Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78550
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張嘉銓
dc.contributor.authorMeng-Chin Chenen
dc.contributor.author陳孟勤zh_TW
dc.date.accessioned2021-07-11T15:03:27Z-
dc.date.available2023-08-28
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78550-
dc.description.abstract本論文包含兩部分:
第一部分 : 台灣苧麻葉部化學成分之研究
台灣苧麻 (Boehmeria formosana) 分布於台灣、日本與中國大陸,為蕁麻科植物,同屬植物具有降血糖、抗B型肝炎、抗癌等生物活性,文獻指出其活性與生物鹼與原花青素相關。而本研究,相較於同屬植物,台灣苧麻葉部成分含有豐富的菲并吲哚啶(phenanthroindolizidine) 與菲并喹啉 (phenathroquinolizidine) 類生物鹼,此類生物鹼結構特色為三個苯環的菲 (phenanthrene) 接一個吲哚啶雙環的生物鹼。此類生物鹼於文獻中報導具有許多的生物活性,包含抗發炎、抗微生物、抗癌、抗痢疾、抗血管新生等,其中,對於抑制多種癌細胞生長之活性更為顯著。
取葉部乙醇粗提物以液相-液相分配進行極性劃分,分別為乙酸乙酯、正丁醇以及水可溶部分,而本研究大部分生物鹼分布在正丁醇層。利用Sephadex LH-20、CPC、半製備HPLC等層析方法,分離及鑑定出17個化合物: seco-Formonsanasine A (1), 4a,4b-seco-Dehydroantofine (2), seco-Formonsanasine B (3), Tylophoridicine D (4), Deoxytylophorinine (5), Boehmeriasin A (6), Boehmeriasine C (7), Tylophoridicine G (8), N-pyrrolidyl-3,4-dimethoxycinnamoylamide (9), 5,7-Dihydroxychromone-7-O-β-D-glucopyranoside (10), 5,7-Dihydroxychromone (11), Quercetin 3-O-α-L-rhamnoside (12), Quercetin (13), Hypoxanthine (14), 3,4- Dihydroxybenzoic acid (15), (2S,3S)-[3-(4'-methoxyphenyl)piperidin-2-yl]methanol (16)。其中,化合物 1、3、7、8為菲并吲哚啶類生物鹼,透過1D與2D NMR、MS (n)進行結構解析,透過文獻搜尋確認為新的化合物;化合物 9、16經由文獻搜尋結果得知為首次於天然物中分離得到。




第二部分 : 金童及金皇石斛水萃物對小鼠腸道菌的菌相分布之影響
石斛屬植物先前文獻指出其醣類成分具有許多生物活性,例如:抗氧化、抗糖尿病、抗腫瘤、神經保護作用等活性。蘭科石斛雜交種亦屬中藥材,具有生長快速的特性,相較於野生種石斛可能其有效成分較為豐富。
先前研究發現金童石斛粗萃多醣作用在胰臟β細胞,可對抗STZ的毒性,此研究顯示金童石斛粗萃多醣成分具有抗糖尿病功效的潛力。由於先前未曾報導其雜交種石斛與腸道菌的關聯性。因此本次實驗著重在初步了解C57BL/6J品系之實驗鼠食用此兩種石斛,為期7周餵養,期間紀錄生理數值 (體重、血糖、攝食量),以及犧牲後取得脂肪組織的含量多寡,藉此作為初步的實驗依據。進而抽取犧牲當日殘留於直腸的糞便之DNA,利用PCR技術擴增16S V3-V4區域片段的DNA,以NGS分析其菌相分布情形。
本次實驗初步產出的結果進行菌相分析,初步探討菌屬與多醣成分可能的相關性,做為日後研究的基石。
zh_TW
dc.description.abstractAbstract
This thesis are inclusive of two parts:
Part 1: Chemical investigation on the leaves of Boehmeria formonsan
Boehmeria formosana which belongs to Urticaceae is major distributed mainly in Taiwan, Japan and China. Its related species have been reported to possess bioactivities, including anti-glycemic effect, inhibition of HBV production, anti-cancer and so on. Some reports highlight that its bioactivities are arosed from cyanidins and alkaloids. In this study, B. formosana leaf contains aboundance phenanthroindolizidine-type and phenathroquinolizidine-type alkaloids in comparison with the same genus (Boehmeria).
These chemical structure of alkaloids is characterized by three phenanthrene fuesd with an acridine bicyclic alkaloids. That alkaloids have many biological activities, including anti-inflammatory, anti-microbial, anti-cancer, anti-dysentery, anti-angiogenesis, etc. reported in the literature; especially, cytotoxic effect is more remarkable among above-mentioned bioactivities.
The ethanol extract of B. formosana leaves were divided into ethyl acetate, n-butanol and water layer followed by liquid-liquid phase distribution.
Most of the alkaloids in this study are distributed in the n-butanol layer. 16 compounds were isolated by Sephadex LH-20, CPC, semi-preparative HPLC including seco-Formonsanasine A (1), 4a,4b-seco-Dehydroantofine (2), seco-Formonsanasine B (3), Tylophoridicine D (4), Deoxytylophorinine (5), Boehmeriasin A (6), Boehmeriasine C (7), Tylophoridicine G (8), N-pyrrolidyl-3,4-dimethoxycinnamoylamide (9), 5,7-Dihydroxychromone-7-O-β-D-glucopyranoside (10), 5,7-Dihydroxychromone (11), Quercetin 3-O-α-L-rhamnoside (12), Quercetin (13), Hypoxanthine (14), 3,4- Dihydroxybenzoic acid (15), (2S,3S)-[3-(4'-methoxyphenyl)piperidin-2-yl]methanol (16). Among the isolated compounds, compounds 1, 3, 7, and 8 are phenanthroindolizidine-type alkaloids, which were confirmed to be new compounds based on 1D, 2D NMR and MS(n); compounds 9 and 16 were first isolated from the nature.


Part 2: Effects of dietary supplement with the water extracts from two Dendrobium hybrids (Cassiope and Taiseed Tosnobile) on the gut microbiome diversity in mice
The previous literature of Dendrobium indicate that their carbohydrate components have many bioactivities, such as anti-oxidation, anti-diabetes, anti-tumor, neuroprotective effects. The hybrids of Dendrobium are Chinese herbal medicines, which have the characteristics of rapid growth and richer active constituents compared with wild-type Dendrobium species.
In our previous studies showed that the crude polysaccharides from Dendrobium cassiope can counteract the toxicity of STZ in pancreatic β cells. This result showed that the polysaccharide extracted from Dendrobium cassiope has the potential to alleviate diabetes.
Because it has not been reported previously that the relationship between Dendrobium species (Taiseed Tosnobile and Cassiope) and gut microbiota in mice. Therefore, in this study, we focused on the preliminary understanding of this relationship in mice after taking in Dendrobium species (Taiseed Tosnobile and Cassiope) for 7 weeks feeding. During the experimental term, the physiological values (weight, blood sugar, food intake) were recorded; the amount of tissue were obtained after sacrifice. The microbial gDNA of the feces remained in the rectum on the day of sacrifice was extracted, and DNA sequences of the 16S V3-V4 region were amplified by PCR. Next, the microbial distribution of the feces were analyzed by NGS.
The results can not only be regarded as the basis for the further researches, but also firstly discussed the possible correlation between mictobiota and these 2 species of Dendrobium (Taiseed Tosnobile and Cassiope).
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:03:27Z (GMT). No. of bitstreams: 1
ntu-108-R06423026-1.pdf: 14896740 bytes, checksum: 95ae2a06f04c5cde24af309ecad5a237 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents總目錄
中文摘要 I
Abstract …III
目錄.......................................................................................................................................... V
表目錄(List of tables)..............................................................................................................IX
圖目錄(List of figures)............................................................................................................XI
流程圖目錄(List of schemes) ................................................................................................XV
辭彙........................................................................................................................................XV

目錄
第一章 : 台灣苧麻化學成分之研究 1
1. 研究目的及植物介紹 1
1.1研究目的 1
1.2 台灣苧麻 2
1.2.1 台灣苧麻之簡介 2
1.2.2 苧麻屬 (Boehmeria) 植物成分之文獻回顧 3
1.3 吲哚環類生物鹼 (Indolizidine alkaloids) 10
1.3.1 簡介 10
1.3.2 菲并吲哚啶 (phenanthroindolizidine) 生物鹼之生物活性文獻回顧 11
1.3.2.1 Phenanthroindolizidines生物鹼與其生物活性 12
1.3.2.2 分子模擬文獻報導 18
1.3.2.3 Phenanthroindolizidine生物鹼結構與其活性文獻探討 19
2. 實驗結果與討論 21
2.1菲并吲哚啶生物鹼 (Phenanthroindolizine-type alkaloids) 衍生物 24
2.1.1 3,6-dimethoxy-4a,b-seco-phenanthroindolizidine (1)、4a,b-seco-dehydroantofine (2)及seco-Boehmeriasin B (3) 之結構解析 24
2.1.2 Tylophoridicine D (4)及Tylophoridicine G (8)之結構解析 27
2.1.3 Deoxytylophorinine (5)之結構解析 30
2.1.4 Boehmeriasine C (7)之結構解析 32
2.2 Phenanthroquinolizidine類生物鹼: Boehmeriasin A (6)之結構解析 35
2.3 苯丙烷類: N-pyrrolidyl-3,4-dimethoxycinnamoylamide (9)之結構解析 37
2.4 色原酮類之結構解析 39
2.4.1 5,7-Dihydroxychromone-7-O-β-D-glucopyranoside (10)之結構解析 39
2.4.2 5,7-Dihydroxychromone (11)之結構解析 41
2.5 黃酮類之結構解析 42
2.5.1 Quercetin 3-O-α-L-rhamnoside (12)之結構解析 42
2.5.2 Quercetin (13)之結構解析 44
2.6 嘌呤類Hypoxanthine (14)之結構解析 45
2.7 苯甲酸衍生物3,4- Dihydroxybenzoic acid (15)之結構解析: 46
2.8 六氫吡啶類之結構解析: [3-(4'-methoxyphenyl)piperidin-2-yl]methanol (16) 47
2.9 討論 48
3. 實驗部分 50
3.1 儀器與材料 50
3.1.1 理化性質測定儀器 50
3.1.2 成分分離之儀器與材料 50
3.1.3 試劑與溶媒 51
3.2 植物來源 52
3.3 台灣苧麻葉部之萃取與純化 52
3.3.1 台灣苧麻葉部之萃取 52
3.3.2 正丁醇層可溶部分之分離 53
3.3.2.1 化合物1、2及9之分離 53
3.3.2.2 化合物3、4、7、8之分離 53
3.3.2.3 化合物5、6之分離 55
3.3.2.4 化合物10、11之分離 55
3.3.2.5 化合物12與13之分離 55
3.3.2.6 化合物14與15之分離 55
3.3.3 乙酸乙酯層可溶部分之分離 56
3.3.3.1 化合物16之分離 56
3.4 化合物之物理數據 59
第二章 金童及金皇石斛水萃物對小鼠腸道菌的菌相分布及生理數值之影響 63
1. 諸論與研究目的 63
1.1 研究目的 63
1.2 腸內菌簡介 64
1.2.1 人體微生物含量及分布比例 64
1.2.2 腸道菌來源 65
1.2.3 腸道菌相 67
1.2.4 腸道菌在人類健康扮演之角色 68
1.3 石斛屬多醣與腸道菌相關文獻回顧 77
1.4 多醣與腸內菌交互作用之文獻回顧 86
1.4.1 多醣於人體內的代謝命運 86
1.4.2 腸道菌代謝多醣的分子機制 92
1.4.3 天然物多醣對腸道微生物和免疫反應的影響 100
1.4.3.1 腸道免疫系統組成 101
1.4.3.2 腸道菌與適應性免疫平衡 102
1.4.3.3 多醣與腸道菌影響免疫反應 102
1.5. 與本次研究相關之腸道菌介紹 120
1.5.1 Lactobacillus spp. (乳桿菌屬) 120
1.5.2 Akkermansia spp. 120
1.5.3 S24-7 family 121
1.5.4 Staphylococcus spp. 122
1.5.5 Streptococcus spp. 122
1.5.6 Turicibacter spp. 122
1.5.7 Dorea spp. 122
1.5.8 Ruminococcaceae family 123
1.5.9 Clostridium spp. 124
1.5.10 Lachnospiraceae family 125
1.5.11 Desulfovibrio spp. 125
1.5.12 Allobaculum spp. 125
1.5.13 Sutterella spp. 126
1.5.14 Sphingomonas spp. 126
1.5.15 Coprococcus spp. 126
1.5.16 rc4-4 spp. 127
1.5.17 Mogibacteriaceae family 127
1.5.18 Erysipelotrichaceae family 127
1.5.19 Bacteroides uniformis, Bacteroides caccae and Bacteroides fragilis 127
1.6 植物簡介 129
1.6.1 金童石斛(Dendrobium Cassiope) 129
1.6.2 金皇石斛(Dendrobium Taiseed Tosnobile) 130
2. 實驗部分 131
2.1 儀器與材料 131
2.1.1 生物活性分析器材 131
2.1.2 生物實驗試劑 131
2.1.3 成分分離之儀器 131
2.1.4 PCR引子 131
2.2 石斛之多醣的樣品準備 132
2.2.1 植物來源 132
2.2.2 石斛雜交種多醣成分萃取 132
2.2.3 石斛混合飼料之製備 133
2.3 動物實驗模式 133
2.3.1. 實驗動物 133
2.3.2. 動物實驗設計之時間軸…………………………………………….133
2.3.3. 血中葡萄糖測定 134
2.3.4. 糞便之細菌gDNA萃取 134
2.3.5. 聚合酶連鎖反應(Polymerase chain reaction, PCR) 136
2.3.6. 統計方法 136
2.3.7. 次世代定序: Illumina MiSeq 136
2.3.8. 微生物多樣性分析 138
2.3.8.1. 操作分類單位(operational taxonomic unit, OTU) 聚類分析 138
2.3.8.2. Alpha diversity 138
2.3.8.3. Beta diversity 138
3. 實驗結果與討論 139
3.1 生理數值比較差異及意義 139
3.2 糞便之細菌gDNA萃取結果…………………………………………………….139
3.3 次世代定序分析結果 141
3.3.1 微生物比例差異與其潛在抗糖尿病之分析 143
3.3.2 與本次研究相關之降解多醣腸道菌 149
3.3.3 Alpha diversity 分析結果 151
3.3.3.1 PD-whole tree 151
3.3.3.2 Observed species指數分析 151
3.3.3.3 Chao1指數分析 152
3.3.3.4 Shannon指數分析 154
3.3.4 Beta diversity多樣性分析: PCoA圖分析 155
3.4 結論 157
參考文獻 159
附圖........................................................................................................................................174
表目錄
Table 1. Chemical contituents isolated from Boehmeria species 3
Table 2. Phenanthroindolizidine alkaloids and their mechanism of bioactivities. 12
Table 3. Comparison between the docking score and other physicochemical parameters for celecoxib and seven phenanthroindolizidine alkaloids 18
Table 4. Cytotoxicity of compound 1a, 1b, 2a and 2b toward four cancer cell lines (A549: lung cancer cell; MCF-7: breast cancer cell; KB: Nasopharyngeal carcinoma cell; KB-VIN: multidrug-resistence nasopharyngeal carcinoma cell) 20
Table 5. 1H NMR data of 4a,b-seco-Dehydroantofine (2) (CD3OD) 26
Table 6. 1H NMR data of Tylophoridicine D (4) (CD3OD) 29
Table 7. 1H NMR data of Deoxytylophorinine (5) (CD3OD) 31
Table 8. 1H NMR data of Boehmeriasine C(7) (CD3OD) 34
Table 9. 1H NMR data of Boehmeriasin A (6) (CDCl3) 36
Table 10. 1H NMR data of N-pyrrolidyl-3,4-dimethoxycinnamoylamide (9) (CD3OD) 38
Table 11. 1H NMR data of 5,7-Dihydroxychromone-7-O-β-D-glucopyranoside (10) (CD3OD) 40
Table 12. 1H NMR data of 5,7-Dihydroxychromone (11) (CD3OD) 41
Table 13. 1H NMR data of Quercetin 3-O-α-L-rhamnoside (12) (CD3OD) 43
Table 14. 1H NMR data of Quercetin (13) (CD3OD) 44
Table 15. 1H NMR data of Hypoxanthine (14) (CD3OD) 45
Table 16. 1H NMR data of 3,4-Dihydroxybenzoic acid (15) (CD3OD) 46
Table 17. Microbiota-driven mechanisms of metabolism and appetite regulation 69
Table 18. Effects of the diet on the gut microbiota and host metabolism 73
Table 19. Relationship between microbiota and polysaccharides from Dendrobium species in literature. 77
Table 20. Plant polysaccharides and their chemical composition, covalent linkage, source, abundance and degree of digestion. 86
Table 21. Three examples of polysaccharide degradation mechanism by gut bacteria. 94
Table 22. Relationship between glycan complexity and the enzyme content in Sus-like systems. …………………………………………………………………………...96
Table 23. The activities in glycoside hydrolase(GH) and polysaccharide lyase(PL) genes 99
Table 24. Effects of natural polysaccharides on intestinal microbiota 104
Table 25. Immune-enhancing effects of natural polysaccharides. 108
Table 26. Immune-suppressive effects of natural polysaccharides. 112
Table 27.Summary of currently metabolite-sensing GPCRs and their ligands, Signaling Molecules, effector mechanisms,expression, and function 117
Table 28. PCR condition. 136
Table 29. OD value and gDNA of microbiota in feces. …………………………………….141
Table 30. Changes in gut microbiota of DC and DTT-administration mice in comparision with control group. 157
 
圖目錄
Figure 1. Boehmeria formonsana Hayata (Urticaceae) 2
Figure 2. Chemical contituents isolated from Boehmeria species 9
Figure 3. phenanthroindolizidine and phenathroquinolizidine skeletons 10
Figure 4. Docking of celecoxib into the binding pocket of COX-2 target protein 18
Figure 5. Alkaloid 6-Demethyltylocebrine Ficuseptine showing hydrophobic interactions in COX-2 target protein………………………………………………………………19
Figure 6. Ficuseptine B shows only hydrophobic interactions within the binding pocket of COX-2 target protein 19
Figure 7. Phenanthroindolizidine-type alkaloids 1a, 1b, 2a and 2b. 19
Figure 8. The chemical structures of the EtOAc-soluble and n-butanol-soluble fractions of the ethanolic extract from the leaf of B. formonsana. 23
Figure 9. Key NOESY correlation of 3 25
Figure 10. Paramagnetic anistropic effect on H-4 of 8 due to significant deshielding of the co-planar aromatice rings. 28
Figure 11. Key NOESY correlations of 7…………………………………………………… 32
Figure 12. Key HMBC correlations of 10 39
Figure 13. Two isomers of 17 47
Figure 14. Degradation of phenanthroindolizidines to its isoquinolin in CHCl3 solution 48
Figure 15. HPLC chromatogram of the identified compounds 3、4、7 and 8 in Fr. 6-4 of methanol-soluble fraction of B. formonsana. 54
Figure 16. Bacterial distribution of body site 64
Figure 17. Window of opportunity for microbiota modulation 65
Figure 18. Overview of the relative abundance of key phyla of the human microbiota composition in different stages of life. 66
Figure 19. Microbial habitats cross-section of the colon 67
Figure 20.Microbial habitats in the human 67
Figure 21. The association of gut microbes with multiple aspects of human health 68
Figure 22. Beneficial effects of normalized bile acid homeostasis and gut microbiota. 70
Figure 23. Mechanisms linking gut microbiota and GLP-1 secretion . 71
Figure 24. Microbiota-driven mechanisms of metabolism and appetite regulation. 72
Figure 25. Paracellular permeability can be increased in leaky gut situations in which molecules of higher molecular weight than 600 kD can diffuse nonspecifically across the epithelial layer. 74
Figure 26. Major mechanisms involved in the crosstalk between microbes and host: impact of metabolism. 75
Figure 27. TLR4 signaling in metabolic syndrome. 76
Figure 28. Relative abundances at the phylum level in specifying the species tested feces. 77
Figure 29. Relative abundance at the genus level in specifying the species tested feces. 78
Figure 30. Relative abundances at the phylum level in feces. 78
Figure 31. Relative abundance at the genus level in feces. 79
Figure 32. Intestinal microbial community structure. Bar plot of prevalence at the phylum level. 79
Figure 33. Intestinal microbial community structure. Bar plot of prevalence at the genus level. 80
Figure 34 . The flow chart of gastric-intestinal digestion and fermentation process of DAP consumption on human GI-tract and related variation. 82
Figure 35. The stacked bar chart of relative abundance at phylum. 83
Figure 36. The stacked bar chart of relative abundance at genus. 84
Figure 37. Schematic view of the possible metabolic pathway after the oral administration of DAP. 85
Figure 38. Structure of basic units of sugar moieties and their covalent bonding involved in formation of polysaccharide chains. 88
Figure 39. Possible metabolic interaction between host-derived polysaccharides and microbiota. 89
Figure 40. Fermentation of indigestible polysaccharides in colon and production of SCFAs that can further impact diverse mechanisms to maintain human health. 89
Figure 41. Summary of main SCFAs producer species and physiological effects. 90
Figure 42. Overview of gut microbiota interactions in SCFA production and degradation. 91
Figure 43. Pathways of carbohydrate metabolism 91
Figure 44. Glycoside hydrolases encoded by the human genome. 92
Figure 45. Carbohydrate-active enzyme composition of the mini-microbiome. 93
Figure 46. Glycoside hydrolase (GH) and polysaccharide lyase (PL) genes in the microbiome. 93
Figure 47. The B. thetaiotaomicron starch utilization system (Sus) is composed of three starch binding lipoproteins SusDEF that interact with the transporter SusC to import maltooligosaccharides catalized by SusG. These sugars are further processed to glucose for transport into the cytoplasm. 95
Figure 48. Plasma membrane sugar transporters in gut bacteria. major facilitator family. 96
Figure 49. Starch strategy by E. rectale, and many Firmicutes, is initiated by a large cell-wall-anchored protein to processes starch into maltooliogsaccharides that can be recognized by a separate transport system. 97
Figure 50. Multi-enzyme complexes that bring together carbohydrate-binding and enzymatic functions with a complementary system of dockerin–cohesion protein binding domains that anchor polypeptides to a scaffoldin protein. 98
Figure 51. The domain structures of six examples of cellulosomal polysaccharidases from the rumen bacterium Ruminococcus flavefaciens. 98
Figure 52. Cross-feeding reactions in the gut. A hypothetical cross-feeding reaction is depicted with three bacteria, B1, B2,and B3. 100
Figure 53. Peyer’s Patches and mesenteric lymph nodes. 101
Figure 54. Commensal microbiota induce CD4 T cell differentiation. 102
Figure 55. Illustration of immune system activation by immunostimulatory polysaccharides after interaction and trigger of several pathways. 115
Figure 56. The relationship among SCFAs, GPCRs, host physiology and immunity. 119
Figure 57. A number of dietary interventions can promote the growth of Akkermansia muciniphila. 121
Figure 58. eLtaS antagonizes insulin function. 122
Figure 59. Summary of the mechanisms of gut microbiota contributing to obesity. 123
Figure 60. Overall, in obesity, there is lower microbial richness and diversity as well as lower microbial gene count that in normal weight subjects. 124
Figure 61. A model of the influence of indigenous Clostridium species on intestinal CD4+ T cells. 125
Figure 62. Effects of Sutterella spp.on immunity. 126
Figure 63. Carbohydrate utilization by the human gut microbiota members. 128
Figure 64. Tentative structure of DC polysaccharide. 130
Figure 65. Schematic illustration of Illumina MiSeq’s sequencing process. 137
Figure 66. Workflow applied to evaluate microbial diversity 138
Figure 67. Effects of control, DC and DTT administration on physiological status in mice. . 140
Figure 68. Result of gel electrophoresis. ……………………………………………………142
Figure 69. Relative aboundance of fecal microbiota in control, DC and DTT groups. For each measurement, the data labeled by different letters were significantly different. 148
Figure 70. Relative aboundance of fecal microbiota in control, DC and DTT groups.. 149
Figure 71. Relative aboundance of R. flavefaciens in control, DC and DTT groups. 150
Figure 72. Rarefraction curve of PD whole tree index from fecal samples in control, DC and DTT groups. 151
Figure 73. Rarefraction curve of Observed species index from fecal samples in control, DC and DTT groups. 152
Figure 74. (A) Rarefraction curve of Chao1 index from fecal samples in control, DC and DTT groups. (B)Based on number of OTUs, richness(Chao-1) indexe observed in control (ctrl), DC and DTT groups. 153
Figure 75. (A)Rarefraction curve of Shannon index from fecal samples in control, DC and DTT groups. (B)Eveness (Shannon) index observed in control (ctrl), DC and DTT groups. 154
Figure 76. Unweighted principal coordinate analysis(PCoA) plot indicates the relationship among control, DC and DTT groups. 155
Figure 77. Weighted principal coordinate analysis (PCoA) plot indicates the relationship among control, DC and DTT groups. 156
dc.language.isozh-TW
dc.subject台灣苧麻zh_TW
dc.subject多醣zh_TW
dc.subject腸道菌zh_TW
dc.subject金皇石斛zh_TW
dc.subject金童石斛zh_TW
dc.subject石斛屬zh_TW
dc.subjectBoehmeria formonsanaen
dc.subjectpolysaccharideen
dc.subjectmicrobiotaen
dc.subjectDendrobium Taiseed Tosnobileen
dc.subjectDendrobiumen
dc.subjectDendrobium Cassiopeen
dc.title第一部分: 台灣苧麻葉部化學成分之研究
第二部分: 金童及金皇石斛水萃物對小鼠腸道菌相分布之影響
zh_TW
dc.titlePart 1: Chemical investigation on the leaves of Boehmeria formonsana
Part 2: Effects of dietary supplement with the water extracts from two Dendrobium hybrids (Cassiope and Taiseed Tosnobile) on the gut microbiome diversity in mice
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李水盛,劉慧康
dc.subject.keyword台灣苧麻,石斛屬,金童石斛,金皇石斛,腸道菌,多醣,zh_TW
dc.subject.keywordBoehmeria formonsana,Dendrobium,Dendrobium Taiseed Tosnobile,Dendrobium Cassiope,microbiota,polysaccharide,en
dc.relation.page213
dc.identifier.doi10.6342/NTU201903460
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2023-08-28-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-108-R06423026-1.pdf
  未授權公開取用
14.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved