請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78564完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍 | zh_TW |
| dc.contributor.advisor | Hsueh-Ping Chu | en |
| dc.contributor.author | 方國禎 | zh_TW |
| dc.contributor.author | Kuo-Chen Fang | en |
| dc.date.accessioned | 2021-07-11T15:04:16Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Andersen, A. A., & Panning, B. (2003). Epigenetic gene regulation by noncoding RNAs. Curr Opin Cell Biol, 15(3), 281-289.
Baumann, C., Viveiros, M. M., & De La Fuente, R. (2010). Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet, 6(9), e1001137. doi:10.1371/journal.pgen.1001137 Cai, J., Chen, J., Zhang, W., Yang, P., Zhang, C., Li, M., . . . Jiang, T. (2015). Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors. Oncotarget, 6(20), 18105-18115. doi:10.18632/oncotarget.3906 Caudron-Herger, M., Pankert, T., & Rippe, K. (2016). Regulation of nucleolus assembly by non-coding RNA polymerase II transcripts. Nucleus, 7(3), 308-318. doi:10.1080/19491034.2016.1190890 Cheung, P., & Lau, P. (2005). Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol, 19(3), 563-573. doi:10.1210/me.2004-0496 Chinaranagari, S., Sharma, P., & Chaudhary, J. (2014). EZH2 dependent H3K27me3 is involved in epigenetic silencing of ID4 in prostate cancer. Oncotarget, 5(16), 7172-7182. doi:10.18632/oncotarget.2262 Chu, H. P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H. G., Wei, C., . . . Lee, J. T. (2017). TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 170(1), 86-101 e116. doi:10.1016/j.cell.2017.06.017 Conomos, D., Pickett, H. A., & Reddel, R. R. (2013). Alternative lengthening of telomeres: remodeling the telomere architecture. Front Oncol, 3, 27. doi:10.3389/fonc.2013.00027 Cubiles, M. D., Barroso, S., Vaquero-Sedas, M. I., Enguix, A., Aguilera, A., & Vega-Palas, M. A. (2018). Epigenetic features of human telomeres. Nucleic Acids Res, 46(5), 2347-2355. doi:10.1093/nar/gky006 Cusanelli, E., & Chartrand, P. (2015). Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet, 6, 143. doi:10.3389/fgene.2015.00143 Deng, Z., Wang, Z., Xiang, C., Molczan, A., Baubet, V., Conejo-Garcia, J., . . . Dahmane, N. (2012). Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci, 125(Pt 18), 4383-4394. doi:10.1242/jcs.108118 Dhayalan, A., Tamas, R., Bock, I., Tattermusch, A., Dimitrova, E., Kudithipudi, S., . . . Jeltsch, A. (2011). The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum Mol Genet, 20(11), 2195-2203. doi:10.1093/hmg/ddr107 Duan, Z., Person, R. E., Lee, H. H., Huang, S., Donadieu, J., Badolato, R., . . . Horwitz, M. S. (2007). Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting tumor suppressor PRDM5. Mol Cell Biol, 27(19), 6889-6902. doi:10.1128/MCB.00762-07 Dupont, C., Armant, D. R., & Brenner, C. A. (2009). Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med, 27(5), 351-357. doi:10.1055/s-0029-1237423 Galazka, J. M., Klocko, A. D., Uesaka, M., Honda, S., Selker, E. U., & Freitag, M. (2016). Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Res, 26(8), 1069-1080. doi:10.1101/gr.203182.115 Graf, M., Bonetti, D., Lockhart, A., Serhal, K., Kellner, V., Maicher, A., . . . Luke, B. (2017). Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell, 170(1), 72-85 e14. doi:10.1016/j.cell.2017.06.006 Greider, C. W. (1996). Telomere length regulation. Annu Rev Biochem, 65, 337-365. doi:10.1146/annurev.bi.65.070196.002005 Guenatri, M., Bailly, D., Maison, C., & Almouzni, G. (2004). Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol, 166(4), 493-505. doi:10.1083/jcb.200403109 Hanly, D. J., Esteller, M., & Berdasco, M. (2018). Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci, 373(1748). doi:10.1098/rstb.2017.0074 Hendrich, B. D., & Willard, H. F. (1995). Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. Hum Mol Genet, 4 Spec No, 1765-1777. doi:10.1093/hmg/4.suppl_1.1765 Huang, Y., Gu, L., & Li, G. M. (2018). H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J Biol Chem, 293(20), 7811-7823. doi:10.1074/jbc.RA118.002839 Jurak, I., Silverstein, L. B., Sharma, M., & Coen, D. M. (2012). Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol, 86(18), 10093-10102. doi:10.1128/JVI.00930-12 Karimi, M. M., Goyal, P., Maksakova, I. A., Bilenky, M., Leung, D., Tang, J. X., . . . Lorincz, M. C. (2011). DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell, 8(6), 676-687. doi:10.1016/j.stem.2011.04.004 Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C., & Allis, C. D. (2010). Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A, 107(32), 14075-14080. doi:10.1073/pnas.1008850107 Luke, B., & Lingner, J. (2009). TERRA: telomeric repeat-containing RNA. EMBO J, 28(17), 2503-2510. doi:10.1038/emboj.2009.166 Maksakova, I. A., Goyal, P., Bullwinkel, J., Brown, J. P., Bilenky, M., Mager, D. L., . . . Lorincz, M. C. (2011). H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics Chromatin, 4(1), 12. doi:10.1186/1756-8935-4-12 Montero, J. J., Lopez-Silanes, I., Megias, D., M, F. F., Castells-Garcia, A., & Blasco, M. A. (2018). TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun, 9(1), 1548. doi:10.1038/s41467-018-03916-3 Pfister, S. X., Ahrabi, S., Zalmas, L. P., Sarkar, S., Aymard, F., Bachrati, C. Z., . . . Humphrey, T. C. (2014). SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep, 7(6), 2006-2018. doi:10.1016/j.celrep.2014.05.026 Pogribny, I. P., Ross, S. A., Tryndyak, V. P., Pogribna, M., Poirier, L. A., & Karpinets, T. V. (2006). Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis, 27(6), 1180-1186. doi:10.1093/carcin/bgi364 Ratnakumar, K., & Bernstein, E. (2013). ATRX: the case of a peculiar chromatin remodeler. Epigenetics, 8(1), 3-9. doi:10.4161/epi.23271 Rice, J. C., & Allis, C. D. (2001). Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol, 13(3), 263-273. Rosenfeld, J. A., Xuan, Z., & DeSalle, R. (2009). Investigating repetitively matching short sequencing reads: the enigmatic nature of H3K9me3. Epigenetics, 4(7), 476-486. doi:10.4161/epi.4.7.9809 Sarma, K., Cifuentes-Rojas, C., Ergun, A., Del Rosario, A., Jeon, Y., White, F., . . . Lee, J. T. (2014). ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell, 159(4), 869-883. doi:10.1016/j.cell.2014.10.019 Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18-20. Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6), 904-914. doi:10.1016/j.molcel.2011.08.018 Zhang, X., Mar, V., Zhou, W., Harrington, L., & Robinson, M. O. (1999). Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev, 13(18), 2388-2399. doi:10.1101/gad.13.18.2388 Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 15(18), 2343-2360. doi:10.1101/gad.927301 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78564 | - |
| dc.description.abstract | 在哺乳動物中,不僅僅只有蛋白質會與染色質結合去調控基因表現,RNA也會參與其中去調控。先前的研究指出,長鏈非編碼RNA(未轉譯成蛋白質去表現基因的RNA)通過與染色質相互作用來參與表觀遺傳的調控。在這裡,我們研究含有端粒重複序列的RNA(TERRA),其從亞端粒區轉錄到端粒位置。先前的研究指出,TERRA與組蛋白修飾(例如EZH2,SETDB1和SETD2),染色質重塑物(例如ATRX)在生物體內與之進行結合並藉以此調控基因表現。我們通過TERRA可能會去調控組蛋白中(H3K9me3和H3K27me3)的甲基轉移酶,與ATRX在基因體的佔據量來調控基因表現。為了驗證這一假設,我們在小鼠胚胎幹細胞中進行TERRA去除 (Knockdown)的實驗,並對ATRX,,SETDB1和SETD2進行了染色質免疫沉澱(ChIP)的試驗。我們發現ATRX和SETDB1在端粒DNA上的佔據量顯著增加,而SETD2在端粒DNA上的佔據量卻是減少,。此外在TERRA knockdown後,組蛋白H3K9m3和H3K27me3在端粒處的佔據量也隨之增加。 ATRX ChIP-seq分析顯示TERRA knockdown不僅改變了ATRX佔據端粒DNA的量,也改變了在其他基因的佔據量。令人驚訝的是,TERRA knockdown導致rDNA基因和其他重複序列的ATRX富集增加,這意味著TERRA會影響ATRX 與重複DNA的結合。除此之外ATRX在基因的轉錄起始位置有與SETD2富集的現象,並與H3K27me3佔據位點相斥。這可能意味著ATRX對於異染色質與基因間區段有不同方式的調控。最後我們的結果指出TERRA在生物體內會去調控全基因的染色質修飾和異染色質的狀態。 | zh_TW |
| dc.description.abstract | In mammalian cells, not only proteins bind to chromatin to regulate the gene expression but also do RNAs. Lines of evidence show that long noncoding RNAs, which are not translated to proteins, are involved in epigenetic regulation via interacting with chromatin. Here we study Telomeric Repeat-Containing RNA (TERRA), which is transcribed from subtelomeric regions towards to telomeres. Previous studies have shown that TERRA binds to histone modifiers (e.g., SETDB1, and SETD2), and chromatin remodeler (e.g., ATRX) in vivo. We propose that TERRA may regulate gene expression by modulating the occupancies of several histone-methyl-transferases and ATRX. To test this hypothesis, we performed chromatin immunoprecipitation (ChIP) for ATRX, SETDB1, and SETD2 after TERRA depletion in mouse embryonic stem cells. We found that the occupancies of ATRX and SETDB1 at telomeric DNA increased, whereas the occupancy of SETD2 at telomeric DNA decreased. The enrichments of histone H3K9m3 and H3K27me3 at telomeres also increased after TERRA depletion. ATRX ChIP-seq analysis shows that TERRA depletion alters ATRX occupancy not only at telomeric DNA but also at intergenic regions. Surprisingly, TERRA depletion leads to an increase of ATRX enrichment at rDNA locus and several repetitive sequences such as satellite repeats, implying that TERRA evicts ATRX from binding to repetitive DNA. Moreover, ATRX enrichment also increased on transcriptional start sites (TSS) with SETD2 where H3K27me3 was depleted. The results suggest that ATRX on TSS and intergenic regions may have different regulation in heterochromatin. Finally, our results support that TERRA regulates the chromatin modifications and heterochromatin status in a genome-wide manner. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:04:16Z (GMT). No. of bitstreams: 1 ntu-108-R06b43024-1.pdf: 6359314 bytes, checksum: 9acd8d203613606db2ca04dd0fea7493 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 3
中文摘要 4 Abstract 5 Figure list 7 Table list 14 Chapter1: Introduction 15 1-1 Telomere biology 15 1-2 TERRA (Telemetric repeat-containing RNAs) 15 1-3Epigenetic regulation 16 1-4 HMTs (Histone methyl transferase) 17 1-5 ATRX (ATP-dependent helicase ATRX) 18 Chapter2: Materials and Methods 19 2-1 Embryonic stem cell culture 19 2-2 Preparing mESCs for ChIP (cross-linking) 19 2-3 ChIP (Chromatin immunoprecipitation) 19 2-4 DNA extraction 22 2-5 ChIP library preparation 22 2-6 ChIP-seq analysis 24 2-7 ChIP and FISH-TERRA knockdown 27 2-8 Quantitative RT-PCR 28 2-9 Immuno-FISH 29 Chapter3: Result 31 Chapter4: Discussion 111 Chapter5: Supplementary data 130 Chapter6: Reference 144 Abbreviations 148 | - |
| dc.language.iso | en | - |
| dc.subject | ATRX | zh_TW |
| dc.subject | 表觀遺傳學 | zh_TW |
| dc.subject | 端粒 | zh_TW |
| dc.subject | Histone modification | zh_TW |
| dc.subject | TERRA | zh_TW |
| dc.subject | rDNA | zh_TW |
| dc.subject | telomere | en |
| dc.subject | epigenetic | en |
| dc.subject | ATRX | en |
| dc.subject | rDNA | en |
| dc.subject | TERRA | en |
| dc.subject | Histone modification | en |
| dc.title | 長鏈非編碼RNA—TERRA 在哺乳動物中的表觀遺傳調控 | zh_TW |
| dc.title | A long non-coding RNA--TERRA in epigenetic regulation in mammalian cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王書品;林邵品 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Ping Wang;Shau-Ping Lin | en |
| dc.subject.keyword | 端粒,表觀遺傳學,ATRX,rDNA,TERRA,Histone modification, | zh_TW |
| dc.subject.keyword | telomere,epigenetic,ATRX,rDNA,TERRA,Histone modification, | en |
| dc.relation.page | 152 | - |
| dc.identifier.doi | 10.6342/NTU201903450 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-16 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 6.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
