Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78546
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡丰喬(Feng-Chiao Tsai)
dc.contributor.authorPo-Chiang Hsiaoen
dc.contributor.author蕭柏強zh_TW
dc.date.accessioned2021-07-11T15:03:12Z-
dc.date.available2024-08-29
dc.date.copyright2019-08-29
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation1. Kerstin M Stenson M, FACS. Epidemiology and risk factors for head and neck cancer. UpToDate: Waltham, MA: UpToDate Inc; 2019.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. Nov 2018;68(6):394-424.
3. Ornitz DM, Xu J, Colvin JS, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem. Jun 21 1996;271(25):15292-15297.
4. 衛生福利部. 十大惡性腫瘤申報發生人數及發生率. 中華民國105年.
5. 衛生福利部. 惡性腫瘤申報按國際疾病分類年齡性別分. 中華民國105年.
6. Robert I Haddad M. Human papillomavirus associated head and neck cancer. UpToDate: Waltham, MA: UpToDate Inc; 2019.
7. Colin S Poon M, PhD, FRCPCKerstin M Stenson, MD, FACS. Overview of the diagnosis and staging of head and neck cancer. UpToDate: Waltham, MA: UpToDate Inc; 2019.
8. Vermorken JB, Remenar E, van Herpen C, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. Oct 25 2007;357(17):1695-1704.
9. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. New England Journal of Medicine. 2006/02/09 2006;354(6):567-578.
10. de Mello RA, Geros S, Alves MP, Moreira F, Avezedo I, Dinis J. Cetuximab plus platinum-based chemotherapy in head and neck squamous cell carcinoma: a retrospective study in a single comprehensive European cancer institution. PLoS One. 2014;9(2):e86697.
11. Keir JA, Whiteside OJ, Winter SC, Maitra S, Corbridge RC, Cox GJ. Outcomes in squamous cell carcinoma with advanced neck disease. Ann R Coll Surg Engl. Oct 2007;89(7):703-708.
12. Yokota J. Tumor progression and metastasis. Carcinogenesis. Mar 2000;21(3):497-503.
13. Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. Jun 2008;19(3):294-308.
14. Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. Jun 10 2007;313(10):2050-2062.
15. Guo M, Ehrlicher AJ, Mahammad S, et al. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys J. Oct 1 2013;105(7):1562-1568.
16. Nijkamp MM, Span PN, Hoogsteen IJ, van der Kogel AJ, Kaanders JH, Bussink J. Expression of E-cadherin and vimentin correlates with metastasis formation in head and neck squamous cell carcinoma patients. Radiother Oncol. Jun 2011;99(3):344-348.
17. da Silva SD, Morand GB, Alobaid FA, et al. Epithelial-mesenchymal transition (EMT) markers have prognostic impact in multiple primary oral squamous cell carcinoma. Clin Exp Metastas. Jan 2015;32(1):55-63.
18. Kelleher FC, O'Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis. Oct 2013;34(10):2198-2205.
19. Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol. May-Jun 2015;4(3):215-266.
20. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res. Nov 2010;8(11):1439-1452.
21. Freier K, Schwaenen C, Sticht C, et al. Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol. Jan 2007;43(1):60-66.
22. Marshall ME, Hinz TK, Kono SA, et al. Fibroblast growth factor receptors are components of autocrine signaling networks in head and neck squamous cell carcinoma cells. Clin Cancer Res. Aug 1 2011;17(15):5016-5025.
23. Vairaktaris E, Ragos V, Yapijakis C, et al. FGFR-2 and -3 play an important role in initial stages of oral oncogenesis. Anticancer Res. Nov-Dec 2006;26(6B):4217-4221.
24. Henson BJ, Gollin SM. Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res. Jun 2010;128(4):192-198.
25. Javle M, Lowery M, Shroff RT, et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J Clin Oncol. Jan 20 2018;36(3):276-282.
26. Van Cutsem E, Bang YJ, Mansoor W, et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann Oncol. Jun 1 2017;28(6):1316-1324.
27. Biello F, Burrafato G, Rijavec E, et al. Fibroblast Growth Factor Receptor (FGFR): A New Target for Non-small Cell Lung Cancer Therapy. Anticancer Agents Med Chem. 2016;16(9):1142-1154.
28. Gong SG. Isoforms of receptors of fibroblast growth factors. J Cell Physiol. Dec 2014;229(12):1887-1895.
29. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. May 2017;17(5):318-332.
30. Chang J, Wang S, Zhang Z, et al. Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer. Oncotarget. Feb 10 2015;6(4):2009-2022.
31. Wu Y, Chen Z, Ullrich A. EGFR and FGFR Signaling through FRS2 Is Subject to Negative Feedback Control by ERK1/2. Biological Chemistry. Vol 3842003:1215.
32. Magde D, Elson E, Webb WW. Thermodynamic Fluctuations in a Reacting System---Measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters. 09/11/ 1972;29(11):705-708.
33. Rigler R, Mets Ü, Widengren J, Kask P. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. European Biophysics Journal. August 01 1993;22(3):169-175.
34. Comar WD, Schubert SM, Jastrzebska B, Palczewski K, Smith AW. Time-Resolved Fluorescence Spectroscopy Measures Clustering and Mobility of a G Protein-Coupled Receptor Opsin in Live Cell Membranes. Journal of the American Chemical Society. 2014/06/11 2014;136(23):8342-8349.
35. Triffo SB, Huang HH, Smith AW, Chou ET, Groves JT. Monitoring lipid anchor organization in cell membranes by PIE-FCCS. Journal of the American Chemical Society. 2012;134(26):10833-10842.
36. Endres NF, Das R, Smith AW, et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell. 2013;152(3):543-556.
37. Schwille P, Haupts U, Maiti S, Webb WW. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophysical journal. 1999;77(4):2251-2265.
38. Muller BK, Zaychikov E, Brauchle C, Lamb DC. Pulsed interleaved excitation. Biophys J. Nov 2005;89(5):3508-3522.
39. Huang Y, Bharill S, Karandur D, et al. Molecular basis for multimerization in the activation of the epidermal growth factor receptor. Elife. 2016;5:e14107.
40. Komatsubara AT, Goto Y, Kondo Y, Matsuda M, Aoki K. Single-cell quantification of the concentrations and dissociation constants of endogenous proteins. Journal of Biological Chemistry. February 9, 2019 2019.
41. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
42. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012;337(6096):816-821.
43. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 2013/07/01/ 2013;31(7):397-405.
44. Gartside MG, Chen H, Ibrahimi OA, et al. Loss-of-Function Fibroblast Growth Factor Receptor-2 Mutations in Melanoma. Molecular Cancer Research. 2009;7(1):41.
45. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic acids research. 2014;42(Web Server issue):W401-W407.
46. Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications. 01/28/online 2016;7:10548.
47. Tym JE, Mitsopoulos C, Coker EA, et al. canSAR: an updated cancer research and drug discovery knowledgebase. Nucleic Acids Research. 2015;44(D1):D938-D943.
48. Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015;163(3):759-771.
49. Lambert TJ. FPbase: a community-editable fluorescent protein database. Nature Methods. 2019/04/01 2019;16(4):277-278.
50. Endres Nicholas F, Das R, Smith Adam W, et al. Conformational Coupling across the Plasma Membrane in Activation of the EGF Receptor. Cell. 2013;152(3):543-556.
51. Dikic I. Mechanisms controlling EGF receptor endocytosis and degradation: Portland Press Limited; 2003.
52. Tamura T, Thibert C, Royer C, et al. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature biotechnology. 2000;18(1):81.
53. Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science. 2002;298(5593):580-584.
54. Zaman SN, Resek ME, Robbins SM. Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line. J Leukoc Biol. 2008/10// 2008;84(4):1082-1091.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78546-
dc.description.abstract纖維母細胞生長因子接受器(Fibroblast growth factor receptor, FGFR)是一種穿膜且帶有酪胺酸激酶活化功能的蛋白質。它會活化MAPK、PI3K-AKT、PLC-Ca2+等下游訊息傳遞路徑,在細胞的生命週期及分化扮演相當重要的角色。FGFR的突變也與許多骨骼及軟骨發育的疾病相關。許多研究指出癌症的發展與FGFR的調控異常有關,如:非小細胞肺癌、子宮頸癌、胃癌及頭頸癌。造成頭頸癌惡化的主要原因為復發轉移,與其他癌症相比之下,頭頸癌的預後明顯較差。FGFR在頭頸癌轉移過程中扮演主要的角色,能啟動上皮細胞間質的轉化(EMT)機制。因此在頭頸癌的治療策略中抑制FGFR啟動EMT是一個具發展價值的策略。
近年來發展出許多針對FGFR所設計的小分子抑制劑,但在臨床試驗上的效果有限。在我們研究頭頸癌與FGFR抑制劑BGJ398及AZD4547的過程中,發現在血清的培養基中無法抑制FGFR的下游訊息傳遞。進一步的釐清之下發現,其中EGF與 FGF會互相補償對方下游的訊息傳遞。而此情形會在使用shRNA抑制FGFR或是EGFR後消失,因此我們猜測FGFR及EGFR之間有可能存在直接的交互作用。另一方面,在過度表達FGFR3的過程中發現會抑制FGFR2的下游訊息傳遞。因此在FGFR2及FGFR3之間可能也存在著交互作用。我們的結果證實了在分子層面的治療上無法利用全面性的抑制來阻斷FGFR2的下游訊息傳遞。因此,在了解FGFR的動態訊息傳遞後,可以解釋FGFR的抑制劑在臨床試驗上所存在的問題。
綜合以上問題,我們希望使用CRISPR基因編輯技術以及螢光交叉相關光譜(Fluorescence Cross-Correlation Spectroscopy, FCCS)來釐清這些膜蛋白的交互作用。我們透過CRISPR將感興趣之FGFR2、FGFR3以及EGFR進行編輯,並標記上不同顏色的螢光蛋白。同時透過FCCS觀察兩種膜蛋白在細胞上是否具有相關聯性,此外由於標記內生性蛋白可以即時定量出不同時間點細胞膜上的表現量。在這個平台上可以排除其他研究使用過度表達所無法觀察到內生性的蛋白表現。
在細胞遷移的實驗中,為了解FGFR2對細胞遷移行為的影響,細胞過度表達或是抑制FGFR2表現時,發現皆會影響細胞遷移時的方向性。市面上研究細胞趨向性的平台通常透過產生濃度梯度來進行實驗。但此類平台有維持時間上的限制。因此,我們利用微流道設計出一個可以穩定產生濃度梯度的,可以維持長時間穩定的濃度梯度。目前已初步的利用人類淋巴球癌細胞株對趨化因子12型的趨向性進行實驗並已驗證了平台的可行性。接著,針對頭頸癌細胞進行實驗的條件測試後,也將會利用這個平台來研究FGFR2如何影響頭頸癌細胞在遷移時的方向性。
zh_TW
dc.description.abstractFibroblast growth factor receptors (FGFRs) family is a transmembrane receptor protein subfamily of receptor tyrosine kinases (RTKs). FGFRs play important roles in many biological processes such as proliferation and differentiation, by means of regulating various downstream signaling pathways including MAPK, PI3K-AKT, PLC-Ca2+. Some members of FGFRs are also related to pathological conditions. For instance, achondroplasia is caused by point mutation of FGFR3. Recent studies showed that the causation of cancers is related to abnormality of FGFRs regulation. Examples include, non-small cell lung cancer, cervix cancer, stomach cancer and head and neck cancer. Specially, major cause of head and neck cancer deterioration is metastasis. Patients with recurrent or metastatic head and neck cancer have poor prognosis comparing to other cancers. FGFRs play critical roles in metastasis of head and neck cancer by activating epithelial mesenchymal transition (EMT) process. Therefore, one potential therapeutic strategy treatment is inhibition of FGFRs-EMT pathway.
Recently, many small molecule inhibitors targeting to FGFRs are being developed. But the clinical efficacy of these inhibitors are not satisfactory in comparison to the effective in-use EGFRs inhibitors. During our studies on FGFRs inhibitors BGJ398 and AZD4547, we noticed that the inhibitors failed to suppress FGFRs downstream signal transduction in vitro. In our further investigation, it was found that EGF and FGF mutually regulate their downstream signal transductions. So, inhibition solely on FGF could not stop the signaling cascade. However, the mutual regulation was not observed when shRNA was used to knockdown FGFR or EGFR. So we hypothesized the existence of physical interactions between FGFR and EGFR. On the other hand, by overexpressing FGFR3, we observed that the downstream signal transduction of FGFR2 is inhibited. Thus we also conjectured the existence of antagonism between FGFR2 and FGFR3. These hypotheses can explain the low performance of FGFR inhibitors in clinical tests. By fully understanding these signaling dynamics and interactions, one can not only explain the failure of clinical FGFR inhibitors, but to also improve the future therapeutic strategy on treating head and neck cancer.
To further verify the above hypotheses, we use clustered regularly interspaced short palindromic repeats (CRISPR) and fluorescence correlation spectroscopy (FCS) to study the interactions of these membrane proteins. We edited FGFR2, FGFR3 and EGFR using CRISPR to label them with different fluorescent proteins. By studying the cross correlation of spectra from two different fluorescence proteins, the detailed interaction between any two receptor can be probed. On this platform, we can also observe some phenotypes that are normally not observed by overexpression. Moreover, the expression of proteins on plasma membrane can be quantified both spatially and temporally.
On the other hand, in order to understand the effects of overexpression and inhibition of FGFR2 on cell migration, corresponding experiments are also conducted to quantify migratory properties such as speed and directionality. Most commercially available devices can only create an instantaneous concentration gradient, that will eventually reach equilibrium in certain time. Some other designs create constant gradient by flow, in which fluidic shear stress induces unwanted effects to the cells. To create a persisting constant gradient, we design a microfluidic chip that allows sustainable constant gradient creation without flow. As a proof of concept, C-X-C motif chemokine 12 is used to test SAS human oral cancer cells chemotaxis. After optimizing the microfluidic platform, we then investigate the effect of FGFR2 on directionality of cell migration of human head and neck cancer cells.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:03:12Z (GMT). No. of bitstreams: 1
ntu-108-R06443015-1.pdf: 6103093 bytes, checksum: 2898733da753833d316aff5c433cd2dc (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第1章 緒論 1
1.1 頭頸部鱗狀上皮細胞癌 1
1.1.1 概論及流行病學 1
1.1.2 臨床治療現況及所面臨之難題 2
1.1.3 頭頸癌的進展與上皮-間質的轉換相關 3
1.1.4 FGFR的構造與訊息傳遞 5
1.1.5 FGFR標靶治療在臨床上的限制 6
1.2 FGFRs與其他RTKs的交互作用 7
1.2.1 FGFR與EGFR的交互作用 7
1.2.2 FGFR2與FGFR3的拮抗作用 10
1.2.3 利用螢光相關光譜研究分子之間的動態 10
1.2.4 CRISPR基因編輯細胞株建立 11
1.3 FGFR2影響細胞遷移的極性 12
1.3.1 操控FGFR2表現量時,SAS的極性變差 12
1.3.2 利用微流道設備探討細胞遷移的趨性 13
第2章 實驗材料以及方法 14
2.1 組織培養 14
2.1.1 人類口腔鱗狀上皮細胞株 Human oral squamous cell carcinoma 14
2.1.2 人類淋巴球癌細胞 Human T lymphocyte leukemia cell 14
2.2 基因組 DNA萃取 14
2.3 聚合酶連鎖反應(polymerase chain reaction, PCR) 15
第3章 質體構築 16
3.1.1 All-in-one sgRNA/Cas9-expression(下稱pAll-Cas9) 16
3.1.2 FGFR2-mCherry Donor Vector/FGFR2-GFP Donor Vector 16
3.1.3 EGFR-GFP Donor Vector/EGFR-mCherry Donor Vector 16
3.1.4 Px Palm-GFP-mCherry/Px Palm-GFP/PxLyn-mCherry 17
3.2 慢病毒包裹及基因靜默及過度表達 17
3.2.1 慢病毒包裹及感染 17
3.3 CRISPR/CAS9 基因knock-in 17
3.3.1 sgRNA序列設計及質體建構 17
3.3.2 CRISPR/CAS9質體及HDR Donor Template轉染 18
3.3.3 單細胞分選 18
3.3.4 PIE-FCCS 18
3.3.5 微流道元件設計與製程 19
3.3.6 顯微影像曠時攝影 20
第4章 結果- FGFR及EGFR交互作用 21
4.1 建立具有螢光標記的穩定細胞株 21
4.1.1 質體建構以及病毒包裹 21
4.1.2 病毒感染以及細胞分選 22
4.1.3 顯微鏡觀察結果 23
4.2 利用CRISPR對FGFR2、FGFR3及EGFR進行螢光標記 24
4.2.1 FGFR2-mCherry及EGFR-GFP Knock-in 24
4.2.2 EGFR-mCherry/tdTomato Knock-in 30
4.2.3 FGFR3 knock-in 32
4.2.4 EGFR-GFP及EGFR-mCherry knock-in 33
4.3 關聯性控制組細胞株 35
4.4 脈衝式交替激發螢光相關光譜 36
4.4.1 系統架構 36
4.4.2 共軛焦距聚焦體積校正 37
4.4.3 EGFR-mCherry以及EGFR-GFP螢光相關光譜結果 38
4.4.4 FGFR2-mCherry以及EGFR-GFP螢光相關光譜結果 41
4.4.5 FGFR2-mCherry以及FGFR3-GFP螢光相關光譜結果 42
4.4.6 正負相關性控制組 43
4.5 結果與討論 44
第5章 結果-建立微流道梯度平台 46
5.1 微流道系統的建立以及設計 46
5.1.1 實驗目的 46
5.1.2 Gradient Generate Chip 第一版(GGC V1) 46
5.1.3 Gradient Generate Chip 第二版(GGC V2) 48
5.1.4 Gradient Generate Chip 第三版(GGC V3) 50
5.1.5 利用人類淋巴球癌細胞株Jurkat做為控制組驗證平台可行性 51
5.2 討論及未來實驗方向 51
參考文獻 52
GGC V3 Autocad完整圖面 55
Plasmid Map 56
dc.language.isozh-TW
dc.subject頭頸癌zh_TW
dc.subject纖維母細胞生長因子接受器zh_TW
dc.subject常間回文重複序列叢集關聯蛋白zh_TW
dc.subject微流道zh_TW
dc.subject螢光相關光譜zh_TW
dc.subjectCRISPRen
dc.subjectfibroblast growth factor receptorsen
dc.subjecthead and neck canceren
dc.subjectmicrofluidicsen
dc.subjectfluorescence correlation spectroscopyen
dc.title探討纖維母細胞生長因子接受器在頭頸癌遷移中的交互作用zh_TW
dc.titleQuantitative studies of fibroblast growth factor interactions in HNSCC cell migrationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor涂熊林(Hsiung-Lin Tu)
dc.contributor.oralexamcommittee凌嘉鴻(Steven Lin),蔡金吾(Jin-Wu Tsai)
dc.subject.keyword纖維母細胞生長因子接受器,頭頸癌,常間回文重複序列叢集關聯蛋白,螢光相關光譜,微流道,zh_TW
dc.subject.keywordfibroblast growth factor receptors,head and neck cancer, CRISPR, fluorescence correlation spectroscopy,microfluidics,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201903755
dc.rights.note有償授權
dc.date.accepted2019-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
dc.date.embargo-lift2024-08-29-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-108-R06443015-1.pdf
  未授權公開取用
5.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved