Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78556
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝松蒼(SUNG-TSANG HSIEH)
dc.contributor.authorYI-HUI KAOen
dc.contributor.author高伊慧zh_TW
dc.date.accessioned2021-07-11T15:03:48Z-
dc.date.available2024-08-29
dc.date.copyright2019-08-29
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citationAbinaya, M., Prabhakaran, S., & Jaisankar, N. (2014). Photoplethysmography On Smart Phone Using Savitzky-Golay Filter. International Journal of Scientific & Engineering Research, 5(6).
Akar, S. A., Kara, S., Latifoğlu, F., & Bilgiç, V. (2013). Spectral analysis of photoplethysmographic signals: The importance of preprocessing. Biomedical Signal Processing and Control, 8(1), 16-22.
Chang, Y.-W., Hsiu, H., Yang, S.-H., Fang, W.-H., & Tsai, H.-C. (2016). Characteristics of beat-to-beat photoplethysmography waveform indexes in subjects with metabolic syndrome. Microvascular research, 106, 80-87. doi: https://doi.org/10.1016/j.mvr.2016.04.001
Chao, C. C., Huang, C. M., Chiang, H. H., Luo, K. R., Kan, H. W., Yang, N. C. C., . . . Lee, M. J. (2015). Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Annals of neurology, 78(2), 272-283.
Chazal, P. d., Heneghan, C., Sheridan, E., Reilly, R., Nolan, P., & Malley, M. O. (2003). Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea. IEEE Transactions on Biomedical Engineering, 50(6), 686-696. doi: 10.1109/TBME.2003.812203
Du, Y., & Stephanus, A. (2018, 13-17 April 2018). The feasibility study of photoplethysmography features for arteriovenous fistula stenosis detection in hemodialysis patients with statistical approach. Paper presented at the 2018 IEEE International Conference on Applied System Invention (ICASI).
Elgendi, M., Norton, I., Brearley, M., Abbott, D., & Schuurmans, D. (2014). Detection of a and b waves in the acceleration photoplethysmogram. Biomedical engineering online, 13(1), 139.
Kano, Y., Yoshizawa, M., Sugita, N., Abe, M., Homma, N., Tanaka, A., . . . Yambe, T. (2014, 26-30 Aug. 2014). Discrimination ability and reproducibility of a new index reflecting autonomic nervous function based on pulsatile amplitude of photoplethysmography. Paper presented at the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Lee, H.-K., Heo, I., Yang, S., & Lee, K.-J. (2014). Discrete wavelet transform-based method for automatic evaluation of sleep-disordered breathing using photoplethysmography. Paper presented at the 2014 5th International Conference on Intelligent Systems, Modelling and Simulation.
Lee, H.-W., Lee, J.-W., Jung, W.-G., & Lee, G.-K. (2007). The periodic moving average filter for removing motion artifacts from PPG signals. International Journal of Control, Automation, and Systems, 5(6), 701-706.
Lin, W., Wang, H., Samuel, O. W., & Li, G. (2017, 11-15 July 2017). Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation. Paper presented at the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
Moreno, S., Quintero-Parra, A., Ochoa-Pertuz, C., Villarreal, R., & Kuzmar, I. (2018). A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography.
Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi: 10.1109/TBME.1985.325532
Sahoo, A., Manimegalai, P., & Thanushkodi, K. (2011). Wavelet based pulse rate and Blood pressure estimation system from ECG and PPG signals. Paper presented at the 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET).
Shahani, B. T., Day, T. J., Cros, M., Khalil, N., & Kneebone, C. S. (1990). of Autonomic Function in Peripheral Neuropathy. Arch Neurol, 47, 659-664.
Smith, R. P., Argod, J., Pépin, J.-L., & Lévy, P. A. (1999). Pulse transit time: an appraisal of potential clinical applications. Thorax, 54(5), 452-457.
Stålberg, E. V., & Nogués, M. A. (1989). Automatic analysis of heart rate variation: I. Method and reference values in healthy controls. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 12(12), 993-1000.
Wu, B.-F., Huang, P.-W., Tsou, T.-Y., Lin, T.-M., & Chung, M.-L. (2017). Camera-based heart rate measurement using continuous wavelet transform. Paper presented at the 2017 International Conference on System Science and Engineering (ICSSE).
Yadav, U., Abbas, S. N., & Hatzinakos, D. (2018). Evaluation of PPG biometrics for authentication in different states. Paper presented at the 2018 International Conference on Biometrics (ICB).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78556-
dc.description.abstract研究背景
R-R間隔心律變異性 (R-R interval variation, RRIV)是最常用來測試心臟自主神經功能的檢查,它可以很可靠且準確地由心電圖electrocardiogram (ECG)的R波與R波之間的間隔推算得到。光體積變化描記圖Photoplethysmography (PPG)是一種可以由皮膚測得血氧飽和度的非侵入性檢測工具,一般而言,需要較長的檢查時間(5分鐘以上),PPG測得的心跳結果才能和心電圖測得的結果接近,本研究的目的在經由訊號分析的方式改善PPG與ECG的一致性,進而發展一套簡單且非侵入性的自主神經功能篩檢工具。
研究設計
本研究招募20到69歲的成年人,收集他們同步的心電圖與光體積變化描記圖的結果。我們使用Pan-Tompkins演算法來分析心電圖中R波的訊號,使用三大類共十種濾波器來分析光體積變化描記圖當中心輸出波峰(systolic peak)的訊號, 第一類濾波器是數位濾波器-IIR無限脈衝響應,包括巴特沃斯(Butterworth)濾波器、貝賽爾(Bessel)濾波器、切比雪夫(Chebyshev)濾波器與橢圓(Elliptic) 濾波器;第二類是數位濾波器-FIR有限脈衝響應包括週期均值濾波法、移動均值濾波器與平滑演算法Savitzky–Golay;第三類是小波轉換包括連續小波轉換(continuous wavelet transform)、離散小波 Coiflet 3與離散小波 多貝西 (Daubechies 6) 以上總共十種各具特色的濾波器。
結果
本研究從2018年七月到2019年五月份總共檢測251名受試者,當中有7位受試者被排除,排除率是2.78%。在納入分析的244位受試者當中共有73(29.9%)位心臟自律神經功能異常,平均年齡是55.18±10.74。在三大類的濾波器當中IIR無限脈衝響應這組的表現最優異,其次是小波轉換,最後是有限脈衝響應。無限脈衝響應這組的四種濾波器表現在伯仲之間,當中,休息時以巴特沃斯(Butterworth)濾波器(0.51)、貝賽爾(Bessel)濾波器(0.51)絕對誤差最小,深呼吸時以切比雪夫(Chebyshev)濾波器(0.56)與橢圓(Elliptic) 濾波器(0.56)絕對誤差最小。巴特沃斯濾波器的接收者操作特征曲線(ROC curve)其曲線下方的面積高達0.982,顯示此濾波器擁有極佳的鑑別力。
結論
本研究顯示使用光體積變化描記圖的穿戴式裝置是個擁有高度潛力成為篩檢心臟自主神經功能異常的工具,無限脈衝響應這類型的濾波器能夠達到極優的敏感性同時兼顧特異性,未來還需要實際應用到社區作大量篩檢的研究來驗證這項工具的可信度。
zh_TW
dc.description.abstractBackground and aim:
The most widely used examination to test cardiac vagal tone is the R-R interval variation (RRIV) at rest and during deep breathing. RRIV can be reliably derived from electrocardiogram (ECG) data. Photoplethysmography (PPG) is a non-invasive method to record blood saturation from the skin. With PPG, pulse rate variation correlates with heart rate variation for longer periods of measurement. With the analyzed results from the study, we hope to construct a non-invasive and simple tool for the clinic diagnosis and screening of autonomic neuropathy.
Design:
We collected synchronize ECG and PPG signal from subjects between 20-69 years old. Pan-Tompkins algorithm was used for analyzing ECG signal. Ten filters, which fall into three main categories including infinite impulse response (IIR), finite impulse response (FIR), and wavelet transform (WT), were chosen to process the PPG signals. For the IIR filters, ButterWorth, Bessel, Chebyshev, and Elliptic filters were selected, and for the FIR filters, Savitzky–Golay, Average, and Period average filter included. Since WT includes discrete wavelet transform (DWT) and continuous wavelet transform (CWT), the selected WT filtering mechanisms with different mother wavelets like Daubechies and Coiflet were considered in this study.
Results:
From Jul. 2018 to May. 2019, a total number of 251 patients were included. 7 (2.78%) patients were excluded. Among 244 subjects, 73(29.9%) had abnormal cardiac autonomic function. The mean age was 55.18±10.74. Among three categories of filters, IIR filters had the best results followed by FIR and WT. Among IIR filters, Butter-Worth and Bassel filter had minima error (0.51%) at rest compared SSIV with RRIV. The error during deep breathing was almost the same between 4 IIR filters as following Butter-Worth 0.57%, Bassel 0.60%, Cheby1 0.56% and Ellip 0.56%. The AUC of ROC for Butter-Worth filter is 0.982 and the discrimination was outstanding.
Conclusion:
SSIV using PPG is a potential surrogate tool for massive screening of cardiac autonomic dysfunction. The Sensitivity and Specificity by IIR filters are outstanding discrimination and adequate for screening tool. Further studies to verify this tool in the community are expecting.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:03:48Z (GMT). No. of bitstreams: 1
ntu-108-P06421019-1.pdf: 5494477 bytes, checksum: 8127dc3ce0f9e5cbb8d228b7683cdc76 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 ix
Chapter 1 緒論(Introduction) 1
1.1 研究背景 1
1.2 相關研究 2
1.3 研究動機及目的 3
Chapter 2 研究方法與材料 5
2.1 受測者 5
2.2 試驗步驟(Protocol) 5
2.3 研究環境與儀器(Instrumentation) 6
2.4 訊號特徵定義(Description of Signals and Features) 7
2.5 Signal Processing訊號處理 8
2.5.1 訊號前處理(Preprocessing) 8
2.5.2 特徵搜尋 10
2.5.3 訊號分割與特徵計算 11
2.5.4 相關係數分析 13
Chapter 3 結果 15
3.1 收案人數 15
3.2 RRIV及SSIV誤差結果比較 15
3.3 RRIV及SSIV相關性分析 16
3.4 基於SSIV之篩檢工具評估 16
Chapter 4 討論 19
4.1 誤差及相關性討論 19
4.2 敏感度與特異度 20
Chapter 5 結論與展望 22
5.1 結論 22
5.2 Summary 23
參考文獻 24
Chapter 6 圖表 26
6.1 圖附錄 26
6.2 表附錄 34
dc.language.isozh-TW
dc.subject小波轉換zh_TW
dc.subject自主神經系統zh_TW
dc.subject心電圖zh_TW
dc.subject光體積變化描記圖zh_TW
dc.subject無限脈衝響應zh_TW
dc.subjectR-R間隔心律變異性zh_TW
dc.subject有限脈衝響應zh_TW
dc.subjectR-R interval variation (RRIV)en
dc.subjectFinite impulse response (FIR)en
dc.subjectInfinite impulse response (IIR)en
dc.subjectSystolic peak to systolic peak intervals (SSIs)en
dc.subjectPhotoplethysmogram (PPG)en
dc.subjectelectrocardiogram (ECG)en
dc.subjectWavelet transform (WT)en
dc.subjectAutonomic nervous system (ANS)en
dc.title光體積變化描記圖之訊號處理方法比較與其應用於自主神經異常之篩檢工具設計zh_TW
dc.titleComparison of Photoplethysmography signal processing methods and Design of a screening tool for autonomic dysfunctionen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江伯倫(Bor-Luen Chiang),趙啟超(CHI-CHAO CHAO),江明彰(Ming-Chang Chiang)
dc.subject.keyword自主神經系統,R-R間隔心律變異性,心電圖,光體積變化描記圖,無限脈衝響應,有限脈衝響應,小波轉換,zh_TW
dc.subject.keywordAutonomic nervous system (ANS),R-R interval variation (RRIV),electrocardiogram (ECG),Photoplethysmogram (PPG),Systolic peak to systolic peak intervals (SSIs),Infinite impulse response (IIR),Finite impulse response (FIR),Wavelet transform (WT),en
dc.relation.page39
dc.identifier.doi10.6342/NTU201903868
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
dc.date.embargo-lift2024-08-29-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-P06421019-1.pdf
  未授權公開取用
5.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved