請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78566完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊鎧鍵(Kai-Chien Yang) | |
| dc.contributor.author | Yi-Shuan Tseng | en |
| dc.contributor.author | 曾意軒 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:04:24Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-15 | |
| dc.identifier.citation | (1) Taiwan Ministry of Health and Welfare. 2018 Cause of Death Statistics (published on 2019.06.21). https://dep.mohw.gov.tw/DOS/cp-4472-48034-113.html (search on 2019.07.06)
(2) World Health Organization. The top 10 causes of death (published on 2018.05.24). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (search on 2019.07.06) (3) National Center for Health Statistics. Health, United States, 2013: With Special Feature on Prescription Drugs. Hyattsville, MD. 2014. (4) Shanthi Mendis, Kristian Thygesen, Kari Kuulasmaa, Simona Giampaoli, Markku Mähönen, Kathleen Ngu Blackett, Liu Lisheng, Writing group on behalf of the participating experts of the WHO consultation for revision of WHO definition of myocardial infarction, World Health Organization definition of myocardial infarction: 2008–09 revision, International Journal of Epidemiology, Volume 40, Issue 1, February 2011, Pages 139–146, https://doi.org/10.1093/ije/dyq165 (5) Eva van Rooij. Cardiac Repair after Myocardial Infarction. N Engl J Med. 2016 Jan 7;374(1):85-7. (6) Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003 May;111(10):1497-504. (7) Loehr LR1, Rosamond WD, Chang PP, Folsom AR, Chambless LE. Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study). Am J Cardiol. 2008 Apr 1;101(7):1016-22 (8) Askoxylakis V, Thieke C, Pleger ST, Most P, Tanner J, Lindel K, Katus HA, Debus J and Bischof M. Long-term survival of cancer patients compared to heart failure and stroke: a systematic review. BMC Cancer. 2010;10:105. (9) Aysu Uygur and Richard T. Lee. Mechanisms of Cardiac Regeneration. Dev Cell. 2016 Feb 22; 36(4): 362–374. (10) Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002 Dec 13;298(5601):2188-90. (11) Darehzereshki, A., Rubin, N., Gamba, L., Kim, J., Fraser, J., Huang, Y., Billings, J., Mohammadzadeh, R., Wood, J., Warburton, D., et al. (2015). Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev. Biol. 399, 91–99. (12) Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011 Feb 25;331(6020):1078-80 (13) Porrello ER1, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):187-92 (14) Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI and Penninger JM. Functional Recovery of a Human Neonatal Heart After Severe Myocardial Infarction. Circ Res. 2016;118:216-21. (15) Xin M, Olson EN, Bassel-Duby R. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol. 2013. 14(8):529-41 (16) Bertero A, Murry CE. Hallmarks of cardiac regeneration. Nat Rev Cardiol. 2018 Oct;15(10):579-580. (17) Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013 Jan 17;493(7432):433-6. (18) Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 1995 Nov 23;378(6555):394-8. (19) Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 1995 Nov 23;378(6555):390-4. (20) Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol. 2012 Sep;13(9):591-600. (21) John P. Leach, Todd Heallen, Min Zhang, Mahdis Rahmani, Yuka Morikawa, Matthew C. Hill, Ana Segura, James T. Willerson & James F. Martin. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature. 2017 Oct 12;550(7675):260-264. (22) Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011 Apr 22;332(6028):458-61. (23) Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature. 2017 Jul 13;547(7662):179-184. (24) Morikawa Y, Heallen T, Leach J, Xiao Y, Martin JF. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature. 2017 Jul 13;547(7662):227-231. (25) Yun Chia Hsu (2018). Identifying long noncoding RNAs linked to cardiac regeneration capacity. National Taiwan University Graduate Institute of Pharmacology College of Medicine Master Thesis, Taipei City. (26) Sun Z, Parrish AR, Hill MA, Meininger GA. N-cadherin, a vascular smooth muscle cell-cell adhesion molecule: function and signaling for vasomotor control. Microcirculation. 2014. 21(3):208-18 (27) Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs. 2007. 16(4):451-65. (28) Peters NS1, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation. 1994 Aug;90(2):713-25. (29) Kostetskii I1, Li J, Xiong Y, Zhou R, Ferrari VA, Patel VV, Molkentin JD, Radice GL. Induced deletion of the N-cadherin gene in the heart leads to dissolution of the intercalated disc structure. Circ Res. 2005 Feb 18;96(3):346-54. Epub 2005 Jan 20. (30) Radice GL1, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, Hynes RO. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol. 1997 Jan 1;181(1):64-78. (31) Mahmoud AI, Porrello ER, Kimura W, Olson EN, Sadek HA. Surgical models for cardiac regeneration in neonatal mice. Nat Protoc. 2014 Feb;9(2):305-11. (32) Shintani Y, Fukumoto Y, Chaika N, Grandgenett PM, Hollingsworth MA, Wheelock MJ, Johnson KR. ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int J Cancer. 2008 Jan 1;122(1):71-7. (33) Cha PH, Cho YH, Lee SK, Lee J, Jeong WJ, Moon BS, Yun JH, Yang JS, Choi S, Yoon J, Kim HY, Kim MY, Kaduwal S, Lee W, Min do S, Kim H, Han G, Choi KY. Small-molecule binding of the axin RGS domain promotes β-catenin and Ras degradation. Nat Chem Biol. 2016 Aug;12(8):593-600. (34) Zeng B, Tong S, Ren X, Xia H. Cardiac cell proliferation assessed by EdU, a novel analysis of cardiac regeneration. Cytotechnology. 2016 Aug;68(4):763-70. (35) Lin G, Huang YC, Shindel AW, Banie L, Wang G, Lue TF, Lin CS. Labeling and tracking of mesenchymal stromal cells with EdU. Cytotherapy. 2009;11(7):864-73. (36) Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP. Do neonatal mouse hearts regenerate following heart apex resection? Stem Cell Reports. 2014 Apr 3;2(4):406-13. (37) Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11930-5. (38) von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2394-9. (39) Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008 Jul 15;22(14):1962-71. (40) MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009 Jul;17(1):9-26. (41) Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017 May 5;10(1):101. (42) VanArsdale T, Boshoff C, Arndt KT, Abraham RT. Molecular Pathways: Targeting the Cyclin D-CDK4/6 Axis for Cancer Treatment. Clin Cancer Res. 2015 Jul 1;21(13):2905-10. (43) Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, Pisarek AJ, Stocker AM, Mutch CA, Funatsu N, Chenn A. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell. 2010 Mar 16;18(3):472-9. (44) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Curr Biol. 2003 Apr 15. 13(8):680-5. 10.1016/S0960-9822(03)00240-9 PubMed 12699626 (45) Okuda T, Yu LM, Cingolani LA, Kemler R, Goda Y. beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13479-84. (46) Hiroki O. Evolution of the cadherin–catenin complex. Subcell Biochem. 2012;60:9-35. (47) Ouyang M, Lu S, Kim T, Chen CE, Seong J, Leckband DE, Wang F, Reynolds AB, Schwartz MA, Wang Y. N-cadherin regulates spatially polarized signals through distinct p120ctn and b-catenin-dependent signalling pathways. Nat Commun. 2013;4:1589. (48) Thoumine O, Lambert M, Mège RM, Choquet D. Regulation of N-Cadherin Dynamics at Neuronal Contacts by Ligand Binding and Cytoskeletal Coupling. Mol Biol Cell. 2006 Feb;17(2):862-75. (49) Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet. 2017 Sep;49(9):1346-1353. (50) Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D. Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration. Cell. 2018 Mar 22;173(1):104-116.e12. (51) Mayosi BM, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, Kotta MC, Chin A, Laing N, Ntusi NB, Chong M, Horsfall C, Pimstone SN, Gentilini D, Parati G, Strom TM, Meitinger T, Pare G, Schwartz PJ, Crotti L. Identification of Cadherin 2 (CDH2) Mutations in Arrhythmogenic Right Ventricular Cardiomyopathy. Circ Cardiovasc Genet. 2017 Apr;10(2). pii: e001605. (52) Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A, Parikh S, Denholtz M, Huang Y, Yamaguchi Y, Shen H, Allayee H, Crump JG, Force TI, Lien CL, Makita T, Lusis AJ, Kumar SR, Sucov HM. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet. 2017 Sep;49(9):1346-1353. (53) Natarajan N, Abbas Y, Bryant DM, Gonzalez-Rosa JM, Sharpe M, Uygur A, Cocco-Delgado LH, Ho NN, Gerard NP, Gerard CJ, MacRae CA, Burns CE, Burns CG, Whited JL, Lee RT. Complement Receptor C5aR1 Plays an Evolutionarily Conserved Role in Successful Cardiac Regeneration. Circulation. 2018 May 15;137(20):2152-2165. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78566 | - |
| dc.description.abstract | 心臟疾病是造成全球死亡的最主要原因之一,依據WHO的統計,心臟疾病在全球的十大死因位居首位,在台灣則是位居第二。許多的心臟疾病都有牽涉心肌細胞的死亡,只要有些微的心肌細胞損失即可能造成心臟衰竭。一般來說,成年的哺乳類的心臟缺乏再生能力,沒有辦法利用再生的方式去修補受損的心臟。然而,之前研究顯示,出生一周內的小鼠心臟與新生兒幾乎具有完全再生的能力,可以修復受損的心臟;而在出生過後,心臟再生的能力便會逐漸下降。此外,這個心臟再生的現象也會伴隨著心肌細胞的增生,是心臟再生的機制中重要的關鍵現象。不過,目前針對心肌細胞的基因表現與心臟再生的探討並不多。因此,我們便想透過分析不同心臟再生能力的小鼠的心肌細胞,去探討其基因表現的差異,和心肌細胞增生以及心臟再生的現象進行進一步的研究。
而為了探討這種在因年齡而造成的再生能力的差異其背後的原因與機制,我們利用RNA定序 (RNAseq) 分析心臟不會再生的成鼠以及心臟會再生的新生小鼠的心肌細胞,發現除了許多和細胞週期以及細胞增生相關的基因在新生小鼠的心肌細胞表現量較高之外,亦發現Cdh2,也就是可轉譯出神經鈣粘蛋白 (N-cadherin) 的基因,在新生小鼠表現量較高,且隨著年齡上升而表現量下降,在成鼠的心肌表現量甚至只有新生小鼠的1/4,因此神經鈣粘蛋白 (N-cadherin) 很可能和新生小鼠的心臟再生功能有關。 為了理解Cdh2在心臟再生的角色。首先,在新生一天的小鼠,透過心尖切除的動物模型去模擬受損的心臟後,發現Cdh2的表現量在接近受傷區域有顯著的上升,而遠離受傷區域則是表現量下降,這和術後所造成心肌細胞的增生是吻合的,因此我們認為N-cadherin的確有可能在再生中的心臟有調控的角色。另外,N-cadherin能夠影響心肌細胞的增生。在新生第一天的小鼠所分離的心肌細胞,敲低或抑制Cdh2後,可以使心肌細胞的增生顯著的下降;然而將心肌細胞過表現Cdh2則會使心肌細胞的增生比率顯著上升。再者,一些與細胞週期相關的RNA和蛋白也在敲低Cdh2後下降、過表現Cdh2後上升。此外,在健康人類的誘導型多潛能幹細胞所誘發的心肌細胞 (hiPSC-CM) 敲低CDH2,也可以觀察到心肌細胞的增生有顯著的下降、細胞週期的基因表現上升,可以說明N-cadherin不論是在小鼠或是人類的心肌細胞都能夠去影響其增生的能力。 在機轉方面,一個與N-cadherin羧基端有結合、可促進細胞增生的轉錄因子β-鏈蛋白 (β-catenin)會隨著Cdh2的表現量而受到顯著的影響,不論是在新生小鼠的心肌細胞或是人類hiPSC-CM,β-catenin蛋白表現量會隨著N-cadherin表現上升而上升,N-cadherin表現下降而下降,然而β-catenin的信使核糖核酸 (mRNA) 的表現並沒有差異。因此,N-cadherin調控β-catenin應是透過轉錄後的機制進行調控。而在敲低 Cdh2後,β-catenin的蛋白穩定性顯著的下降,且進入核中能夠進行轉譯的β-catenin的比例下降,都驗證了此假說。此外,增加Cdh2所造成的心肌細胞的增生也可以利用β-catenin的抑制劑使其反轉,更強化了N-cadherin所調控的心肌細胞的增生,很可能就是透過β-catenin的訊息傳遞路徑所調控的假說。 在動物模型中,N-cadherin抑制劑會使新生小鼠的心臟經過受損後細胞增生的量下降;在增加Cdh2的表現後,能夠使得成年老鼠在經過心肌梗塞手術後,心臟功能惡化的速率有所減緩,這些都代表N-cadherin的確會影響在動物中的心肌細胞的增生與心臟再生。 綜合以上結果,N-cadherin可能會透過影響和它連接的β-catenin的穩定度,使得β-catenin較容易進行轉錄促進心肌細胞的增生,進一步去促進心臟的再生、心功能的修復,並能夠作為心臟疾病治療的新型策略。 | zh_TW |
| dc.description.abstract | Cardiovascular disease is a leading cause of death. Many cardiovascular diseases are associated with the loss of cardiomyocytes. A modest loss of cardiomyocytes could lead to heart failure and high mortality. Although the adult mammalian heart fails to regenerate after injury, it is known that newborn mice within a week have a full cardiac regenerative capacity. Besides, cardiomyocyte proliferation was accompanied by the regenerative process. The molecular determinants underlying the disparate regenerative capacity between neonatal and adult mice, however, remain incompletely understood. Although several studies showed there was some transcriptome difference during the regenerative process, the transcriptome change specifically in the cardiomyocyte was incompletely understood. Therefore, this study aimed to identify potential regulators of cardiac regeneration in the cardiomyocyte and find out their molecular mechanism.
Exploiting RNA sequencing in isolated cardiomyocytes from neonatal and adult mouse heart, we identified Cdh2, which encodes the adherence junction protein N-cadherin, as a potential novel mediator of cardiac regeneration. Cdh2 expression levels were much higher in neonatal, compared with adult, cardiomyocytes and showed a strong positive correlation with that of multiple cell cycle genes. N-cadherin has been reported to be essential for embryonic cardiac development; its role in cardiac regeneration, however, remains unknown. Therefore, we attempted to determine the novel role of Cdh2 /N-cadherin in cardiac regeneration and to investigate the underlying molecular mechanisms. Comparing to sham-operated control, Cdh2 was significantly upregulated in mouse cardiac apex and border zone following apical resection on postnatal day 1 (P1) mice, which was accompanied with increased cardiomyocyte proliferation activity. In vitro, knocking down Cdh2 or inhibition of N-cadherin activity with N-cadherin inhibitor, exherin, in postnatal day 1 neonatal mouse cardiomyocytes (P1CM) significantly reduced the proliferative activity of cardiomyocytes, whereas overexpression of Cdh2 markedly increased the proliferation of P1CM. In addition, forced expression of Cdh2 resulted in significant upregulation of multiple cell cycle genes, including Ccnd1 (cyclin D1), Cdc16 (cell division cycle protein 16), and Cdk2 (cyclin-dependent kinase 2) in P1CM, while depleting expression of Cdh2 downregulated these genes. Knocking down CDH2 in human induced pluripotent stem cells-derived cardiomyocytes (iPSC-CMs) significantly reduced the proliferative activity and the expression levels of cell cycle gene CCND1 in iPSC-CMs. Mechanistically, we demonstrated that the pro-mitotic effects of N-cadherin in cardiomyocytes were mediated, at least partially, by stabilizing β-catenin, a pro-mitotic transcription factor, through direct interaction with its cytoplasmic domain and/or inactivation of GSK-β, a critical component of β-catenin destruction complex. In vivo inhibition of N-cadherin in P1 neonatal mice with exherin following apical resection led to the reduction of global cardiomyocyte proliferation, compared with PBS treated group. In addition, overexpressing Cdh2 attenuated the deterioration of cardiac function in the adult mice following myocardial infarction. Our study uncovered a previously unrecognized role of Cdh2 (N-cadherin) in cardiomyocyte proliferation and cardiac regeneration. The results presented demonstrate that increased N-Cadherin levels promotes cardiomyocyte proliferation and regeneration by post-translational stabilization and upregulation of pro-mitotic transcription factor -catenin. Enhancing cardiac expression or activity of N-cadherin, therefore, could be a potential novel therapeutic approach to promote cardiac regeneration and restore cardiac function in adult heart following injury. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:04:24Z (GMT). No. of bitstreams: 1 ntu-108-R06443006-1.pdf: 3276145 bytes, checksum: 8b9985b8bbd034fc17cd40f76f72c5d0 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS viii LIST OF FIGURES xii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Cardiovascular disease: the world’s leading cause of death 1 1.2 Cardiac regeneration capacity in the mammalian heart 1 1.3 Cardiomyocytes proliferate during cardiac regeneration 2 1.4 The transcriptome difference in cardiomyocyte during the process of heart regeneration remained unknown 3 1.5 The summary of the preliminary data and the main aims of the study 4 1.5.1 The role of N-cadherin in cardiac regeneration remained unknown 5 Chapter 2 Materials and Methods 7 2.1 Isolation of neonatal mice cardiomyocyte 7 2.2 HL-1 cardiac muscle cell line culture 7 2.3 HEK 293T cell culture 8 2.4 Human-induced pluripotent stem cells-derived cardiomyocyte 8 2.5 Lentiviral transduction for gene knockdown in vitro 9 2.6 AAV transduction for gene overexpression in vitro 10 2.7 Pharmacological inhibitors 10 2.8 Apical resection 10 2.9 N-cadherin inhibitor injection in vivo 11 2.10 Surgery procedure (Myocardial infarction) 11 2.11 Echocardiography 12 2.12 EdU pulse-chase 12 2.13 Histology 12 2.14 Analysis of RNA expression in different zones of heart 13 2.15 Immunofluorescence staining 13 2.16 Cell proliferation assay: EdU staining 14 2.17 Cell counting 14 2.18 AAV package 15 2.19 AAV gene transduction in vivo 16 2.20 Cytoplasmic and nuclear extraction 16 2.21 Cycloheximide pulse-chase assay 17 2.22 RNA extraction and qRT-PCR 17 2.23 Protein extraction and western blot 17 Chapter 3 Results 19 3.1 RNA sequencing analyses identified N-cadherin (Cdh2) as a potential regulator of cardiac regeneration 19 3.2 N-cadherin transcript and protein levels were both significantly lower in adult than in neonatal mouse heart 19 3.3 Cardiac apical resection in neonatal mice triggered increased cardiomyocyte proliferation and Cdh2 upregulation 20 3.4 Depletion or inhibition of Cdh2/N-Cadherin reduced the proliferative capacity of neonatal CM 21 3.5 Overexpression of Cdh2 markedly increased the proliferation of P1CM 21 3.6 Knocking down Cdh2 reduced the proliferative capacity of iPSC-CMs 22 3.7 Pro-mitotic genes were differentially expressed in adult vs. neonatal mouse cardiomyocytes 23 3.8 N-cadherin-mediated cardiomyocyte proliferation was independent of the Hippo pathway 23 3.9 N-cadherin regulates β-catenin expression through post-transcriptional mechanisms 24 3.10 Cdh2/N-cadherin-mediated cardiomyocyte proliferation was β-catenin dependent 25 3.11 The pro-mitotic effects of N-cadherin in cardiomyocytes were mediated, at least partially, by stabilizing β-catenin 25 3.12 N-cadherin inhibition resulted in a reduction of cell proliferation in hearts performed apical resection in P1 26 3.13 Cdh2 overexpression halted the deterioration of left ventricular contractile function following myocardial infarction in mice 27 Chapter 4 Discussion 28 4.1 N-cadherin-induced cardiomyocyte proliferation was mediated by β-catenin signaling 28 4.1.1 How N-cadherin regulates β-catenin 28 4.1.2 Whether the binding of N-cadherin and β-catenin is required for Cardiomyocyte Proliferation 29 4.1.3 Transcriptional activity of β-catenin 29 4.2 N-cadherin regulated cardiac regeneration in vivo 30 4.2.1 Loss of function 30 4.2.2 Gain of function 30 4.2.3 β-catenin signaling in vivo 31 4.3 Future direction 32 REFERENCE 33 FIGURES AND TABLES 41 APPENDIX 66 | |
| dc.language.iso | en | |
| dc.subject | 神經鈣粘蛋白 | zh_TW |
| dc.subject | β-鏈蛋白 | zh_TW |
| dc.subject | 人類誘導型多潛能幹細胞 | zh_TW |
| dc.subject | 心肌梗塞 | zh_TW |
| dc.subject | 心臟再生 | zh_TW |
| dc.subject | 心臟疾病 | zh_TW |
| dc.subject | N-cadherin | en |
| dc.subject | Cardiac Regeneration | en |
| dc.subject | Myocardial Infarction | en |
| dc.subject | Cardiovascular disease | en |
| dc.subject | β-catenin | en |
| dc.subject | human induced pluripotent stem cells-derived cardiomyocytes | en |
| dc.title | 神經鈣粘蛋白在心肌再生的角色 | zh_TW |
| dc.title | The Novel Role of N-Cadherin in Cardiac Regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝清河(Ching-Ho Hsieh),陳文彬(Wen-Pin Chen),賴時磊(Shih-Lei Lai) | |
| dc.subject.keyword | 神經鈣粘蛋白,心臟再生,心肌梗塞,心臟疾病,β-鏈蛋白,人類誘導型多潛能幹細胞, | zh_TW |
| dc.subject.keyword | N-cadherin,Cardiac Regeneration,Myocardial Infarction,Cardiovascular disease,β-catenin,human induced pluripotent stem cells-derived cardiomyocytes, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201903608 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06443006-1.pdf 未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
