Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78564
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱雪萍zh_TW
dc.contributor.advisorHsueh-Ping Chuen
dc.contributor.author方國禎zh_TW
dc.contributor.authorKuo-Chen Fangen
dc.date.accessioned2021-07-11T15:04:16Z-
dc.date.available2024-08-19-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citationAndersen, A. A., & Panning, B. (2003). Epigenetic gene regulation by noncoding RNAs. Curr Opin Cell Biol, 15(3), 281-289.
Baumann, C., Viveiros, M. M., & De La Fuente, R. (2010). Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet, 6(9), e1001137. doi:10.1371/journal.pgen.1001137
Cai, J., Chen, J., Zhang, W., Yang, P., Zhang, C., Li, M., . . . Jiang, T. (2015). Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors. Oncotarget, 6(20), 18105-18115. doi:10.18632/oncotarget.3906
Caudron-Herger, M., Pankert, T., & Rippe, K. (2016). Regulation of nucleolus assembly by non-coding RNA polymerase II transcripts. Nucleus, 7(3), 308-318. doi:10.1080/19491034.2016.1190890
Cheung, P., & Lau, P. (2005). Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol, 19(3), 563-573. doi:10.1210/me.2004-0496
Chinaranagari, S., Sharma, P., & Chaudhary, J. (2014). EZH2 dependent H3K27me3 is involved in epigenetic silencing of ID4 in prostate cancer. Oncotarget, 5(16), 7172-7182. doi:10.18632/oncotarget.2262
Chu, H. P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H. G., Wei, C., . . . Lee, J. T. (2017). TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell, 170(1), 86-101 e116. doi:10.1016/j.cell.2017.06.017
Conomos, D., Pickett, H. A., & Reddel, R. R. (2013). Alternative lengthening of telomeres: remodeling the telomere architecture. Front Oncol, 3, 27. doi:10.3389/fonc.2013.00027
Cubiles, M. D., Barroso, S., Vaquero-Sedas, M. I., Enguix, A., Aguilera, A., & Vega-Palas, M. A. (2018). Epigenetic features of human telomeres. Nucleic Acids Res, 46(5), 2347-2355. doi:10.1093/nar/gky006
Cusanelli, E., & Chartrand, P. (2015). Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet, 6, 143. doi:10.3389/fgene.2015.00143
Deng, Z., Wang, Z., Xiang, C., Molczan, A., Baubet, V., Conejo-Garcia, J., . . . Dahmane, N. (2012). Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. J Cell Sci, 125(Pt 18), 4383-4394. doi:10.1242/jcs.108118
Dhayalan, A., Tamas, R., Bock, I., Tattermusch, A., Dimitrova, E., Kudithipudi, S., . . . Jeltsch, A. (2011). The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum Mol Genet, 20(11), 2195-2203. doi:10.1093/hmg/ddr107
Duan, Z., Person, R. E., Lee, H. H., Huang, S., Donadieu, J., Badolato, R., . . . Horwitz, M. S. (2007). Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting tumor suppressor PRDM5. Mol Cell Biol, 27(19), 6889-6902. doi:10.1128/MCB.00762-07
Dupont, C., Armant, D. R., & Brenner, C. A. (2009). Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med, 27(5), 351-357. doi:10.1055/s-0029-1237423
Galazka, J. M., Klocko, A. D., Uesaka, M., Honda, S., Selker, E. U., & Freitag, M. (2016). Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Res, 26(8), 1069-1080. doi:10.1101/gr.203182.115
Graf, M., Bonetti, D., Lockhart, A., Serhal, K., Kellner, V., Maicher, A., . . . Luke, B. (2017). Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell, 170(1), 72-85 e14. doi:10.1016/j.cell.2017.06.006
Greider, C. W. (1996). Telomere length regulation. Annu Rev Biochem, 65, 337-365. doi:10.1146/annurev.bi.65.070196.002005
Guenatri, M., Bailly, D., Maison, C., & Almouzni, G. (2004). Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol, 166(4), 493-505. doi:10.1083/jcb.200403109
Hanly, D. J., Esteller, M., & Berdasco, M. (2018). Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci, 373(1748). doi:10.1098/rstb.2017.0074
Hendrich, B. D., & Willard, H. F. (1995). Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. Hum Mol Genet, 4 Spec No, 1765-1777. doi:10.1093/hmg/4.suppl_1.1765
Huang, Y., Gu, L., & Li, G. M. (2018). H3K36me3-mediated mismatch repair preferentially protects actively transcribed genes from mutation. J Biol Chem, 293(20), 7811-7823. doi:10.1074/jbc.RA118.002839
Jurak, I., Silverstein, L. B., Sharma, M., & Coen, D. M. (2012). Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol, 86(18), 10093-10102. doi:10.1128/JVI.00930-12
Karimi, M. M., Goyal, P., Maksakova, I. A., Bilenky, M., Leung, D., Tang, J. X., . . . Lorincz, M. C. (2011). DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell, 8(6), 676-687. doi:10.1016/j.stem.2011.04.004
Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C., & Allis, C. D. (2010). Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A, 107(32), 14075-14080. doi:10.1073/pnas.1008850107
Luke, B., & Lingner, J. (2009). TERRA: telomeric repeat-containing RNA. EMBO J, 28(17), 2503-2510. doi:10.1038/emboj.2009.166
Maksakova, I. A., Goyal, P., Bullwinkel, J., Brown, J. P., Bilenky, M., Mager, D. L., . . . Lorincz, M. C. (2011). H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics Chromatin, 4(1), 12. doi:10.1186/1756-8935-4-12
Montero, J. J., Lopez-Silanes, I., Megias, D., M, F. F., Castells-Garcia, A., & Blasco, M. A. (2018). TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun, 9(1), 1548. doi:10.1038/s41467-018-03916-3
Pfister, S. X., Ahrabi, S., Zalmas, L. P., Sarkar, S., Aymard, F., Bachrati, C. Z., . . . Humphrey, T. C. (2014). SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep, 7(6), 2006-2018. doi:10.1016/j.celrep.2014.05.026
Pogribny, I. P., Ross, S. A., Tryndyak, V. P., Pogribna, M., Poirier, L. A., & Karpinets, T. V. (2006). Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis, 27(6), 1180-1186. doi:10.1093/carcin/bgi364
Ratnakumar, K., & Bernstein, E. (2013). ATRX: the case of a peculiar chromatin remodeler. Epigenetics, 8(1), 3-9. doi:10.4161/epi.23271
Rice, J. C., & Allis, C. D. (2001). Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol, 13(3), 263-273.
Rosenfeld, J. A., Xuan, Z., & DeSalle, R. (2009). Investigating repetitively matching short sequencing reads: the enigmatic nature of H3K9me3. Epigenetics, 4(7), 476-486. doi:10.4161/epi.4.7.9809
Sarma, K., Cifuentes-Rojas, C., Ergun, A., Del Rosario, A., Jeon, Y., White, F., . . . Lee, J. T. (2014). ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell, 159(4), 869-883. doi:10.1016/j.cell.2014.10.019
Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18-20.
Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6), 904-914. doi:10.1016/j.molcel.2011.08.018
Zhang, X., Mar, V., Zhou, W., Harrington, L., & Robinson, M. O. (1999). Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev, 13(18), 2388-2399. doi:10.1101/gad.13.18.2388
Zhang, Y., & Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 15(18), 2343-2360. doi:10.1101/gad.927301
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78564-
dc.description.abstract在哺乳動物中,不僅僅只有蛋白質會與染色質結合去調控基因表現,RNA也會參與其中去調控。先前的研究指出,長鏈非編碼RNA(未轉譯成蛋白質去表現基因的RNA)通過與染色質相互作用來參與表觀遺傳的調控。在這裡,我們研究含有端粒重複序列的RNA(TERRA),其從亞端粒區轉錄到端粒位置。先前的研究指出,TERRA與組蛋白修飾(例如EZH2,SETDB1和SETD2),染色質重塑物(例如ATRX)在生物體內與之進行結合並藉以此調控基因表現。我們通過TERRA可能會去調控組蛋白中(H3K9me3和H3K27me3)的甲基轉移酶,與ATRX在基因體的佔據量來調控基因表現。為了驗證這一假設,我們在小鼠胚胎幹細胞中進行TERRA去除 (Knockdown)的實驗,並對ATRX,,SETDB1和SETD2進行了染色質免疫沉澱(ChIP)的試驗。我們發現ATRX和SETDB1在端粒DNA上的佔據量顯著增加,而SETD2在端粒DNA上的佔據量卻是減少,。此外在TERRA knockdown後,組蛋白H3K9m3和H3K27me3在端粒處的佔據量也隨之增加。 ATRX ChIP-seq分析顯示TERRA knockdown不僅改變了ATRX佔據端粒DNA的量,也改變了在其他基因的佔據量。令人驚訝的是,TERRA knockdown導致rDNA基因和其他重複序列的ATRX富集增加,這意味著TERRA會影響ATRX 與重複DNA的結合。除此之外ATRX在基因的轉錄起始位置有與SETD2富集的現象,並與H3K27me3佔據位點相斥。這可能意味著ATRX對於異染色質與基因間區段有不同方式的調控。最後我們的結果指出TERRA在生物體內會去調控全基因的染色質修飾和異染色質的狀態。zh_TW
dc.description.abstractIn mammalian cells, not only proteins bind to chromatin to regulate the gene expression but also do RNAs. Lines of evidence show that long noncoding RNAs, which are not translated to proteins, are involved in epigenetic regulation via interacting with chromatin. Here we study Telomeric Repeat-Containing RNA (TERRA), which is transcribed from subtelomeric regions towards to telomeres. Previous studies have shown that TERRA binds to histone modifiers (e.g., SETDB1, and SETD2), and chromatin remodeler (e.g., ATRX) in vivo. We propose that TERRA may regulate gene expression by modulating the occupancies of several histone-methyl-transferases and ATRX. To test this hypothesis, we performed chromatin immunoprecipitation (ChIP) for ATRX, SETDB1, and SETD2 after TERRA depletion in mouse embryonic stem cells. We found that the occupancies of ATRX and SETDB1 at telomeric DNA increased, whereas the occupancy of SETD2 at telomeric DNA decreased. The enrichments of histone H3K9m3 and H3K27me3 at telomeres also increased after TERRA depletion. ATRX ChIP-seq analysis shows that TERRA depletion alters ATRX occupancy not only at telomeric DNA but also at intergenic regions. Surprisingly, TERRA depletion leads to an increase of ATRX enrichment at rDNA locus and several repetitive sequences such as satellite repeats, implying that TERRA evicts ATRX from binding to repetitive DNA. Moreover, ATRX enrichment also increased on transcriptional start sites (TSS) with SETD2 where H3K27me3 was depleted. The results suggest that ATRX on TSS and intergenic regions may have different regulation in heterochromatin. Finally, our results support that TERRA regulates the chromatin modifications and heterochromatin status in a genome-wide manner.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:04:16Z (GMT). No. of bitstreams: 1
ntu-108-R06b43024-1.pdf: 6359314 bytes, checksum: 9acd8d203613606db2ca04dd0fea7493 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 3
中文摘要 4
Abstract 5
Figure list 7
Table list 14
Chapter1: Introduction 15
1-1 Telomere biology 15
1-2 TERRA (Telemetric repeat-containing RNAs) 15
1-3Epigenetic regulation 16
1-4 HMTs (Histone methyl transferase) 17
1-5 ATRX (ATP-dependent helicase ATRX) 18
Chapter2: Materials and Methods 19
2-1 Embryonic stem cell culture 19
2-2 Preparing mESCs for ChIP (cross-linking) 19
2-3 ChIP (Chromatin immunoprecipitation) 19
2-4 DNA extraction 22
2-5 ChIP library preparation 22
2-6 ChIP-seq analysis 24
2-7 ChIP and FISH-TERRA knockdown 27
2-8 Quantitative RT-PCR 28
2-9 Immuno-FISH 29
Chapter3: Result 31
Chapter4: Discussion 111
Chapter5: Supplementary data 130
Chapter6: Reference 144
Abbreviations 148
-
dc.language.isoen-
dc.subjectATRXzh_TW
dc.subject表觀遺傳學zh_TW
dc.subject端粒zh_TW
dc.subjectHistone modificationzh_TW
dc.subjectTERRAzh_TW
dc.subjectrDNAzh_TW
dc.subjecttelomereen
dc.subjectepigeneticen
dc.subjectATRXen
dc.subjectrDNAen
dc.subjectTERRAen
dc.subjectHistone modificationen
dc.title長鏈非編碼RNA—TERRA 在哺乳動物中的表觀遺傳調控zh_TW
dc.titleA long non-coding RNA--TERRA in epigenetic regulation in mammalian cellsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王書品;林邵品zh_TW
dc.contributor.oralexamcommitteeShu-Ping Wang;Shau-Ping Linen
dc.subject.keyword端粒,表觀遺傳學,ATRX,rDNA,TERRA,Histone modification,zh_TW
dc.subject.keywordtelomere,epigenetic,ATRX,rDNA,TERRA,Histone modification,en
dc.relation.page152-
dc.identifier.doi10.6342/NTU201903450-
dc.rights.note未授權-
dc.date.accepted2019-08-16-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
dc.date.embargo-lift2024-08-26-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
6.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved