. M. de Vos. 2008. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74(5):1646-1648. doi: 10.1128/AEM.01226-07 Derrien, M., P. Van Baarlen, G. Hooiveld, E. Norin, M. Muller, and W. M. de Vos. 2011. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol 2:166. doi: 10.3389/fmicb.2011.00166 Derrien, M., M. W. van Passel, J. H. van de Bovenkamp, R. G. Schipper, W. M. de Vos, and J. Dekker. 2010. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1(4):254-268. doi: 10.4161/gmic.1.4.12778 Derrien, M., E. E. Vaughan, C. M. Plugge, and W. M. de Vos. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54(Pt 5):1469-1476. doi: 10.1099/ijs.0.02873-0 Escobar, J. S., B. Klotz, B. E. Valdes, and G. M. Agudelo. 2014. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol 14:311. doi: 10.1186/s12866-014-0311-6 Everard, A., C. Belzer, L. Geurts, J. P. Ouwerkerk, C. Druart, L. B. Bindels, Y. Guiot, M. Derrien, G. G. Muccioli, N. M. Delzenne, W. M. de Vos, and P. D. Cani. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110(22):9066-9071. doi: 10.1073/pnas.1219451110. Fak, F., G. Jakobsdottir, E. Kulcinskaja, N. Marungruang, C. Matziouridou, U. Nilsson, H. Stalbrand, and M. Nyman. 2015. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS One 10(5):e0127252. doi: 10.1371/journal.pone.0127252 Feng, Y., Y. Wang, P. Wang, Y. Huang, and F. Wang. 2018. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem 49(1):190-205. doi: 10.1159/000492853. Fernandez, I., A. Pena, N. Del Teso, V. Perez, and J. Rodriguez-Cuesta. 2010. Clinical biochemistry parameters in C57BL/6J mice after blood collection from the submandibular vein and retroorbital plexus. J Am Assoc Lab Anim Sci 49(2):202-206. Ganesh, B. P., R. Klopfleisch, G. Loh, and M. Blaut. 2013. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 8(9):e74963. doi: 10.1371/journal.pone.0074963 Grander, C., T. E. Adolph, V. Wieser, P. Lowe, L. Wrzosek, B. Gyongyosi, D. V. Ward, F. Grabherr, R. R. Gerner, A. Pfister, B. Enrich, D. Ciocan, S. Macheiner, L. Mayr, M. Drach, P. Moser, A. R. Moschen, G. Perlemuter, G. Szabo, A. M. Cassard, and H. Tilg. 2018. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 67(5):891-901. doi: 10.1136/gutjnl-2016-313432. Greer, R. L., X. Dong, A. C. Moraes, R. A. Zielke, G. R. Fernandes, E. Peremyslova, S. Vasquez-Perez, A. A. Schoenborn, E. P. Gomes, A. C. Pereira, S. R. Ferreira, M. Yao, I. J. Fuss, W. Strober, A. E. Sikora, G. A. Taylor, A. S. Gulati, A. Morgun, and N. Shulzhenko. 2016. Akkermansia muciniphila mediates negative effects of IFNgamma on glucose metabolism. Nat Commun 7:13329. doi: 10.1038/ncomms13329 Gu, M. J., S. K. Song, I. K. Lee, S. Ko, S. E. Han, S. Bae, S. Y. Ji, B. C. Park, K. D. Song, H. K. Lee, S. H. Han, and C. H. Yun. 2016. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet Res 47:25. doi: 10.1186/s13567-016-0309-1 Hamilton, M. K., G. Boudry, D. G. Lemay, and H. E. Raybould. 2015. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 308(10):G840-851. doi: 10.1152/ajpgi.00029. Huang, I. F., I. C. Lin, P. F. Liu, M. F. Cheng, Y. C. Liu, Y. D. Hsieh, J. J. Chen, C. L. Chen, H. W. Chang, and C. W. Shu. 2015. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-beta signaling. BMC Microbiol 15:203. doi: 10.1186/s12866-015-0546-x Jankowska, A., D. Laubitz, H. Antushevich, R. Zabielski, and E. Grzesiuk. 2008. Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. J Biomed Biotechnol 2008:357964. doi: 10.1155/2008/357964 Jugan, M. C., A. J. Rudinsky, A. Gordon, D. L. Kramer, J. B. Daniels, O. Paliy, P. Boyaka, and C. Gilor. 2018. Effects of oral Akkermansia muciniphila supplementation in healthy dogs following antimicrobial administration. Am J Vet Res 79(8):884-892. doi: 10.2460/ajvr.79.8.884. Karlsson, C. L., J. Onnerfalt, J. Xu, G. Molin, S. Ahrne, and K. Thorngren-Jerneck. 2012. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring) 20(11):2257-2261. doi: 10.1038/oby.2012.110. Kasiraj, A. C., J. Harmoinen, A. Isaiah, E. Westermarck, J. M. Steiner, T. Spillmann, and J. S. Suchodolski. 2016. The effects of feeding and withholding food on the canine small intestinal microbiota. FEMS Microbiol Ecol 92(6). doi: 10.1093/femsec/fiw085 Kawasaki, T., and T. Kawai. 2014. Toll-like receptor signaling pathways. Front Immunol 5:461. doi: 10.3389/fimmu.2014.00461 Kim, B. S., M. Y. Song, and H. Kim. 2014. The anti-obesity effect of Ephedra sinica through modulation of gut microbiota in obese Korean women. J Ethnopharmacol 152(3):532-539. doi: 10.1016/j.jep.2014.01.038. Kimura, I., D. Inoue, K. Hirano, and G. Tsujimoto. 2014. The SCFA receptor GPR43 and energy metabolism. Front Endocrinol (Lausanne) 5:85. doi: 10.3389/fendo.2014.00085 Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, T. Takahashi, S. Miyauchi, G. Shioi, H. Inoue, and G. Tsujimoto. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. doi: 10.1038/ncomms2852. Lee, H., and G. Ko. 2014. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 80(19):5935-5943. doi: 10.1128/AEM.01357-14. Li, J., S. Lin, P. M. Vanhoutte, C. W. Woo, and A. Xu. 2016. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- mice. Circulation 133(24):2434-2446. doi: 10.1161/CIRCULATIONAHA.115.019645. Lukovac, S., C. Belzer, L. Pellis, B. J. Keijser, W. M. de Vos, R. C. Montijn, and G. Roeselers. 2014. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5(4):e01438-14. doi:10.1128/mBio.01438-14 Minamoto, Y., C. C. Otoni, S. M. Steelman, O. Buyukleblebici, J. M. Steiner, A. E. Jergens, and J. S. Suchodolski. 2015. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease. Gut Microbes 6(1):33-47. doi: 10.1080/19490976.2014.997612 Mukai, T., R. Gallant, S. Ishida, T. Yoshitaka, M. Kittaka, K. Nishida, D. A. Fox, Y. Morita, and Y. Ueki. 2014. SH3BP2 gain-of-function mutation exacerbates inflammation and bone loss in a murine collagen-induced arthritis model. PLoS One 9(8):e105518. doi: 10.1371/journal.pone.0105518 Myint, H., Y. Iwahashi, S. Koike, and Y. Kobayashi. 2017. Effect of soybean husk supplementation on the fecal fermentation metabolites and microbiota of dogs. Anim Sci J 88(11):1730-1736. doi: 10.1111/asj.12817 Odegaard, J. I., and A. Chawla. 2011. Alternative macrophage activation and metabolism. Annu Rev Pathol 6:275-297. doi: 10.1146/annurev-pathol-011110-130138. Oliveira-Nascimento, L., P. Massari, and L. M. Wetzler. 2012. The role of TLR2 in infection and immunity. Front Immunol 3:79. doi: 10.3389/fimmu.2012.00079 Ottman, N., M. Davids, M. Suarez-Diez, S. Boeren, P. J. Schaap, V. A. P. Martins Dos Santos, H. Smidt, C. Belzer, and W. M. de Vos. 2017a. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl Environ Microbiol 83(18):e01014-17. doi:10.1128/AEM.01014-17 Ottman, N., L. Huuskonen, J. Reunanen, S. Boeren, J. Klievink, H. Smidt, C. Belzer, and W. M. de Vos. 2016. Characterization of outer membrane proteome of Akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front Microbiol 7:1157. doi: 10.3389/fmicb.2016.01157 Ottman, N., J. Reunanen, M. Meijerink, T. E. Pietila, V. Kainulainen, J. Klievink, L. Huuskonen, S. Aalvink, M. Skurnik, S. Boeren, R. Satokari, A. Mercenier, A. Palva, H. Smidt, W. M. de Vos, and C. Belzer. 2017b. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One 12(3):e0173004. doi: 10.1371/journal.pone.0173004 Otto, G. P., B. Rathkolb, M. A. Oestereicher, C. J. Lengger, C. Moerth, K. Micklich, H. Fuchs, V. Gailus-Durner, E. Wolf, and M. Hrabe de Angelis. 2016. Clinical chemistry reference intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ mice (Mus musculus). J Am Assoc Lab Anim Sci 55(4):375-386. Plovier, H., A. Everard, C. Druart, C. Depommier, M. Van Hul, L. Geurts, J. Chilloux, N. Ottman, T. Duparc, L. Lichtenstein, A. Myridakis, N. M. Delzenne, J. Klievink, A. Bhattacharjee, K. C. van der Ark, S. Aalvink, L. O. Martinez, M. E. Dumas, D. Maiter, A. Loumaye, M. P. Hermans, J. P. Thissen, C. Belzer, W. M. de Vos, and P. D. Cani. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23(1):107-113. doi: 10.1038/nm.4236. Reunanen, J., V. Kainulainen, L. Huuskonen, N. Ottman, C. Belzer, H. Huhtinen, W. M. de Vos, and R. Satokari. 2015. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 81(11):3655-3662. doi: 10.1128/AEM.04050-14. Schmidt, F. M., J. Weschenfelder, C. Sander, J. Minkwitz, J. Thormann, T. Chittka, R. Mergl, K. C. Kirkby, M. Fasshauer, M. Stumvoll, L. M. Holdt, D. Teupser, U. Hegerl, and H. Himmerich. 2015. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS One 10(3):e0121971. doi: 10.1371/journal.pone.0121971 Shimizu, S., H. Nakashima, K. Masutani, Y. Inoue, K. Miyake, M. Akahoshi, Y. Tanaka, K. Egashira, H. Hirakata, T. Otsuka, and M. Harada. 2004. Anti-monocyte chemoattractant protein-1 gene therapy attenuates nephritis in MRL/lpr mice. Rheumatology (Oxford) 43(9):1121-1128. doi: 10.1093/rheumatology/keh277 Shin, N. R., J. C. Lee, H. Y. Lee, M. S. Kim, T. W. Whon, M. S. Lee, and J. W. Bae. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63(5):727-735. doi: 10.1136/gutjnl-2012-303839. Shen, J., Tong, X., Sud, N., Khound, R., Song, Y., Maldonado-Gomez, M. X., Walter, J., Su, Q. 2016. Low-density lipoprotein receptor signaling mediates the triglyceride-lowering action of Akkermansia muciniphila in genetic-induced hyperlipidemia. Arterioscler Thromb Vasc Biol 36(7):1448-56. doi: 10.1161/ATVBAHA.116.307597. Spreckley, E. and Murphy, K. G. 2015. The L-cell in nutritional sensing and the regulation of appetite. Front Nutr. doi: 10.3389/fnut.2015.00023. Suganami, T., M. Tanaka, and Y. Ogawa. 2016. Molecular mechanisms underlying obesity induced chronic inflammation. Page 291-298 in Chronic Inflammation. M. Miyasaka and K. Takatsu, editors, Springer Japan. Takeda, K., and S. Akira. 2004. TLR signaling pathways. Semin Immunol 16(1):3-9. Teixeira, F. S., L. M. Grzeskowiak, S. Salminen, K. Laitinen, J. Bressan, and C. Gouveia Peluzio Mdo. 2013. Faecal levels of Bifidobacterium and Clostridium coccoides but not plasma lipopolysaccharide are inversely related to insulin and HOMA index in women. Clin Nutr 32(6):1017-1022. doi: 10.1016/j.clnu.2013.02.008. Walgren, R. A., Walle, U. K., Walle, T. 1998. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells. Biochem Pharmacol 55(10): 1721-1727. doi: 10.1016/s0006-2952(98)00048-3 World Health Organization. 2019. https://www.who.int/topics/obesity/en/ World Small Animal Veterinary Association. 2019. Global Nutrition Guidelines. https://www.wsava.org/WSAVA/media/Documents/Guidelines/Global-Nutritional-Assesment-Guidelines-(Chinese).pdf Wu, W. Lv, L. Shi, D. Ye, J. Fang, D. Guo, F. Li, Y. He, X. Li, L. 2017. Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol 8:1804 doi: 10.3389/fmicb.2017.01804 Yang, Y. Zhong, Z. Wang, B. Xia, X. Yao, W. Huang, L. Wang, Y. Ding, W. 2019. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology doi: 10.1038/s41386-019-0437-1 Zhai, Q., S. Feng, N. Arjan, and W. Chen. 2018. A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 29:1-10. doi: 10.1080/10408398.2018.1517725 Zhang, X., D. Shen, Z. Fang, Z. Jie, X. Qiu, C. Zhang, Y. Chen, and L. Ji. 2013. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8(8):e71108. doi: 10.1371/journal.pone.0071108 Zhong, Y., N. Marungruang, F. Fak, and M. Nyman. 2015. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Br J Nutr 113(10):1558-1570. doi:10.1017/S0007114515000793. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78571 | - |
dc.description.abstract | 本試驗旨在探討A. muciniphila與Amuc_1100*蛋白對肥胖動物體重控制及腸道屏障功能的影響,試驗分別以細胞試驗及動物試驗進行之。動物試驗使用50隻8週齡小鼠,隨機分配至5個處理組,分別為一般飼糧對照組、高脂飼糧對照組、高脂飼糧菌液組、高脂飼糧蛋白組、高脂飼糧變性蛋白組。後四組先餵飼高脂飼糧3週誘發肥胖,挑選體增重達20%以上之小鼠,管餵菌液或蛋白持續5週,於試驗結束時進行採樣及犧牲。結果顯示A. muciniphila與Amuc_1100*蛋白可減少部分小鼠肝臟中的油滴堆積,但A. muciniphila、Amuc_1100*與Amuc_1100*變性蛋白對小鼠體重與其他代謝指標均無顯著影響,腸道緊密連接蛋白之表現量亦無顯著差異。此外,三種處理均不會產生肝腎毒性或進一步引起發炎反應。細胞試驗部分,以Caco-2細胞株測試Amuc_1100*蛋白對腸道細胞屏障功能之影響,其結果顯示對腸道細胞之緊密連接並無顯著促進效果;另以HEK-Blue細胞株表現人類類鐸受體二型(toll-like receptor 2, TLR2)之活性測試系統,進行Amuc_1100*蛋白對TLR2活化能力的分析,結果顯示1000 ng/ml之Amuc_1100*蛋白可活化之TLR2反應數值與0.3 ng/ml的Pam2CSK4(TLR2活化劑)相當。綜而言之,A. muciniphila與Amuc_1100*系列之蛋白質可能僅有預防動物肥胖之功能,對肥胖動物之減重效果有限;而細胞試驗結果顯示Amuc_1100*無法明顯促進腸道細胞的屏障功能,這些結果或許跟Amuc_1100*需Pam2CSK4的3300倍濃度才能產生相同的TLR2刺激活性有關。 | zh_TW |
dc.description.abstract | The objective of this study was to investigate the impact of A. muciniphila and Amuc_1100* on weight control and gut barrier function in obese animals. The following experiment was divided into two parts, including in vitro and in vivo studies. For in vivo study, 50 mice were randomly divided into 5 groups. 4 groups of mice were fed with high fat diet to induce obesity for 3 weeks. Mice with ≥ 20% weight gain were selected to continue the following experiment. Mice were fed by high fat diet with oral gavage of A. muciniphila, Amuc_1100* and denatured Amuc_1100*. PBS with 10% glycerol were used as placebo. The experiment lasted for 5 weeks. Results showed that A. muciniphila and Amuc_1100* decreased lipid accumulation in liver of obese mice. No significant differences in mice weight gain, metabolic profile and expression of intestinal tight junction with A. muciniphila, Amuc_1100* and denatured Amuc_1100* treatment. None of the treatments contributed to hepatotoxicity or nephrotoxic. In vitro studies part, Caco-2 cells were treated with Amuc_1100* for transepithelial electrical resistance (TEER) assay and the results showed no significant difference in TEER value. In addition, HEK-Blue cells expressed human toll-like receptor 2 (TLR2) and reporter gene were utilized to investigate whether Amuc_1100* can stimulate TLR2 responses. The results showed that the activation value of 1000 ng/ml of Amuc_1100* presented the similar value of 0.3 ng/ml of Pam2CSK4, which is an activator of TLR2. The studies showed both A. muciniphila and Amuc_1100* only decreased lipid accumulation in liver and had no effect on weight control or intestinal barrier function of obese mice. It was suggested that A. muciniphila and Amuc_1100* should be utilized in prevention of obesity instead of weight loss of obese animals. Results of in vitro studies also showed that the protein had no effect to enhance the tight junction between Caco-2 cells. These results may due to 3300 times of Pam2CSK4 concentration was required for Amuc_1100* to activate the same level of TLR2 signaling. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:04:42Z (GMT). No. of bitstreams: 1 ntu-108-R06626020-1.pdf: 2487673 bytes, checksum: 370de0095debf184306ce0511f30d61d (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 謝誌……………………………………………………………………………………I
中文摘要………………………………………………………………………………II 英文摘要……………………………………………………………………………….III 目錄……………………………………………………………………………..………V 圖次…………………………………………………………………………………VIII 表次…………………………………………………………………………………IX 緒言……………………………………………………………………………………...1 壹、文獻回顧…………………………………………………………………………….2 一、犬隻肥胖問題與普遍性…………………………………………………….2 二、Akkermansia muciniphila簡介……………………………………………....4 (一)宿主健康狀況與體內A.muciniphila數量之關聯性……….......................4 (二)A. muciniphila之功能性探討……………………………………………..6 (三)A. muciniphila作用機制………………………………………………10 (四)犬隻糞便之A. muciniphila檢測……………………………………….…14 三、膜蛋白Amuc_1100*之發現與功能探討……………………………………15 四、肥胖動物減重保健食品之開發…………………………………………….16 貳、材料與方法…………………………………………………………………...........17 一、試驗用菌液及蛋白…………………………………………………………17 (一)A. muciniphila菌液製備……………………………………………….. 17 (二)Amcu1100*蛋白製備……………………………………………………17 二、細胞模式測定項目及分析方法……………………………………………19 (一)細胞培養…………………………………………………………………19 (二)細胞存活率試驗…………………………………………………………..19 (三)跨上皮細胞電阻………………………………………………………….19 (四)緊密連接蛋白表現量之測定………………………………………….......20 (五)人類類鐸受體二型刺激反應…………………………………………......22 三、動物試驗設計………………………………………………………………23 (一)試驗動物…………………………………………………………………..23 (二)試驗飼糧…………………………………………………………………..23 (三)犧牲及採樣……………………………………………………………...25 四、動物試驗測定項目及分析方法……………………………………………26 (一)體重與採食量……………………………………………………………..26 (二)血液生化值…………..…………..………………………………………..26 (三)發炎細胞激素之測定……………………………………………………..26 (四)內臟相對重量……………………………………………………………..26 (五)肝臟組織切片…………………………………………………………….27 (六)腸道緊密連接蛋白表現量之測定………………………………………27 五、統計分析……………………………………………………………………29 參、結果………………………………………………………………………………...30 一、細胞試驗結果………………………………………………………………30 (一)細胞存活率試驗…………………………………………………………..30 (二)跨上皮細胞電阻試驗……………………………………………………..31 (三)緊密連接蛋白相對表現量之檢測………………………………………..32 (四)人類之類鐸受體二型刺激試驗…………………………………………..33 二、動物試驗結果……………………………………………………………….35 (一)體重與採食量……………………………………………………………..35 (二)血液生化值………………………………………………………………..37 (三)發炎細胞激素之測定……………………………………………………..38 (四)內臟重量…………………………..………………………………………39 (五)肝臟組織切片……………………………………………………………42 (六)腸道緊密連接蛋白表現量之測定……………………..…………………43 肆、討論…………………………………………………………………………….......44 一、細胞試驗………………………………………………………....................44 (一)不同片段之Amuc_1100*蛋白對Caco-2細胞屏障功能之影響………44 (二)不同片段之Amuc_1100*蛋白對人類之類鐸受體二型的刺激反應…...45 二、動物試驗……………………………………………………………………46 (一) A. muciniphila、Amuc_1100*及變性蛋白對肥胖小鼠體重控制之影響..46 (二)A. muciniphila、Amuc_1100*及變性蛋白對血液生化值之影響…….47 (三)A. muciniphila、Amuc_1100*及變性蛋白對發炎反應之影響…..…..49 (四)A. muciniphila、Amuc_1100*及變性蛋白對小鼠緊密連接蛋白表現量之 影響……………………………………………………………………..50 伍、結論………………………………………………………………………………...51 陸、參考文獻………………………………………………………………………….52 附錄…………………………………………………………………………………….63 小傳…………………………………………………………………………………….65 | - |
dc.language.iso | zh_TW | - |
dc.title | 探討Akkermansia muciniphila與Amuc_1100*蛋白對肥胖小鼠體重控制及腸道屏障功能之影響 | zh_TW |
dc.title | Effect of Akkermansia muciniphila and Amuc_1100* on weight control and intestinal barrier function of obese mice | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃志宏;劉?睿 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Hung Huang;Je-Ruei Liu | en |
dc.subject.keyword | 肥胖小鼠,A. muciniphila,Amuc_1100,體重控制,代謝功能,腸道屏障,類鐸受體二型, | zh_TW |
dc.subject.keyword | obese mice,A. muciniphila,Amuc_1100,weight control,metabolic profile,intestinal barrier,TLR2, | en |
dc.relation.page | 65 | - |
dc.identifier.doi | 10.6342/NTU201902869 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-15 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
dc.date.embargo-lift | 2024-08-27 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 2.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。