請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78549完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐展言 | |
| dc.contributor.author | Hio Wa Leong | en |
| dc.contributor.author | 梁曉華 | zh_TW |
| dc.date.accessioned | 2021-07-11T15:03:23Z | - |
| dc.date.available | 2024-08-28 | |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-16 | |
| dc.identifier.citation | Albeg A., Smith C. J., Chatzigeorgiou M., Feitelson D. G., Hall D. H., Schafer W. R., Miller D. M. 3rd and Treinin M. (2011). C. elegans multi-dendritic sensory neurons: morphology and function. Mol. Cell Neurosci. 46, 308–317.
Arimura N. and Kaibuchi K. (2007). Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci. 8,194-205. Bloom L. and Horvitz H. R. (1997). The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. PNAS. 94, 3414-3419. Breitsprecher D. and Goode B. L. (2013). Formins at a glance. J Cell Sci. 126, 1-7. Cheever T.R. and Ervasti J. M. (2013). Actin isoforms in neuronal development and function. Int Rev Cell Mol Biol. 301, 157-213. Cong L., Ran F. A., Cox D., Lin S., Barretto R., Habib N., Hsu P. D., Wu X., Jiang W., Marraffini L. A. and Zhang F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science. 339, 819-823. Correia S. C., Perry G. and Moreira P. I. (2016). Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks. Biochim Biophys Acta. 1862, 1909-1917. Files J. G., Carr S. and Hirsh D. (1983). Actin gene family of Caenorhabditis elegans. J Mol Biol. 164, 355-375. Gindhart J. G., Chen J., Faulkner M., Gandhi R., Doerner K., Wisniewski T. and Nandlestadt A. (2003). The kinesin-associated protein UNC-76 is required for axonal transport in the Drosophila nervous system. Mol Biol Cell. 14, 3356-3365. Goldstein B. and Macara I. G. (2007). The PAR Proteins: Fundamental Players in Animal Cell Polarization. Dev Cell. 13, 609–622. Granatiero V. and Manfredi G. (2019). Mitochondrial Transport and Turnover in the Pathogenesis of Amyotrophic Lateral Sclerosis. Biology. 8, 1-36. Hall D. H. and Treinin M. (2011). How does morphology relate to function in sensory arbors? Trends Neurosci. 34, 443-51. Hong Y. (2018). aPKC: the Kinase that Phosphorylates Cell Polarity. F1000Research. 7, 1-8. Kanellos G. and Frame M. C. (2016). Cellular functions of the ADF/cofilin family at a glance. J Cell Sci. 129, 3211-3218. Khan M. L., Ali M. Y., Siddiqui Z. K., Shakir M. A., Ohnishi H., Nishikawa K. and Siddiqui S. S. (2000). C. elegans KLP-11/OSM-3/KAP-1: orthologs of the sea urchin kinesin-II, and mouse KIF3A/KIFB/KAP3 kinesin complexes. DNA Research. 7, 121-125. Khacho M. and Slack R. S. (2018). Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev Dyn. 247, 47-53. Kuroda S., Nakagawa N., Tokunaga C., Tatematsu K. and Tanizawa K. (1999). Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein. J Cell Biol. 144, 403-411. Li B., Kim H., Beers M. and Kemphues K. (2010). Different domains of C. elegans PAR-3 are required at different times in development. Dev Biol. 344, 745-757. Matsuo N., Terao M., Nabeshima Y. and Hoshino M. (2003). Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology. Mol Cell Neurosci. 24, 69-81. Maturana A. D., Fujita T. and Kuroda S. (2010). Functions of fasciculation and elongation protein zeta-1 (FEZ1) in the brain. Scientific World Journal. 17, 1646-1654. Mali P., Yang L., Esvelt K. M., Aach J., Guell M., DiCarlo J. E., Norville J. E. and Church G. M. (2013). RNA-guided human genome engineering via Cas9. Science. 339, 823-826. Matsuzawa K., Akita H., Watanabe T., Kakeno M., Matsui T., Wang S. and Kaibuchi K. (2016). PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions. Mol Biol Cell. 27, 1511-1523. Mulinari S. and Häcker U. (2010). Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases. 1, 28-43. Nishimura T., Kato K., Yamaguchi T., Fukata Y., Ohno S. and Kozo Kaibuchi. (2004). Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nat Cell Biol. 6, 328-334. Nishimura T., Yamaguchi T., Kato K., Yoshizawa M., Nabeshima Y., Ohno S., Hoshino M. and Kaibuchi K. (2005). PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell Biology. 7, 270-277. Pernier J., Shekhar S., Jegou A., Guichard B. and Carlier M. F. (2016). Profilin Interaction with Actin Filament Barbed End Controls Dynamic Instability, Capping, Branching, and Motility. Dev Cell. 36, 201-214. Princz A., Kounakis K. and Tavernarakis N. (2018). Mitochondrial contributions to neuronal development and function. Biol Chem. 399, 723-739. Reddy P. H. (2014). Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today. 19, 951-955. Rodriguez J., Peglion F., Martin J., Hubatsch L., Reich J., Hirani N., Gubieda A. G., Roffey J., Fernandes A. R., St Johnston D., Ahringer J. and Goehring N. W. (2017). aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity. Dev Cell. 42, 400-415. Shen Z., Zhang X., Chai Y., Zhu Z., Yi P., Feng G., Li W. and Ou G. (2014). Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development. Dev Cell. 30, 625-636. Snow J.J., Ou G., Gunnarson A.L., Walker M.R., Zhou H.M., Brust-Mascher I. and Scholey J.M. (2004). Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nature Cell Biology. 6, 1109–1113. Son G. and Han J. (2018). Roles of mitochondria in neuronal development. BMB Rep. 51,549-556. Stiess M. and Bradke F. (2011). Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol. 71, 430-444. Su C.W., Tharin S., Jin Y., Wightman B., Spector M., Meili D., Tsung N., Rhiner C., Bourikas D., Stoeckli E., Garriga G., Horvitz H. R., Hengartner M. O. (2006). The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans. J Biol. 5, 1-26. Tabish M., Siddiqui Z. K., Nishikawa K. and Siddiqui S. S. (1995). Exclusive expression of C. elegans osm-3 kinesin gene in chemosensory neurons open to the external environment. J Mol Biol. 247, 377-389. Takenawa T. and Suetsugu S. (2007). The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol. 8, 7-48. Takano T, Xu C, Funahashi Y, Namba T and Kaibuchi K. (2015). Neuronal polarization. Development. 142, 2088-2093. Takano T., Funahashi Y. and Kaibuchi K. (2019). Neuronal Polarity: Positive and Negative Feedback Signals. Front Cell Dev Biol. 7, 1-10. Valenti D., Rossi L., Marzulli D., Bellomo F., De Rasmo D., Signorile A. and Vacca R. A. (2017). Inhibition of Drp1-mediated mitochondrial fission improves mitochondrial dynamics and bioenergetics stimulating neurogenesis in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta Mol Basis Dis. 1863, 3117-3127. Waterston R. H, Hirsh D. and Lane T. R. (1984). Dominant mutations affecting muscle structure in Caenorhabditis elegans that map near the actin gene cluster. J Mol Biol. 180, 473-496. Wang S., Watanabe T., Matsuzawa K., Katsumi A., Kakeno M., Matsui T., Ye F., Sato K., Murase K., Sugiyama I., Kimura K., Mizoguchi A., Ginsberg M. H., Collard J. G. and Kaibuchi K. (2012). Tiam1 interaction with the PAR complex promotes talin-mediated Rac1 activation during polarized cell migration. J Cell Biol. 199, 331-345. Winder S. J. and Ayscough K. R. (2005). Actin-binding proteins. J Cell Sci. 118, 651-654. Willis J. H., Munro E., Lyczak R. and Bowerman B. (2006). Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Mol Biol Cell. 17, 1051-1064. Yogev S. and Shen K. (2017). Establishing Neuronal Polarity with Environmental and Intrinsic Mechanisms. Neuron. 96, 638-650. Zhang H. and Macara I. G. (2006). The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol. 8, 227-237. Zou W., Shen A., Dong X., Tugizova M., Xiang Y. K. and Shen K. (2016). A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans. Elife. 5, 1-25. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78549 | - |
| dc.description.abstract | 神經元是一種極化細胞,具有兩種功能不同的細胞結構:軸突和樹突。在培養的皮質神經元中,神經元極性建立的起初事件是軸突特異化(axon specification),這個過程是需要重塑細胞骨架(cytoskeletons),像是肌動蛋白絲(actin filamens)和微管(microtubules)。在未來軸突的特異化過程中,微管會變得更穩定,而肌動蛋白絲在生長錐(growth cone)中更具活性。由PAR-3,PAR-6 和非典型蛋白激酶C(atypical protein kinase C, aPKC)組成的PAR 蛋白複合物被認為會積累在最長的神經突(neurites)的尖端,以促進軸突特異化。儘管已經在體外研究中對神經元極性的過程了解透徹,但是在體內極化過程的調控仍然不清楚。在我的研究中,我利用秀麗隱桿線蟲(Caenorhabditis elegans)中的PVD 神經元來研究神經元極性和神經發育的機制。為了了解PAR 複合物如何在體內調節神經元極化,我對par-3 和pkc-3 基因進行了遺傳分析。我發現par-3 和pkc-3 不僅參與在軸突特異化中,而且其對於樹突形成也是十分重要的。它們同時也調控了PVD中的粒線體的運輸。我還發現了PAR3-PAR6-aPKC 複合的輔助因子osm-3、unc-76 和unc-69 是維持軸突正常生長所必需的,它們同時也參與了神經元中的粒線體數量的調控。此外,我對於肌動蛋白異型體(actin isoforms)和肌動蛋白結合蛋白(actin-binding proteins)的候選基因進行了檢查(candidate screening)。我發現了通過act-1,2,3 基因簇所調控的恆定肌動蛋白動力學對於神經元極化至關重要,這個過程同時涉及到肌動蛋白的聚合因子wve-1、fhod-1 和解聚因子unc-60 的調節。我也發現在PVD 神經元中的粒線體分佈是受到act-1, 2, 3、wsp-1、wve-1、fhod-1、pfn-1 和unc-60 所調控。我的研究將提供有關於信息調控因子和細胞骨架動力學在神經元極化的過程中所扮演的角色。 | zh_TW |
| dc.description.abstract | Neuron is a polarized cell with two kinds of functional distinct cellular processes, axons and dendrites. In cultured cortical neurons, the initial event of neuronal polarity establishment is axon specification that requires the remodeling of cytoskeletons such as actin filament and microtubules. In the specification of the future axon, microtubules are more stabilized, while actin filaments are more dynamic in the growth cone. PAR protein complex, which is composed of PAR-3, PAR-6 and atypical protein kinase C (aPKC), accumulates at the tip of the longest neurites to promote axon specification. Although the processes of neuronal polarity have been studied in vitro, the regulation of polarization in vivo is still unclear. In my study, I utilized the PVD neurons in Caenorhabditis elegans to study the mechanism of neuronal polarity and neurite development. To identify how the PAR complex regulates neuronal polarization in vivo, I have a genetic analysis on par-3 and pkc-3 genes. I found that par-3 and pkc-3 not only require for axon specification, but also for dendrites formation. They also modulate the mitochondrial distribution in PVDs. I also found that osm-3, unc-76 and unc-69, the PAR3-PAR6-aPKC complex cofactors, are required for axon maintenance and regulate mitochondria amount in PVDs. In addition, I performed a candidate screening in actin isoforms and actin-binding proteins. I demonstrated that the constant actin dynamics modulate by act-1, 2, 3 cluster is critical for neuronal polarization, which is modulated by actin polymerization factor wve-1 and fhod-1, as well as depolymerizing factor unc-60. I also found that the mitochondrial distribution in PVDs is regulated by act-1, 2, 3, wsp-1, wve-1, fhod-1, pfn-1 and unc-60. My study will provide insights of how neuronal polarization is established by the signaling regulators and cytoskeletal dynamics. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:03:23Z (GMT). No. of bitstreams: 1 ntu-108-R06442033-1.pdf: 3088832 bytes, checksum: 59dfd6e66112fcc7f6a08552ec26db4b (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | TABLES OF CONTENTS
摘要................................................... i ABSTRACT ............................................. ii TABLES OF CONTENTS.....................................iv I. INTRODUCTION........................................ 1 1.1 Establishing Neuronal Polarity with cellular signaling and cytoskeleton ........................... 1 1.2 Mitochondria contributes to neuronal development and function ....................................... 2 1.3 The PAR3-PAR6-aPKC complex is involved in neuronal polarization ............................. 4 1.4 Tiam1 interact with Par complex that contributes to neuronal polarity .............................. 5 1.5 The Kinesin II motor protein OSM-3 plays a role in axonal transport ............................... 6 1.6 UNC-76 and UNC-69 regulate axonal outgrowth and synaptic organization ..................... 6 1.7 Actin modulates the neuronal polarity by interacting with the actin-binding protein ......... 7 1.8 The C. elegans PVD neurons as an in vivo model for investigating neuronal polarity ....... 8 II. MATERIALS AND METHODS ............................ 11 2.1 Strains and Genetics ..............................11 2.2 Conditional knockouts in the specific cells by CRISPR-Cas9 .......................................... 11 2.3 Constructs and transgenic worms ...................................................... 12 2.4 Combination of different genotypes ...................................................... 13 2.5 Worm lysis for genomic DNA. ...................... 13 2.6 imaging and quantification ...................................................... 14 III. RESULTS ...................................................... 15 3.1 PVD neuron morphology, mitochondrial distribution, and motor distribution in C. elegans ...................................................... 15 3.2 PAR3-PAR6-aPKC complex is required for neurites formation, and regulates the mitochondria transport ................................................ 15 3.3 TIAM-1 interacts with PAR-3 that cooperates in neuronal polarization .......................... 17 3.4 PAR-3 localizes to axon, dendrites and cell body in PVD neurons .................................. 17 3.5 PAR-3 C-terminal domain is sufficient for its neuronal regulation .................................. 18 3.6 OSM-3 regulates in axon growth and axonal mitochondria transport .............................. 18 3.7 UNC-76 and UNC-69 is required for the axon outgrowth ................................................ 19 3.8 Act-1, 2, 3 cluster modulates the actin dynamics in PVD neuron ..................................... 20 3.9 Actin-binding proteins have different regulation in neuronal polarity .............................. 21 IV. DISCUSSION ....................................... 23 4.1 PAR-3 and PKC-3 modulate the neuronal polarity that dependents on their protein levels ................................................................................................................................................. 23 4.2 PAR-3 and TIAM-1 coordinate the establishment of neural polarity through different Rho family proteins ...................................................... 24 4.3 PAR-3 coordinates the transport of other proteins or organelles ...................................... 25 4.4 Neuronal morphology is regulated by positive and negative signals ................................ 26 4.5 The mitochondrial distribution in PVD neurons is modulated by distinct proteins .......... 27 V. FIGURES ...................................................... 29 Figure 1. PVD morphology, mitochondrial distribution and Kinesin-I motor distribution in C. elegans..................................................................................................................................... 29 Figure 2. PAR-3 and PKC-3 are required for neurites formation, and regulate the mitochondrial distribution.......................................... 31 Figure 3. PAR-3 is conditionally knocked out in PVD neurons by CRISPR-Cas9 ................ 35 Figure 4. The subcellular localization of PAR-3 in PVD neurons .......................................... 36 Figure 5. PAR-3 C-terminals domain is sufficient for its neuronal polarity ........................... 38 Figure 6. OSM-3 regulates in axon growth and mitochondrial ditribution ............................ 40 Figure 7. UNC-76 and UNC-69 is required for the axon outgrowth....................................... 43 Figure 8. Act-1, 2, 3 cluster modulates the actin dynamics in PVD neuron ........................... 46 Figure 9. Actin-binding proteins have different regulation in neuronal polarity ...................... 49 VI. TABLES ............................................51 Table 1. The list of the interested genes in my study ..................................................... 51 Table 2. Summary ..................................... 52 VII. REFERENCES ...................................... 53 VIII. APPENDIX.....................................60 8.1 Neuronal polarization in cultured hippocampal neurons....60 8.2 The model for axon specification in neuronal polarization....60 | |
| dc.language.iso | en | |
| dc.subject | PAR3-PAR6-aPKC 複合物 | zh_TW |
| dc.subject | 肌動蛋白 | zh_TW |
| dc.subject | 神經元極性 | zh_TW |
| dc.subject | UNC-69 蛋白 | zh_TW |
| dc.subject | 肌動蛋白結合蛋白 | zh_TW |
| dc.subject | OSM-3 蛋白 | zh_TW |
| dc.subject | UNC-76 蛋白 | zh_TW |
| dc.subject | PAR3-PAR6-aPKC complex | en |
| dc.subject | neuronal polarity | en |
| dc.subject | OSM-3 | en |
| dc.subject | UNC-76 | en |
| dc.subject | UNC-69 | en |
| dc.subject | actin | en |
| dc.subject | actin-binding proteins (ABP) | en |
| dc.title | 探討PAR複合體和細胞骨架在神經元極化過程中的作用 | zh_TW |
| dc.title | The Roles of PAR Complex and Cytoskeleton in Neuronal Polarization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 簡正鼎,周雅惠,蔡欣祐 | |
| dc.subject.keyword | 神經元極性,PAR3-PAR6-aPKC 複合物,OSM-3 蛋白,UNC-76 蛋白,UNC-69 蛋白,肌動蛋白,肌動蛋白結合蛋白, | zh_TW |
| dc.subject.keyword | neuronal polarity,PAR3-PAR6-aPKC complex,OSM-3,UNC-76,UNC-69,actin,actin-binding proteins (ABP), | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201903900 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-28 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06442033-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
