Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78554
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 王繼娟 | |
dc.contributor.author | Chi-Hao Shao | en |
dc.contributor.author | 邵祺皓 | zh_TW |
dc.date.accessioned | 2021-07-11T15:03:40Z | - |
dc.date.available | 2021-08-29 | |
dc.date.copyright | 2019-08-29 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-16 | |
dc.identifier.citation | 1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2016. Critical Care Medicine. 2017;45(3):486-552.
2. Kalil AC, Bartlett JG, Carratalà J, et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clinical Infectious Diseases. 2016;63(5):e61-e111. 3. Mullins BP, Kramer CJ, Bartel BJ, Catlin JS, Gilder RE. Comparison of the Nephrotoxicity of Vancomycin in Combination With Cefepime, Meropenem, or Piperacillin/Tazobactam: A Prospective, Multicenter Study. The Annals of Pharmacotherapy. 2018;52(7):639-644. 4. Rutter WC, Cox JN, Martin CA, Burgess DR, Burgess DS. Nephrotoxicity during Vancomycin Therapy in Combination with Piperacillin-Tazobactam or Cefepime. Antimicrobial Agents and Chemotherapy. 2017;61(2). 5. Navalkele B, Pogue JM, Karino S, et al. Risk of Acute Kidney Injury in Patients on Concomitant Vancomycin and Piperacillin-Tazobactam Compared to Those on Vancomycin and Cefepime. Clinical Infectious Diseases 2017;64(2):116-123. 6. Gomes DM, Smotherman C, Birch A, et al. Comparison of acute kidney injury during treatment with vancomycin in combination with piperacillin-tazobactam or cefepime. Pharmacotherapy. 2014;34(7):662-669. 7. Pill MW, O'Neill CV, Chapman MM, Singh AK. Suspected acute interstitial nephritis induced by piperacillin-tazobactam. Pharmacotherapy. 1997;17(1):166-169. 8. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. European Journal of Clinical Pharmacology. 2012;68(9):1243-1255. 9. Campoli-Richards DM, Brogden RN, Faulds D. Teicoplanin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1990;40(3):449-486. 10. Hertzberg D, Rydén L, Pickering JW, Sartipy U, Holzmann MJ. Acute kidney injury-an overview of diagnostic methods and clinical management. Clinical Kidney Journal. 2017;10(3):323-331. 11. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. The Lancet. 2012;380(9843):756-766. 12. Moore PK, Hsu RK, Liu KD. Management of Acute Kidney Injury: Core Curriculum 2018. American Journal of Kidney Diseases. 2018;72(1):136-148. 13. Grams ME, Sang Y, Coresh J, et al. Acute Kidney Injury After Major Surgery: A Retrospective Analysis of Veterans Health Administration Data. American Journal of Kidney Diseases. 2016;67(6):872-880. 14. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical Care. 2004;8(4):R204-212. 15. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Critical Care. 2007;11(2):R31. 16. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Critical Care. 2013;17(1):204. 17. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. European Journal of Clinical Pharmacology. 2012;68(9):1243-1255. 18. Moellering RC, Jr. Vancomycin: a 50-year reassessment. Clinical Infectious Diseases. 2006;42 Suppl 1:S3-4. 19. Farber BF, Moellering RC, Jr. Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrobial Agents and Chemotherapy. 1983;23(1):138-141. 20. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Archives of Internal Medicine. 2006;166(19):2138-2144. 21. Minejima E, Choi J, Beringer P, Lou M, Tse E, Wong-Beringer A. Applying New Diagnostic Criteria for Acute Kidney Injury To Facilitate Early Identification of Nephrotoxicity in Vancomycin-Treated Patients. Antimicrobial Agents and Chemotherapy. 2011;55(7):3278-3283. 22. Psevdos G, Jr., Gonzalez E, Sharp V. Acute renal failure in patients with AIDS on tenofovir while receiving prolonged vancomycin course for osteomyelitis. The AIDS Reader. 2009;19(6):245-248. 23. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clinical Infectious Diseases. 2009;49(4):507-514. 24. Bosso JA, Nappi J, Rudisill C, et al. Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrobial Agents and Chemotherapy. 2011;55(12):5475-5479. 25. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Archives of Internal Medicine. 2006;166(19):2138-2144. 26. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrobial Agents and Chemotherapy. 2008;52(4):1330-1336. 27. Hanrahan TP, Harlow G, Hutchinson J, et al. Vancomycin-associated nephrotoxicity in the critically ill: a retrospective multivariate regression analysis*. Critical Care Medicine. 2014;42(12):2527-2536. 28. Hutschala D, Kinstner C, Skhirdladze K, Thalhammer F, Muller M, Tschernko E. Influence of vancomycin on renal function in critically ill patients after cardiac surgery: continuous versus intermittent infusion. Anesthesiology. 2009;111(2):356-365. 29. Vuagnat A, Stern R, Lotthe A, et al. High dose vancomycin for osteomyelitis: continuous vs. intermittent infusion. Journal of Clinical Pharmacy and Therapeutics. 2004;29(4):351-357. 30. Hao JJ, Chen H, Zhou JX. Continuous versus intermittent infusion of vancomycin in adult patients: A systematic review and meta-analysis. International Journal of Antimicrobial Agents. 2016;47(1):28-35. 31. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy. 2012;67(1):17-24. 32. Meaney CJ, Hynicka LM, Tsoukleris MG. Vancomycin-associated nephrotoxicity in adult medicine patients: incidence, outcomes, and risk factors. Pharmacotherapy. 2014;34(7):653-661. 33. ZOSYN [pakage insert]. Phiiladelphia, PA: Pfizer. 1993. 34. Kraleti S, Khatri N, Jarrett D. Piperacillin-Tazobactam Induced Interstitial Nephritis, Hepatitis and Serum Sckness-Like Illness. Journal of the Arkansas Medical Society. 2016;112(14):278-280. 35. Pratt JA, Stricherz MK, Verghese PS, Burke MJ. Suspected piperacillin-tazobactam induced nephrotoxicity in the pediatric oncology population. Pediatric Blood & Cancer. 2014;61(2):366-368. 36. Liu TJ, Lam JP. Piperacillin-tazobactam-induced acute interstitial nephritis with possible meropenem cross-sensitivity in a patient with osteomyelitis. American Journal of Health-System Pharmacy. 2012;69(13):1109. 37. Michel DM, Kelly CJ. Acute interstitial nephritis. Journal of the American Society of Nephrology. 1998;9(3):506-515. 38. Karino F, Nishimura N, Ishihara N, et al. Nephrotoxicity induced by piperacillin-tazobactam in late elderly Japanese patients with nursing and healthcare associated pneumonia. Biological & Pharmaceutical Bulletin. 2014;37(12):1971-1976. 39. Jensen J-US HL, Lundgren B, et al. Kidney failure related to broad-spectrum antibiotics in critically ill patients secondary end point results from a 1200 patient randomized trial. British Medical Journal Open. 2012. 40. Rutter WC, Burgess DR, Talbert JC, Burgess DS. Acute kidney injury in patients treated with vancomycin and piperacillin-tazobactam: A retrospective cohort analysis. Journal of Hospital Medicine. 2017;12(2):77-82. 41. Lorenz MA, Moenster RP, Linneman TW. Effect of piperacillin/tazobactam restriction on usage and rates of acute renal failure. Journal of Medical Microbiology. 2016;65(2):195-199. 42. Kim T, Kandiah S, Patel M, et al. Risk factors for kidney injury during vancomycin and piperacillin/tazobactam administration, including increased odds of injury with combination therapy. BMC Research Notes. 2015;8:579. 43. Burgess LD, Drew RH. Comparison of the incidence of vancomycin-induced nephrotoxicity in hospitalized patients with and without concomitant piperacillin-tazobactam. Pharmacotherapy. 2014;34(7):670-676. 44. Petite SE, Bauer SR, Bollinger JE, Ahrens CL, Harinstein LM. Antimicrobial Monotherapy versus Combination Therapy for the Treatment of Complicated Intra-Abdominal Infections. Pharmacotherapy. 2016;36(11):1138-1144. 45. Peyko V, Smalley S, Cohen H. Prospective Comparison of Acute Kidney Injury During Treatment With the Combination of Piperacillin-Tazobactam and Vancomycin Versus the Combination of Cefepime or Meropenem and Vancomycin. Journal of Pharmacy Practice. 2017;30(2):209-213. 46. Jeon N, Staley B, Klinker KP, Hincapie Castillo J, Winterstein AG. Acute kidney injury risk associated with piperacillin/tazobactam compared with cefepime during vancomycin therapy in hospitalised patients: a cohort study stratified by baseline kidney function. International Journal of Antimicrobial Agents. 2017;50(1):63-67. 47. Hammond DA, Smith MN, Painter JT, Meena NK, Lusardi K. Comparative Incidence of Acute Kidney Injury in Critically Ill Patients Receiving Vancomycin with Concomitant Piperacillin-Tazobactam or Cefepime: A Retrospective Cohort Study. Pharmacotherapy. 2016;36(5):463-471. 48. Robertson AD, Li C, Hammond DA, Dickey TA. Incidence of Acute Kidney Injury Among Patients Receiving the Combination of Vancomycin with Piperacillin-Tazobactam or Meropenem. Pharmacotherapy. 2018;38(12):1184-1193. 49. Shen WC, Chiang YC, Chen HY, et al. Nephrotoxicity of vancomycin in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Nephrology. 2011;16(8):697-703. 50. Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrobial Agents and Chemotherapy. 2009;53(10):4069-4079. 51. Ueda T, Takesue Y, Nakajima K, et al. Enhanced loading regimen of teicoplanin is necessary to achieve therapeutic pharmacokinetics levels for the improvement of clinical outcomes in patients with renal dysfunction. European Journal of Clinical Microbiology & Infectious Diseases. 2016;35(9):1501-1509. 52. Kato H, Hamada Y, Hagihara M, et al. Retrospective study of teicoplanin loading regimen that rapidly achieves target 15-30 mug/mL serum trough concentration. Journal of Infection and Chemotherapy. 2016;22(5):308-313. 53. Frye RF, Job ML, Dretler RH, Rosenbaum BJ. Teicoplanin nephrotoxicity: first case report. Pharmacotherapy. 1992;12(3):240-242. 54. Yoshida M, Matzno S, Namba H, Nishikata M, Matsuyama K. Statistical analysis of the adverse effects of glycopeptide antibiotics, based on pharmacokinetics and toxicokinetics (PK/TK). Journal of Infection and Chemotherapy. 2006;12(3):114-118. 55. Marre R, Schulz E, Graefe H, Sack K. Teicoplanin: renal tolerance and pharmacokinetics in rats. Journal of Antimicrobial Chemotherapy. 1987;20(5):697-704. 56. Ebrahimpour S, Mohammadi M, Gholami K. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) with Teicoplanin: A Case Report. Drug Safety - Case Reports. 2017;4(1):1. 57. Kwon HS, Chang YS, Jeong YY, et al. A case of hypersensitivity syndrome to both vancomycin and teicoplanin. Journal of Korean Medical Science. 2006;21(6):1108-1110. 58. Asero R. Teicoplanin-induced anaphylaxis. Allergy. 2006;61(11):1370. 59. Unal S, Ikizoglu G, Demirkan F, Kaya TI. Teicoplanin-induced skin eruption. International Journal of Dermatology. 2002;41(12):948-949. 60. Product Information: Targocid injection powder, oral powder, teicoplanin injection powder, oral powder. Sanofi (per EMC), Guildford, United Kingdom, 2014. 61. Meyers BR. Comparative toxicities of third-generation cephalosporins. American Journal of Medicine. 1985;79(2a):96-103. 62. Product Information: CEFOBID(R) intramuscular, intravenous injection, cefoperazone intramuscular, intravenous injection. Roerig, New York, NY, 2006. 63. Product Information: MAXIPIME(R) IV, IM injection, cefepime HCl IV, IM injection. Bristol-Myers Squibb Company, Princeton, NJ, 2009. 64. Mac K, Chavada R, Paull S, Howlin K, Wong J. Cefepime induced acute interstitial nephritis--a case report. BMC nephrology. 2015;16:15. 65. Product Information: PRIMAXIN(R) intravenous injection, imipenem cilastatin intravenous injection. Merck Sharp & Dohme Corp (per FDA), Whitehouse Station, NJ, 2016. 66. Zanetti G, Bally F, Greub G, et al. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrobial Agents and Chemotherapy. 2003;47(11):3442-3447. 67. Product Information: MERREM(R) intravenous injection, meropenem intravenous injection. AstraZeneca Pharmaceuticals LP (per FDA), Wilmington, DE, 2013. 68. Product Information: DORIBAX(R) intravenous injection powder for solution, doripenem intravenous injection powder for solution. Shionogi Inc. (per FDA), Florham Park, NJ, 2015. 69. Chen L-I, Guh J-Y, Wu K-D, et al. Modification of Diet in Renal Disease (MDRD) Study and CKD Epidemiology Collaboration (CKD-EPI) Equations for Taiwanese Adults. Public Library of Science ONE. 2014;9(6):e99645. 70. 朱育增, 吳肖琪. 回顧與探討次級資料適用之共病測量方法. 台灣公共衛生雜誌. 2010;29(1):8-21. 71. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical Care. 2005;43(11):1130-1139. 72. Ferreira F, Bota D, Bross A, Mélot C, Vincent J. Serial evaluation of the sofa score to predict outcome in critically ill patients. JAMA. 2001;286(14):1754-1758. 73. Cavalcanti AB, Goncalves AR, Almeida CS, Bugano DD, Silva E. Teicoplanin versus vancomycin for proven or suspected infection. The Cochrane Database of Systematic Reviews. 2010(6):Cd007022. 74. Bosso JA, Nappi J, Rudisill C, et al. Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrobial Agents and Chemotherapy. 2011;55(12):5475-5479. 75. Wang JT, Liao HI, Wu Lin FL, Chang SC. Loading dose required to achieve rapid therapeutic teicoplanin trough plasma concentration in patients with multidrug-resistant gram-positive infections. Basic & Clinical Pharmacology & Toxicology. 2012;110(5):416-420. 76. Wilson AP. Comparative safety of teicoplanin and vancomycin. International Journal of Antimicrobial Agents. 1998;10(2):143-152. 77. Tobin CM, Lovering AM, Sweeney E, MacGowan AP. Analyses of teicoplanin concentrations from 1994 to 2006 from a UK assay service. Journal of Antimicrobial Chemotherapy. 2010;65(10):2155-2157. 78. Byrne CJ, Roberts JA, McWhinney B, et al. Variability in Trough Total and Unbound Teicoplanin Concentrations and Achievement of Therapeutic Drug Monitoring Targets in Adult Patients with Hematological Malignancy. Antimicrobial Agents and Chemotherapy. 2017;61(6). 79. Product Information: FORTAZ(R) intramuscular, intravenous powder for solution, ceftazidime intramuscular, intravenous powder for solution. GlaxoSmithKline, Research Triangle Park, NC, 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78554 | - |
dc.description.abstract | 引言: 在臨床上,vancomycin (VAN)常常與piperacillin/tazobactam (TZP)一同並用來治療嚴重的感染症。在2011年,有幾篇研究發現VAN和TZP的並用會增加急性腎損傷的風險。此後,越來越多研究也證實此項發現。在台灣,除了VAN外,teicoplanin (TA)也是另外一種常用的醣蛋白類抗生素。雖然TA相較於VAN有較少的腎毒性風險,然而目前臨床上並沒有充足的證據支持當並用TZP時,以TA取代VAN的使用。宗旨: 在並用不同醣蛋白類抗生素和β-內醯胺類抗生素(β-lactam)的病人中,欲比較各組間急性腎損傷的風險,主要分成3個目標研究: 1. TA與TZP並用組和VAN與TZP並用組(也就是: TA+TZP vs. VAN+TZP)。2. TA與TZP並用組和TA與β-lactam並用組(也就是: TA+TZP vs. TA+β-lactam)。3. VAN與TZP並用組和VAN與β-lactam並用組(也就是: VAN+TZP vs. VAN+β-lactam)。本研究所選取的β-lactam為與TZP具有相似抗菌譜範圍的抗生素。方法:本研究為回溯性的世代研究,使用台灣大學醫學院附設醫院的電子健康紀錄資料。病人如果在住院期間有並用任一種醣蛋白類抗生素與TZP或是特定的β-lactam會被納入為本研究的研究對象。之後再分類為4個研究族群,分別為TA與TZP並用組、VAN與TZP並用組、TA與β-lactam並用組和VAN與β-lactam並用組。在每一個研究族群中,並用之二種抗生素須並用至少3天,病人若在並用抗生素前符合以下條件會被排除: 估算腎絲球過濾率小於15 mL/min/1.73m2、使用腎臟替代療法或近期發生急性腎損傷。本研究使用傾向分數匹配的方式來控制潛在的干擾因子,並分別計算3個目標研究中二組間的風險比值。結果: 於第1個目標研究中,共有211組配對病人(TA與TZP並用組和VAN與TZP並用組以1:1的方式配對),TA和VAN劑量的中位數分別為10.3 mg/kg/day和26.7 mg/kg/day。VAN的低谷濃度中位數為12.3 mg/L。TA和TZP並用組和VAN與TZP並用組具有相近的急性腎損傷風險 (12.3% vs. 11.4%; HR=1.23, 95% CI=0.71-2.15, P=0.464)。於第二個目標研究中,共有243組配對病人 (TA與TZP並用組和TA與β-lactam並用組以1:3的方式配對),二組的TA劑量中位數皆為10.7mg/kg/day。TA與TZP並用組和TA與β-lactam並用組也具有相近急性腎損傷風險(14.8% vs. 14.2%; HR=1.26, 95% CI=0.86-1.85, P=0.238)。於第三個目標研究中,共有205組配對病人(VAN與TZP並用組和VAN與β-lactam並用組以1:4的方式配對),二組VAN劑量的中位數約為28.0 mg/kg/day。相較於VAN與β-lactam並用組,VAN與TZP並用組在統計上有顯著的急性腎損傷風險(13.2% vs. 9.6%;HR=1.72, 95% CI=1.10-2.68, P=0.02)。總結:本研究結果並不支持臨床上以TA與TZP的並用來取代VAN與TZP的並用組合;亦無法支持使用TA與β-lactam的並用來取代TA與TZP的並用組合。當考慮到急性腎損傷的風險時,臨床上建議以VAN與其他β-lactam的並用來取代VAN與TZP的並用組合。我們也建議密集的監控血液中的肌酸酐值,當病人同時並用醣蛋白類抗生素以及TZP或是其他β-lactam類抗生素。最後,本研究的病人使用較低劑量的VAN且有較低的VAN 谷底濃度,我們建議更多的相關研究來探討急性腎損傷和TA與TZP並用和VAN與TZP並用的關係,尤其當病人的VAN谷底濃度介於15至20 mg/L之間時。 | zh_TW |
dc.description.abstract | Introduction: Vancomycin (VAN) and piperacillin/tazobactam (TZP) are commonly combined antibiotics used to treat some severe infection. Since 2011, a signal of increased risk of acute kidney injury (AKI) was detected when VAN and TZP were administered concurrently. More evidence came one after another to prove this phenomenon. Besides VAN, teicoplanin (TA) is another glycopeptide widely used in Taiwan. Although TA has less nephrotoxicity than VAN, there is no evidence to support it to replace VAN with TA both in combination with TZP clinically.Aim:To compare the risk of acute kidney injury (AKI) among patients receiving the following glycopeptide and β-lactam combinations: 1) TA plus TZP versus VAN plus TZP (i.e., TA+TZP vs. VAN+TZP), 2) TA plus TZP versus TA plus other β-lactams with similar antibacterial spectrum to TZP (i.e., TA+TZP vs. TA+β-lactam) and 3) VAN plus TZP versus VAN plus β-lactam (i.e., VAN+TZP vs. VAN+β-lactam).Methods: This was a retrospective cohort study using electronic health records from National Taiwan University Hospital (NTUH). Patients were included if a combination of glycopeptide and TZP or other selected β-lactam were used during hospitalization. Four study groups were identified: TA+TZP, VAN+TZP, TA+β-lactam and VAN+β-lactam. In each group, two antibiotics of interest were required to overlap for at least three days. Patients with estimated glomerular filtration rate <15 mL/min/1.73m2, renal replacement therapy, or recent AKI history were excluded. We used propensity score matching to control for potential cofounders, and hazard ratio (HR) of AKI between study groups was calculated.Results:The final sample contained 211 TA+TZP and VAN+TZP pairs (1:1 match). The median dose of TA and VAN was 10.3 and 26.7 mg/kg/day, respectively. The median trough level of VAN was 12.3 mg/L. AKI risk was similar in the TA+TZP group compared to that in the VAN+TZP group (12.3% vs. 11.4%; HR=1.23, 95% confidence interval [CI]=0.71-2.15, P=0.464). For the second comparison, there were 243 TA+TZP and TA+β-lactams pairs (1:3 match). The median dose of TA was both 10.7 mg/kg/day. There was similar AKI risk between the use of TA+TZP and TA+β-lactam (14.8% vs. 14.2%; HR=1.26, 95% CI=0.86-1.85, P=0.238). For the final comparison, there were 205 VAN +TZP and VAN +β-lactams pairs (1:4 match), and the median dose of VAN was both around 28.0 mg/kg/day. There was higher risk of AKI in the VAN+TZP group (13.2% vs. 9.6%; HR=1.72, 95% CI=1.10-2.68, P=0.02).Conclusion:Our study does not support TA+TZP as a good substitute of VAN+TZP when AKI is of concern. Neither is TA combined with TZP and TA with β-lactams. The result of higher AKI risk among patients using VAN+TZP suggests that when combination treatment is needed, VAN and other β-lactam might be abetter choice.We also suggest a close monitoring of serum creatinine when patients use combination of glycopeptide and either TZP or otherβ-lactam. Finally, due to the low VAN dose and trough level in this study, more evidence is required to further evaluate risk of AKI among patients receivingTA+TZP andVAN+TZP, especially when VAN trough is between 15 and 20 mg/L. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:03:40Z (GMT). No. of bitstreams: 1 ntu-108-R07451003-1.pdf: 2481923 bytes, checksum: db0c5cfb17f48bf40fcded3d423bcb96 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES ix LIST OF APPENDIXES x CHAPTER 1: INTRODUCTION 1 CHAPTER 2: LITERATURE REVIEW 2 2.1 Acute kidney injury 2 2.2 Vancomycin-induced nephrotoxicity 3 2.3 Piperacillin/tazobactam-induced nephrotoxicity 4 2.4 Combination therapy of vancomycin and piperacillin/tazobactam 6 2.4.1 Nephrotoxicity related to vancomycin or piperacillin/tazobactam monotherapy 6 2.4.2 Nephrotoxicity related to concomitant use of vancomycin and β-lactam 7 2.5 Other antibiotics 8 2.5.1 Teicoplanin 8 2.5.2 Other β-lactams showing activity against Pseudomonas aeruginosa 9 2.6 Knowledge gap & study objectives 10 CHAPTER 3: METHOD 11 3.1 Data source 11 3.2 Study design and setting 11 3.3 Study population 12 3.3.1 Inclusion criteria 12 3.3.2 Exclusion criteria 12 3.4 Study outcomes 13 3.5 Patient matching 13 3.6 Covariates 14 3.7 Statistical analysis 15 3.8 Subgroup analysis 16 3.9 Sensitivity analysis 16 CHAPTER 4: RESULTS 18 4.1 Study population 18 4.2 Patient demographic and clinical characteristics 18 4.2.1 Aim 1: TA+TZP versus VAN+TZP 18 4.2.2 Aim 2: TA+TZP versus TA+β-lactam 19 4.2.3 Aim 3: VAN+TZP versus VAN+β-lactam 20 4.3 Comparative risk of AKI and AKI characteristics 22 4.3.1 Aim 1: TA+TZP versus VAN+TZP 22 4.3.2 Aim 2: TA+TZP versus TA+β-lactam 22 4.3.3 Aim 3: VAN+TZP versus VAN+β-lactam 23 4.4 Subgroup analysis 23 4.5 Sensitivity analysis 25 4.5.1 Sensitivity analysis 1 (SA 1) 25 4.5.2 Sensitivity analysis 2 (SA 2) 25 CHAPTER 5: DISCUSSION 26 CHAPTER 6: CONCLUSION 31 FIGURES 32 TABLES 35 APPENDIX 66 REFERENCES 104 | |
dc.language.iso | en | |
dc.title | 併用醣蛋白類抗生素與β-內醯胺類抗生素和急性腎損傷的風險 | zh_TW |
dc.title | Combination of Glycopeptide and β-lactam and Risk of Acute Kidney Injury | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林芳如,戴志勳,吳建志,王振泰 | |
dc.subject.keyword | 醣蛋白類抗生素,β-內醯胺類抗生素,急性腎損傷, | zh_TW |
dc.subject.keyword | teicoplanin,vancomycin,piperacillin/tazobactam,β-lactam,acute kidney injury, | en |
dc.relation.page | 111 | |
dc.identifier.doi | 10.6342/NTU201903825 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
Appears in Collections: | 臨床藥學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-108-R07451003-1.pdf Restricted Access | 2.42 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.