請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78522
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳益群 | zh_TW |
dc.contributor.advisor | Yi-Chun Wu | en |
dc.contributor.author | 謝宜岑 | zh_TW |
dc.contributor.author | Yi-Cen Xie | en |
dc.date.accessioned | 2021-07-11T15:01:48Z | - |
dc.date.available | 2024-08-19 | - |
dc.date.copyright | 2019-08-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Arda, H.E., Taubert, S., MacNeil, L.T., Conine, C.C., Tsuda, B., Van Gilst, M., Sequerra, R., Doucette-Stamm, L., Yamamoto, K.R., and Walhout, A.J. (2010). Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network. Mol Syst Biol 6, 367.
Au - Sutphin, G.L., and Au - Kaeberlein, M. (2009). Measuring Caenorhabditis elegans Life Span on Solid Media. JoVE, e1152. Bartz, R., Li, W.H., Venables, B., Zehmer, J.K., Roth, M.R., Welti, R., Anderson, R.G., Liu, P., and Chapman, K.D. (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 48, 837-847. Benador, I.Y., Veliova, M., Mahdaviani, K., Petcherski, A., Wikstrom, J.D., Assali, E.A., Acin-Perez, R., Shum, M., Oliveira, M.F., Cinti, S., et al. (2018). Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion. Cell Metab 27, 869-885 e866. Bulcha, J.T., Giese, G.E., Ali, M.Z., Lee, Y.-U., Walker, M.D., Holdorf, A.D., Yilmaz, L.S., Brewster, R.C., and Walhout, A.J.M. (2019). A Persistence Detector for Metabolic Network Rewiring in an Animal. Cell Reports 26, 460-468.e464. Cabreiro, F., and Gems, D. (2013). Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO molecular medicine 5, 1300-1310. Calder, P.C. (2015). Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J Parenter Enteral Nutr 39, 18S-32S. Campbell, E.M., and Fares, H. (2010). Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 11, 40. Chaudhari, S.N., and Kipreos, E.T. (2017). Increased mitochondrial fusion allows the survival of older animals in diverse C. elegans longevity pathways. Nat Commun 8, 182. Delahaye, J.L., Foster, O.K., Vine, A., Saxton, D.S., Curtin, T.P., Somhegyi, H., Salesky, R., and Hermann, G.J. (2014). Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell 25, 1073-1096. Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8, 870-879. Dhaunsi, G.S. (2005). Molecular mechanisms of organelle biogenesis and related metabolic diseases. Medical principles and practice : international journal of the Kuwait University, Health Science Centre 14 Suppl 1, 49-57. Dirksen, P., Marsh, S.A., Braker, I., Heitland, N., Wagner, S., Nakad, R., Mader, S., Petersen, C., Kowallik, V., Rosenstiel, P., et al. (2016). The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biology 14, 38. Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., and Sul, H.S. (2007). Regulation of lipolysis in adipocytes. Annu Rev Nutr 27, 79-101. Folick, A., Oakley, H.D., Yu, Y., Armstrong, E.H., Kumari, M., Sanor, L., Moore, D.D., Ortlund, E.A., Zechner, R., and Wang, M.C. (2015). Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83-86. Friedman, J.R., and Nunnari, J. (2014). Mitochondrial form and function. Nature 505, 335-343. Goodman, J.M. (2008). The gregarious lipid droplet. J Biol Chem 283, 28005-28009. Heintz, C., and Mair, W. (2014). You are what you host: microbiome modulation of the aging process. Cell 156, 408-411. Hermann, G.J., Schroeder, L.K., Hieb, C.A., Kershner, A.M., Rabbitts, B.M., Fonarev, P., Grant, B.D., and Priess, J.R. (2005). Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16, 3273-3288. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7-18. Kopelman, P.G. (2000). Obesity as a medical problem. Nature 404, 635-643. Kraus, F., and Ryan, M.T. (2017). The constriction and scission machineries involved in mitochondrial fission. Journal of Cell Science 130, 2953-2960. Liesa, M., Palacin, M., and Zorzano, A. (2009). Mitochondrial dynamics in mammalian health and disease. Physiological reviews 89, 799-845. Lin, C.J., and Wang, M.C. (2017). Microbial metabolites regulate host lipid metabolism through NR5A-Hedgehog signalling. Nat Cell Biol 19, 550-557. MacNeil, Lesley T., Watson, E., Arda, H.E., Zhu, Lihua J., and Walhout, Albertha J.M. (2013). Diet-Induced Developmental Acceleration Independent of TOR and Insulin in <em>C. elegans</em>. Cell 153, 240-252. Mony, V.K., Benjamin, S., and O'Rourke, E.J. (2016). A lysosome-centered view of nutrient homeostasis. Autophagy 12, 619-631. Murphy, S., Martin, S., and Parton, R.G. (2009). Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791, 441-447. Nsiah-Sefaa, A., and McKenzie, M. (2016). Combined defects in oxidative phosphorylation and fatty acid beta-oxidation in mitochondrial disease. Biosci Rep 36. O'Rourke, E.J., Soukas, A.A., Carr, C.E., and Ruvkun, G. (2009). C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10, 430-435. Ogura, K., Wicky, C., Magnenat, L., Tobler, H., Mori, I., Muller, F., and Ohshima, Y. (1994). Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev 8, 2389-2400. Perez, C.L., and Van Gilst, M.R. (2008). A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metab 8, 266-274. Rabbitts, B.M., Ciotti, M.K., Miller, N.E., Kramer, M., Lawrenson, A.L., Levitte, S., Kremer, S., Kwan, E., Weis, A.M., and Hermann, G.J. (2008). glo-3, a novel Caenorhabditis elegans gene, is required for lysosome-related organelle biogenesis. Genetics 180, 857-871. Rambold, A.S., Cohen, S., and Lippincott-Schwartz, J. (2015). Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 32, 678-692. Raposo, G., ccedil, Fevrier, B., Stoorvogel, W., and Marks, M.S. (2002). Lysosome-Related Organelles: a View from Immunity and Pigmentation. Cell Structure and Function 27, 443-456. Ray, A., Martinez, B.A., Berkowitz, L.A., Caldwell, G.A., and Caldwell, K.A. (2014). Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson's model. Cell Death Dis 5, e984. Revtovich, A.V., Lee, R., and Kirienko, N.V. (2019). Interplay between mitochondria and diet mediates pathogen and stress resistance in Caenorhabditis elegans. PLoS Genet 15, e1008011. Ruck, A., Attonito, J., Garces, K.T., Nunez, L., Palmisano, N.J., Rubel, Z., Bai, Z., Nguyen, K.C., Sun, L., Grant, B.D., et al. (2011). The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in C. elegans. Autophagy 7, 386-400. Salway, J.G. (2017). Metabolism at a glance. Schroeder, L.K., Kremer, S., Kramer, M.J., Currie, E., Kwan, E., Watts, J.L., Lawrenson, A.L., and Hermann, G.J. (2007). Function of the Caenorhabditis elegans ABC transporter PGP-2 in the biogenesis of a lysosome-related fat storage organelle. Molecular biology of the cell 18, 995-1008. Schulze, R.J., Sathyanarayan, A., and Mashek, D.G. (2017). Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 1862, 1178-1187. Soukas, A.A., Carr, C.E., and Ruvkun, G. (2013). Genetic regulation of Caenorhabditis elegans lysosome related organelle function. PLoS Genet 9, e1003908. Taubert, S., Van Gilst, M.R., Hansen, M., and Yamamoto, K.R. (2006). A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20, 1137-1149. Thiam, A.R., and Beller, M. (2017). The why, when and how of lipid droplet diversity. J Cell Sci 130, 315-324. Tilokani, L., Nagashima, S., Paupe, V., and Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays In Biochemistry 62, 341-360. Wang, H., Sreenivasan, U., Hu, H., Saladino, A., Polster, B.M., Lund, L.M., Gong, D.W., Stanley, W.C., and Sztalryd, C. (2011). Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52, 2159-2168. Watson, E., MacNeil, L.T., Arda, H.E., Zhu, L.J., and Walhout, A.J.M. (2013). Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 153, 253-266. Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., and Walhout, A.J. (2014). Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 156, 759-770. Wong, Y.C., Ysselstein, D., and Krainc, D. (2018). Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382. Zhang, S.O., Trimble, R., Guo, F., and Mak, H.Y. (2010). Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biology 11, 96. Zlotorynski, E. (2015). Organelle dynamics: regulation of mitochondrial function by diet. Nat Rev Mol Cell Biol 16, 515. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78522 | - |
dc.description.abstract | 飲食對於維持生物體脂肪恆定的影響甚鉅,因為食物不僅提供能量,其中所含的營養物質亦能調控脂肪之代謝過程。生物體分解脂肪能力下降造成了肥胖,進而引發糖尿病、心血管疾病及相關癌症的發生。雖然已知許多胞器如油滴、過氧化物酶體、溶酶體與粒線體能參與脂肪的降解,但是食物如何調控這些胞器去啟動分解脂肪的機制目前並不清楚。我們先前的實驗表明,將線蟲餵食在不同細菌食物下,線蟲體內脂肪含量並不相同。藉由光學顯微鏡觀察染色之胞器和具有特定胞器的螢光標記之線蟲,並輔以電子顯微鏡合併觀察,結果顯示攝取不同的細菌食物會對特定胞器之數量及型態產生影響。另外,我們亦發現部分酵素會在該特定胞器中影響與飲食相關的脂肪堆積。概括上述結果,本研究顯示飲食可主導特定胞器以調節宿主的脂肪代謝。 | zh_TW |
dc.description.abstract | Diets have a great impact on lipid homeostasis of an organism. In addition to providing energy, nutrients of diets regulate lipid metabolism. Imbalance in lipid homeostasis has been associated with obesity, resulting in many health issues, including diabetes, heart diseases, and certain cancers. While several organelles such as lipid droplet, peroxisome, lysosome and mitochondria, participate in lipid breakdown, how diets modulate lipid degradation in relation to these organelles remains to be elucidated. We fed C. elegans different bacterial diets and found C. elegans had different levels of fat in the intestine. Using vital dyes and specific organelle markers in combination with light and electron microscopy, we showed that bacterial diets affect specific organelle numbers and morphology. In addition, we identified a few enzymes localized to the specific organelles in diet-dependent fat storage. Altogether, our results present a model that diets affect fat metabolism through specific enzymes in specific organelles. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T15:01:48Z (GMT). No. of bitstreams: 1 ntu-108-R06b43010-1.pdf: 4551066 bytes, checksum: e113c30a006434e9a9880e50d760b2a8 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Introduction 1 Materials and Methods 11 Worm strains and husbandry 11 Bacteria strains 11 Worm synchronization 11 Oil Red O staining and quantification 12 Western blotting 13 Pulse-chase experiment 14 Fatty acid supplement 15 LysoTracker staining and quantification 15 Transmission electron microscopy 16 Vitamin B12 supplement on killed or lived bacteria 17 Results 18 DA1877 is dominant for reduced lipid content in the triacylglycerol form in C. elegans compared to OP50-fed ones 18 Fatty acids accumulate in lipid droplets (LDs) and lysosome-related organelles (LROs) to different extent in response to different diets 20 DA1877 diet-fed worms show more LROs in the intestine 21 Loss of LROs increases lipid content in DA1877-fed worms 22 Diets-mediated LRO density difference might be associated with autophagy activity 23 mdt-15 regulates LRO biogenesis in response to DA1877 25 Mitochondrial morphology is distinct under different bacterial diets while morphology is not correlated to lipid content 26 mmcm-1 is required for vitamin B12 induced lipid reduction 27 Discussion 30 Pulse-chase experiment of BODIPY –C12 30 MDT-15 functions as a regulator of lipid homeostasis 31 Organelle-organelle interaction in cells 32 The dietary effects of Vitamin B12 and other molecules on C. elegans 34 Mitochondrial dynamics and the activity 35 Figures 36 Fig.1 Pulse-chase assay of BODIPY-C12 present fatty acids appear in LDs and LROs 42 Fig.2 DA1877-fed worms had numerous LROs in the intestine 45 Fig.3 Loss of LRO causes lipid increasing under DA1877 feeding 48 Fig. 4 Endosomal trafficking is not altered in different diets fed worms 50 Fig. 5 Mutations in autophagy genes increased LRO density in OP50-fed animals 52 Fig. 6 DA1877 induced LRO biogenesis is regulated by mdt-15 53 Fig. 7 OP50 and DA1877 brought out distinct mitochondrial morphologies in the intestine of worms 55 Fig. 8 Nematodes reduced fat content in response to vitamin B12 through mmcm-1 dependent pathway 57 Fig. 9 The schematic diagram of fatty acid mobilization and its relation to organelles 58 Supplementary 59 Supplementary figure. 1 59 Supplementary figure. 2 60 Supplementary table. 1 61 Supplementary table. 2 62 Supplementary table. 3 62 Supplementary table. 4 63 Supplementary table. 5 64 Supplementary table. 6 65 Supplementary table. 7 66 Supplementary table. 8 67 Supplementary table. 9 68 Supplementary table. 10 69 Supplementary table. 11 70 Supplementary table. 12 71 References 72 | - |
dc.language.iso | en | - |
dc.title | 飲食調節線蟲脂肪之移動及其與相關胞器的關係 | zh_TW |
dc.title | Lipid mobilization regulated by diets and its relation to organelles | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王昭雯;陳昌熙;金翠庭 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Wen Wang;Chang-Shi Chen;Tsiu-Ting Ching | en |
dc.subject.keyword | 秀麗隱桿線蟲,脂肪,肥胖,胞器,飲食, | zh_TW |
dc.subject.keyword | C. elegans,lipid,fat,organelle,diets, | en |
dc.relation.page | 75 | - |
dc.identifier.doi | 10.6342/NTU201904032 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-19 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
dc.date.embargo-lift | 2024-08-26 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 4.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。