請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 杜宜殷 | zh_TW |
| dc.contributor.advisor | Yi-Yin Do | en |
| dc.contributor.author | 謝晨 | zh_TW |
| dc.contributor.author | Chen Hsieh | en |
| dc.date.accessioned | 2021-07-11T15:03:33Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 徐晧昇. 2015. 苦瓜花性之轉錄體分析. 國立臺灣大學園藝暨景觀學研究所碩士論文.
Achard, P., F. Gong, S. Cheminant, M. Alioua, P. Hedden, and P. Genschik. 2008a. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing della proteins via its effect on gibberellin metabolism. Plant Cell 20:2117-2129. Achard, P., J.P. Renou, R. Berthome, N.P. Harberd, and P. Genschik. 2008b. Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18:656-660. Adamczyk, B.J. and D.E. Fernandez. 2009. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 149:1713-1723. Alvarez-Buylla, E.R., S. Pelaz, S.J. Liljegren, S.E. Gold, C. Burgeff, G.S. Ditta, L.R.D. Pouplana, L.N.M. Nez-Castilla, and M.F. Yanofsky. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 97:5328–5333. Ando, S., Y. Sato, S. Kamachi, and S. Sakai. 2001. Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). Planta 213:943-952. Arora, R., P. Agarwal, S. Ray, A.K. Singh, V.P. Singh, A.K. Tyagi, and S. Kapoor. 2007. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242. Bai, S.L., Y.B. Peng, J.X. Cui, H.T. Gu, L.Y. Xu, Y.Q. Li, Z.H. Xu, and S.N. Bai. 2004. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230-240. Bailey, T.L., and C. Elkan. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. of the Second International Conference on Intelligent Systems for Mol. Biol. 28-36. Bailey, T.L., M. Boden, F.A. Buske, M. Frith, C.E. Grant, L. Clementi, J. Ren, W.W. Li, and W.S. Noble. 2009. MEME suite: Tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. Becker, A. and G.N. Theißen. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. and Evol. 29:464-489. Becker, A., K.-U. Winter, B. Meyer, H. Saedler, and G.N. Theißen. 2000. MADS-box gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 17:1425-1434. Behera, T.K., A.R. Rao, R. Amarnath, and R.R. Kumar. 2016. Comparative transcriptome analysis of female and hermaphrodite flower buds in bitter gourd (Momordica charantia L.) by RNA sequencing. J. of Hort. Sci. Biotechnol. 91:250-257. Boualem, A., C. Troadec, C.L. Camps, A. Lemhemdi, H. Morin, M.-A. Sari, R. Fraenkel-Zagouri, I. Kovalski, C. Dogimont, R. Perl-Treves, and A. Bendahmane. 2015. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 350:688-691 Bray, N.L., H. Pimentel, P. Melsted, and L. Pachter. 2016. Near-optimal probabilistic RNA-Seq quantification. Nat. Biotechnol. 34:525-527. Carvalho, R.F., C.V. Feijao, and P. Duque. 2013. On the physiological significance of alternative splicing events in higher plants. Protoplasma 250:639-650. Cominelli, E., T. Sala, D. Calvi, G. Gusmaroli, and C. Tonelli. 2008. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J. 53:53-64. Cui, J., J. Cheng, D. Nong, J. Peng, Y. Hu, W. He, Q. Zhou, N.P.S. Dhillon, and K. Hu. 2017. Genome-wide analysis of simple sequence repeats in bitter gourd (Momordica charantia). Front. Plant Sci. 8:1103 De Bodt, S., J. Raes, Y. Van De Peer, and G. Theissen. 2003. And then there were many: Mads goes genomic. Trends Plant Sci 8:475-483. Devaiah, B.N., A.S. Karthikeyan, and K.G. Raghothama. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 143:1789-1801. Diaz-Riquelme, J., D. Lijavetzky, J.M. Martinez-Zapater, and M.J. Carmona. 2009. Genome-wide analysis of MIKCc-type MADS box genes in grapevine. Plant Physiol. 149:354-369. Dill, A., S.G. Thomas, J. Hu, C.M. Steber, and T.P. Sun. 2004. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392-1405. Ding, L., E. Rath, and Y. Bai. 2017. Comparison of alternative splicing junction detection tools using RNA-Seq data. Cur. Genom. 18:268-277. Edgar, R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. Fang, E.F. and T.B. Ng. 2011. Bitter gourd (Momordica charantia) is a cornucopia of health: A review of its credited antidiabetic, anti-hiv, and antitumor properties. Curr. Mol. Med. 11:417-436. Fourment, M. and E.C. Holmes. 2016. Seqotron: A user-friendly sequence editor for mac OSX. BMC Res. Notes 9:106. Ghosh, S. and P.S. Basu. 1982. Effect of some growth regulators on sex expression of Momordica charantia L. Sci. Horti. 17:107-122. Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. Di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:644-652. Gu, H.T., D.H. Wang, X. Li, C.X. He, Z.H. Xu, and S.N. Bai. 2011. Characterization of an ethylene-inducible, calcium-dependent nuclease that is differentially expressed in cucumber flower development. New Phytol. 192:590-600. Gunnaiah, R., V.M. S., K. Prasad, and E. M. 2014. Identification of candidate genes, governing gynoecy in bitter gourd (Momordica charantia L.) by in-silico gene expression analysis. Natl. Conf. cum Workshop Bioinfo. Computat. Biol. Hao, X., Y. Fu, W. Zhao, L. Liu, R. Bade, A. Hasi, and J. Hao. 2016. Genome-wide identification and analysis of the MADS-box gene family in melon. J. Ame. Soc. Hort. Sci. 141:507-519. Hao, Y.J., D.H. Wang, Y.B. Peng, S.L. Bai, L.Y. Xu, Y.Q. Li, Z.H. Xu, and S.N. Bai. 2003. DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta 217:888-895. Higo, K., Ugawa, Y., Iwamoto, M. and Korenaga, T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 2:297-300. Honma, T. and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529. Hu, B., D. Li, X. Liu, J. Qi, D. Gao, S. Zhao, S. Huang, J. Sun, and L. Yang. 2017. Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized crispr/cas9 system. Mol. Plant 10:1575-1578. Hu, L. and S. Liu. 2012. Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245-256. Hur, Y.S., J.H. Um, S. Kim, K. Kim, H.J. Park, J.S. Lim, W.Y. Kim, S.E. Jun, E.K. Yoon, J. Lim, M. Ohme-Takagi, D. Kim, J. Park, G.T. Kim, and C.I. Cheon. 2015. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytol. 205:316-328. Ito, S., Y.H. Song, A.R. Josephson-Day, R.J. Miller, G. Breton, R.G. Olmstead, and T. Imaizumi. 2012. Flowering bHLH transcriptional activators control expression of the photoperiodic flowering regulator constans in Arabidopsis. Proc. Natl. Acad. Sci. U S A 109:3582-3587. Kaufmann, K., R. Melzer, and G. Theissen. 2005. MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants. Gene 347:183-198. Knopf, R.R. and T. Trebitsh. 2006. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol. 47:1217-1228. Kocyan, A., L.B. Zhang, H. Schaefer, and S.S. Renner. 2007. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol. Phylogenet. Evol. 44:553-577. Kofuji, R., N. Sumikawa, M. Yamasaki, K. Kondo, K. Ueda, M. Ito, and M. Hasebe. 2003. Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol. Biol. Evol. 20:1963-1977. Krishnamoorthy, H.N. 1972. Effect of GA3, GA4+7, GA5 and GA9 on the sex expression of Luffa acutangula var. H-2. Cell Physiol. 13:381-383. Kurepin, L.V., K.P. Dahal, L.V. Savitch, J. Singh, R. Bode, A.G. Ivanov, V. Hurry, and N.P. Huner. 2013. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int. J. Mol. Sci. 14:12729-12763. Leseberg, C.H., A. Li, H. Kang, M. Duvall, and L. Mao. 2006. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84-94. Li, Z., S. Huang, S. Liu, J. Pan, Z. Zhang, Q. Tao, Q. Shi, Z. Jia, W. Zhang, H. Chen, L. Si, L. Zhu, and R. Cai. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381-1385. Ma, H. and C. Depamphilis. 2000. The ABCs of floral evolution. Cell 101:5-8. Ma, J., Y. Yang, W. Luo, C. Yang, P. Ding, Y. Liu, L. Qiao, Z. Chang, H. Geng, P. Wang, Q. Jiang, J. Wang, G. Chen, Y. Wei, Y. Zheng, and X. Lan. 2017. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.). PLoS One 12:e0181443. Ma, W.J. and J.R. Pannell. 2016. Sex determination: Separate sexes are a double turnoff in melons. Curr. Biol. 26:R171-174. Martin, A., C. Troadec, A. Boualem, M. Rajab, R. Fernandez, H. Morin, M. Pitrat, C. Dogimont, and A. Bendahmane. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135-1138. Mitchell, W.D. and S.H. Wittwer. 1962. Chemical regulation of flower sex expression and vegetative growth in Cucumis sativus L. Science 136:880-881. Mutte, S.K., H. Kato, C. Rothfels, M. Melkonian, G.K. Wong, and D. Weijers. 2018. Origin and evolution of the nuclear auxin response system. eLife 7: :e33399. Ng, M. and M.G. Yanofsky. 2001. Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet. 2:186-195. Pastore, J.J., A. Limpuangthip, N. Yamaguchi, M.F. Wu, Y. Sang, S.K. Han, L. Malaspina, N. Chavdaroff, A. Yamaguchi, and D. Wagner. 2011. Late meristem identity2 acts together with LEAFY to activate Apetala1. Development 138:3189-3198. Parenicova, L., S. De Folter, M. Kieffer, D.S. Horner, C. Favalli, J. Busscher, H.E. Cook, R.M. Ingram, M.M. Kater, B. Davies, G.C. Angenent, and L. Colombo. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant Cell 15:1538-1551. Prakash, G. 1976. Effect of plant growth substances & vernalization on sex expression in Momordica charantia L. Indian J. Exp. Biol. 14:360-362. Rahman, A. 2013. Auxin: A regulator of cold stress response. Physiol. Plant 147:28-35. Rahman, M.A., A.N.M. Alamgir, and M.a.A. Khan. 1992. Effect of foliar application of IAA, GA3, TTBA and boron on growth, sex expression and yield of bottle gourd (Lagenaria siceraria (mol.) standi.). Trop. Agric. Res. 4:54-65. Reddy, A.S., Y. Marquez, M. Kalyna, and A. Barta. 2013. Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657-3683. Riechmann, J.L., M. Wang, and E.M. Meyerowitz. 1996. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 24:3134-3141. Sacomoto, G.A., J. Kielbassa, R. Chikhi, R. Uricaru, P. Antoniou, M.-F. Sagot, P. Peterlongo, and V. Lacroix. 2012. KISSPLICE: de-novo calling alternative splicing events from RNA-Seq data. BMC Bioinfomatics 13:S5. Shu, Y., D. Yu, D. Wang, D. Guo, and C. Guo. 2013. Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol. Biol. Rep. 40:3901-3911. Shukla, A., V.K. Singh, D.R. Bharadwaj, R. Kumar, A. Rai, A.K. Rai, R. Mugasimangalam, S. Parameswaran, M. Singh, and P.S. Naik. 2015. De novo assembly of bitter gourd transcriptomes: Gene expression and sequence variations in gynoecious and monoecious lines. PLoS ONE 10: e0128331 Son, O., Y.S. Hur, Y.K. Kim, H.J. Lee, S. Kim, M.R. Kim, K.H. Nam, M.S. Lee, B.Y. Kim, J. Park, J. Park, S.C. Lee, A. Hanada, S. Yamaguchi, I.J. Lee, S.K. Kim, D.J. Yun, E. Soderman, and C.I. Cheon. 2010. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-ZIP) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol. 51:1537-1547. Sun, T.P. 2010. Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiol. 154:567-570. Sun, J.J., F. Li, D.H. Wang, X.F. Liu, X. Li, N. Liu, H.T. Gu, C. Zou, J.C. Luo, C.X. He, S.W. Huang, X.L. Zhang, Z.H. Xu, and S.N. Bai. 2016. CsAP3: A cucumber homolog to Arabidopsis APETALA3 with novel characteristics. Front. Plant Sci. 7:1181. Theissen, G., J.T. Kim, and H. Saedler. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43:484-516. Thomas, T.D. 2008. The effect of in vivo and in vitro applications of ethrel and GA3 on sex expression in bitter melon (Momordica charantia L.). Euphytica 164:317-323. Urasaki, N., H. Takagi, S. Natsume, A. Uemura, N. Taniai, N. Miyagi, M. Fukushima, S. Suzuki, K. Tarora, M. Tamaki, M. Sakamoto, R. Terauchi, and H. Matsumura. 2017. Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res. 24:51-58. Vanková, R., K. Kosová, P. Dobrev, P. Vítámvás, A. Trávníčková, M. Cvikrová, B. Pešek, A. Gaudinová, S. Prerostová, J. Musilová, G. Galiba, and I.T. Prášil. 2014. Dynamics of cold acclimation and complex phytohormone responses in triticum monococcum lines g3116 and dv92 differing in vernalization and frost tolerance level. Environ. Exp. Bot 101:12-25. Volpicella, M., C. Leoni, A. Costanza, I. Fanizza, A. Placido, and L.R. Ceci. 2012. Genome walking by next generation sequencing approaches. Biology (Basel) 1:495-507. Wang, D.H., F. Li, Q.H. Duan, T. Han, Z.H. Xu, and S.N. Bai. 2010. Ethylene perception is involved in female cucumber flower development. Plant J. 61:862-872. Wang, P., S. Wang, Y. Chen, X. Xu, X. Guang, and Y. Zhang. 2019. Genome-wide analysis of the MADS-box gene family in watermelon. Comput. Biol. Chem. 80:341-350. Xie, Y., G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, W. Huang, G. He, S. Gu, S. Li, X. Zhou, T.W. Lam, Y. Li, X. Xu, G.K. Wong, and J. Wang. 2014. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinfo. 30:1660-1666. Yoshida, T., Y. Fujita, K. Maruyama, J. Mogami, D. Todaka, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2015. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ. 38:35-49. Zhang, L., L. Chen, and D. Yu. 2018a. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol. 176:790-803. Zhang, Y., D. Tang, X. Lin, M. Ding, and Z. Tong. 2018b. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC Plant Biol. 18:176. Zhang, Y., G. Zhao, Y. Li, N. Mo, J. Zhang, and Y. Liang. 2017. Transcriptomic analysis implies that GA regulates sex expression via ethylene-dependent and ethylene-independent pathways in cucumber (Cucumis sativus L.). Front. Plant Sci. 8:10. Zhu, F., L. Farnung, E. Kaasinen, B. Sahu, Y. Yin, B. Wei, S.O. Dodonova, K.R. Nitta, E. Morgunova, M. Taipale, P. Cramer, and J. Taipale. 2018. The interaction landscape between transcription factors and the nucleosome. Nature 562:76-81. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78552 | - |
| dc.description.abstract | 苦瓜 (Momordica charantia L.) 為熱帶地區的葫蘆科作物,花性為雌雄異花同株,雄雌花數比介於 8 到 25 之間。苦瓜花性分化機制尚未明瞭,本研究以不同的花性誘導處理做為變因,從共差異表現基因推測可能的生理調控機制,期望研究結果能應用於苦瓜栽培育苗產業,透過減少雄雌花數比及降低始花節位,達到提高產量和產期調節之目的。以雌雄異花同株品系‘月華’分別進行六到八葉幼苗期施用 100 mg·L-1 GA3、以 4 ̊C 低溫浸種 15 天的促雌處理;以 4 ̊C 低溫浸種 15 天同時施以 100 mg·L-1 GA3 的抑雌處理,以及僅在葉面噴施蒸餾水的對照組,取六到八葉幼苗期地上部總 RNA,以 Illumina RNA-Seq 定序,新組裝出132,706 條 contig之轉錄體後,比較線上資料庫進行基因註解,搭配線上基因體草稿將覆蓋的讀序數量換算成 TPM (transcript per million) 推估表現量。依據不同的差異表現方向分類共差異表現基因,篩選出與花性有關的組別,進行基因本體論富集分析,觀察到除了細胞訊息傳遞有關的蛋白質磷酸化和脂質反應之生物程序,植物賀爾蒙訊息傳遞及轉錄因子相關的基因也顯著富集。以定量即時聚合酶鏈鎖反應 (quantitative real-time PCR, qRT-PCR) 進行基因表現量分析,驗證植物賀爾蒙生合成及訊息傳遞基因在不同處理組中的調節反應,觀察到相符合的趨勢。由新組裝轉錄體之基因產物預測出 1215 個轉錄因子,經過涵蓋前人研究之基因表現量矩陣綜合評比,篩選出了 5 個分別來自於 HD-ZIP、WRKY、MYB、M-type MADS、以及 bHLH 基因家族的花性分化相關轉錄因子。針對 MADS-box 基因家族進行全基因體識別分析,顯示苦瓜中有 34 個 McMADSs,啟動子區段序列順式作用元件分析顯示激勃素、離層酸、組織特異性、細胞週期等等因子都有可能影響其差異性轉錄。 | zh_TW |
| dc.description.abstract | Bitter gourd (Momordica charantia L., 2n = 2x = 22) is an important tropical and sub-tropical Cucurbitaceae crop. Bitter gourd is a monoecious plant whose male/female flower ratio varies from 8 to 25. Regulation of sex determination could modify the production period and yield. As the first step to understand the sex determination mechanism of bitter gourd the transcriptomes of GA3-spread seedlings at 6-8 leaf stage and seeds soaked with GA3 were compared in aid of next-generation sequencing technology. Pooled reads from four samples were de novo assembled by Trinity. The number of contigs were 132,707 and N50 of the assembly reached 2,921 bp. TPM (transcripts per million) calculated by kallisto were used for gene expression inference. Co-differentially expressed genes were categorized according to their expression pattern in three treatment comparison groups in order to narrow down sex determination related candidate genesd. Gene ontology enrichment analysis results showed that not only cell signal transduction related terms including protein autophosphorylation and lipid response but also biological process terms including plant hormone signal transduction and transcription factors were significantly enriched. Gene expression of plant hormone biosynthesis and signal transduction related genes were detected by quantitative real-time PCR (qRT-PCR) for validation. On top of that, 1,215 transcription factors were predicted from the transcriptome sequences. Five sex determination related transcription factors , from HD-ZIP, WRKY, MYB, M-type MADS, and bHLH gene families, were selected for future research according to a comprehensive gene expression matrix, including expression profiles of different organs and cultivars of bitter gourd obtained from two BioProjects, PRJNA 213805 and PRJNA 319011. MADS-box genes, known to participate in both floral development and GA-signaling, were picked up for genome-wide identification and analysis. Classification of 34 MADS-box proteins in bitter gourd is very similar to that in watermelon. Nearly half of the MADS-box genes were specifically expressed in flower, while the others mainly appeared in leaf and root. Sex determination mechanism may be different between monoecious and gynoecious cultivars. MADS-box genes may be differentially induced by hormones and environmental factors. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:03:33Z (GMT). No. of bitstreams: 1 ntu-108-R06628114-1.pdf: 6247645 bytes, checksum: 1b3bbf050baae52a4af3e93b9efda6fd (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 壹、前言 1 貳、前人研究 2 一、激勃素對葫蘆科植物花性之影響 2 (一) 激勃素促進葫蘆科作物雄花之生成 2 (二) 激勃素對苦瓜花性之影響 2 二、高等植物花性決定機制 2 (一) 花性分化 2 (二) 花性決定機制 3 三、MADS-box 基因家族 4 (一) MADS-box 基因家族與花性分化 4 (二) MADS-box 基因家族之序列特徵與分類 5 四、苦瓜解析花性分化機制前人研究 5 參、材料與方法 7 一、植物材料之品種來源及生長條件 7 二、試驗方法 7 (一) 花性誘導處理及花性調查 7 (二) 總 RNA 萃取 7 三、生物資訊分析 8 (一) 線上開放資料庫苦瓜轉錄體下載 8 (二) 定序資料基本處理 8 (三) 基因表現量推定 9 (四) 基因差異表現分析 10 (五) 新組裝轉錄體之轉錄同源異構體表現量合併計算與分類 10 (六) MADS-box 基因家族識別與分類 10 (七) 順式作用元件分析與視覺化 11 肆、結果 12 一、花性誘導處理對苦瓜花性之影響 12 二、次世代定序結果及基本分析 12 (一) 定序結果品質檢測 12 (二) 濾除定序品質不佳之序列 13 (三) 新組裝轉錄體及其功能註解 13 (四) 轉錄因子預測 14 三、差異表現基因分析 14 (一) 各處理比較組之基因差異表現量分佈 14 (二) 基因本體論條目富集分析 16 (三) 苦瓜 ACC 合成酶基因表現量分析 17 (四) 花性誘導相關轉錄因子之篩選 17 四、全基因體之 MADS-box 基因家族識別與分析 18 (一) MADS-box 基因家族識別與分類 18 (二) MADS-box 基因家族表現量分析 19 (三) 花性誘導相關 MADS-box 基因順式作用元件分析 19 伍、討論 21 一、激勃素及低溫浸種之交互作用對苦瓜花性之影響 21 二、合併表現量及差異表現基因之探討 22 三、花性相關轉錄因子透過不同途徑影響花性分化 22 四、苦瓜 MADS-box 轉錄因子基因家族數量之探討 24 五、苦瓜 MADS-box 轉錄因子基因家族表現量之探討 24 陸、結語 26 柒、參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 發育過程花性分化 | zh_TW |
| dc.subject | MADS-box 基因家族 | zh_TW |
| dc.subject | 基因表現量階層式分群 | zh_TW |
| dc.subject | hierarchical gene expression clustering | en |
| dc.subject | developmental sex determination | en |
| dc.subject | MADS-box gene family | en |
| dc.title | 激勃素對苦瓜花性之影響及轉錄體分析 | zh_TW |
| dc.title | Comparative Transcriptome Analysis of Gibberellin-induced Sex Determination in Bitter Gourd (Momordica charantia L.) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 黃鵬林 | zh_TW |
| dc.contributor.coadvisor | Pung-Ling Huang | en |
| dc.contributor.oralexamcommittee | 張春梵;劉祖惠;陳靖宏 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Fan Chang;Tsu-Hui Liu;Ching-Hung Chen | en |
| dc.subject.keyword | 發育過程花性分化,基因表現量階層式分群,MADS-box 基因家族, | zh_TW |
| dc.subject.keyword | developmental sex determination,hierarchical gene expression clustering,MADS-box gene family, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU201903538 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-16 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 6.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
