請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78520完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳益群 | zh_TW |
| dc.contributor.author | 王儷瑗 | zh_TW |
| dc.contributor.author | Li-Yuan Wang | en |
| dc.date.accessioned | 2021-07-11T15:01:42Z | - |
| dc.date.available | 2024-08-19 | - |
| dc.date.copyright | 2019-08-26 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Folick, A., Oakley, H.D., Yu, Y., Armstrong, E.H., Kumari, M., Sanor, L., Moore, D.D., Ortlund, E.A., Zechner, R., and Wang, M.C. (2015). Lysosomal signaling molecules regulate longevity in <em>Caenorhabditis elegans</em>. Science 347, 83-86.
2. Goh, G.Y.S., Martelli, K.L., Parhar, K.S., Kwong, A.W.L., Wong, M.A., Mah, A., Hou, N.S., and Taubert, S. (2014). The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13, 70-79. 3. Hermann, G.J., Scavarda, E., Weis, A.M., Saxton, D.S., Thomas, L.L., Salesky, R., Somhegyi, H., Curtin, T.P., Barrett, A., Foster, O.K., et al. (2012). C. elegans BLOC-1 functions in trafficking to lysosome-related gut granules. PLoS One 7, e43043. 4. Jump, D.B., Botolin, D., Wang, Y., Xu, J., Christian, B., and Demeure, O. (2005). Fatty Acid Regulation of Hepatic Gene Transcription. J Nutr 135, 2503-2506. 5. Lee, D., Jeong, D.-E., Son, H.G., Yamaoka, Y., Kim, H., Seo, K., Khan, A.A., Roh, T.-Y., Moon, D.W., Lee, Y., et al. (2015). SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29, 2490-2503. 6. O'Rourke, E.J., and Ruvkun, G. (2013). MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15, 668-676. 7. Oaks, J., and Ogretmen, B. (2015). Regulation of PP2A by Sphingolipid Metabolism and Signaling. Front Oncol 4, 388-388. 8. Ogura, K., Okada, T., Mitani, S., Gengyo-Ando, K., Baillie, D.L., Kohara, Y., and Goshima, Y. (2010). Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans. Development (Cambridge, England) 137, 1657-1667. 9. Seshacharyulu, P., Pandey, P., Datta, K., and Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18. 10. Shi, X., Li, J., Zou, X., Greggain, J., Rodkaer, S.V., Faergeman, N.J., Liang, B., and Watts, J.L. (2013). Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J Lipid Res 54, 2504-2514. 11. Taubert, S., Hansen, M., Van Gilst, M.R., Cooper, S.B., and Yamamoto, K.R. (2008). The Mediator subunit MDT-15 confers metabolic adaptation to ingested material. PLoS genetics 4, e1000021. 12. Taubert, S., Van Gilst, M.R., Hansen, M., and Yamamoto, K.R. (2006). A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20, 1137-1149. 13. Xu, J., Teran-Garcia, M., Park, J.H., Nakamura, M.T., and Clarke, S.D. (2001). Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. The Journal of biological chemistry 276, 9800-9807. 14. <Deficiencies in C20 Polyunsaturated Fatty Acids Cause Behavioral.pdf>. 15. Carvalho, M., Sampaio, J.L., Palm, W., Brankatschk, M., Eaton, S., and Shevchenko, A. (2012). Effects of diet and development on the Drosophila lipidome. Molecular Systems Biology 8, 600. 16. Chalfie, M., Sulston, J., White, J., Southgate, E., Thomson, J., and Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of Neuroscience 5, 956-964. 17. Chmurzynska, A. (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. Journal of applied genetics 47, 39-48. 18. Clokey, G.V., and Jacobson, L.A. (1986). The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mechanisms of Ageing and Development 35, 79-94. 19. Cruz, M.M., Lopes, A.B., Crisma, A.R., de Sa, R.C.C., Kuwabara, W.M.T., Curi, R., de Andrade, P.B.M., and Alonso-Vale, M.I.C. (2018). Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes. Lipids in health and disease 17, 55. 20. Dancy, B.C.R., Chen, S.-W., Drechsler, R., Gafken, P.R., and Olsen, C.P. (2015). 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans. PLOS ONE 10, e0141850. 21. Domenichiello, A.F., Kitson, A.P., and Bazinet, R.P. (2015). Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Progress in Lipid Research 59, 54-66. 22. García-González, D.L., Aparicio-Ruiz, R., and Aparicio, R. (2009). 1 - Olive Oil. In Gourmet and Health-Promoting Specialty Oils, R.A. Moreau, and A. Kamal-Eldin, eds. (AOCS Press), pp. 33-72. 23. Grogan, D.W., and Cronan, J.E. (1997). Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews 61, 429-441. 24. Hermann, G.J., Schroeder, L.K., Hieb, C.A., Kershner, A.M., Rabbitts, B.M., Fonarev, P., Grant, B.D., and Priess, J.R. (2005). Genetic Analysis of Lysosomal Trafficking in Caenorhabditis elegans. Molecular Biology of the Cell 16, 3273-3288. 25. Hersh, B.M., Hartwieg, E., and Horvitz, H.R. (2002). The <em>Caenorhabditis elegans</em> mucolipin-like gene <em>cup-5</em> is essential for viability and regulates lysosomes in multiple cell types. Proceedings of the National Academy of Sciences 99, 4355-4360. 26. Kostich, M., Fire, A., and Fambrough, D.M. (2000). Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. Journal of Cell Science 113, 2595-2606. 27. Laufer, J.S., Bazzicalupo, P., and Wood, W.B. (1980). Segregation of developmental potential in early embryos of caenorhabditis elegans. Cell 19, 569-577. 28. Lesa, G.M., Palfreyman, M., Hall, D.H., Clandinin, M.T., Rudolph, C., Jorgensen, E.M., and Schiavo, G. (2003). Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 116, 4965-4975. 29. Mahesar, S.A., Sherazi, S.T.H., Khaskheli, A.R., Kandhro, A.A., and uddin, S. (2014). Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods 6, 4956-4963. 30. Mulcahy, B., Holden-Dye, L., and O'Connor, V. (2013). Pharmacological assays reveal age-related changes in synaptic transmission at the <em>Caenorhabditis elegans</em> neuromuscular junction that are modified by reduced insulin signalling. The Journal of Experimental Biology 216, 492-501. 31. Oh, K.H., and Kim, H. (2017). Aldicarb-induced Paralysis Assay to Determine Defects in Synaptic Transmission in Caenorhabditis elegans. Bio Protoc 7, e2400. 32. Papackova, Z., and Cahova, M. (2015). Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 16, 3831-3855. 33. Perez, C.L., and Van Gilst, M.R. (2008). A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell metabolism 8, 266-274. 34. Roh, Hyun C., Collier, S., Guthrie, J., Robertson, J.D., and Kornfeld, K. (2012). Lysosome-Related Organelles in Intestinal Cells Are a Zinc Storage Site in C. elegans. Cell metabolism 15, 88-99. 35. Szymanski, J., Brotman, Y., Willmitzer, L., and Cuadros-Inostroza, Á. (2014). Linking Gene Expression and Membrane Lipid Composition of <em>Arabidopsis</em>. The Plant Cell 26, 915-928. 36. Watts, J.L., and Browse, J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 99, 5854-5859. 37. Watts, J.L., Phillips, E., Griffing, K.R., and Browse, J. (2003). Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics 163, 581-589. 38. Watts, J.L., and Ristow, M. (2017). Lipid and Carbohydrate Metabolism in <em>Caenorhabditis elegans</em>. Genetics 207, 413-446. 39. Xu, N., Zhang, S.O., Cole, R.A., McKinney, S.A., Guo, F., Haas, J.T., Bobba, S., Farese, R.V., Jr., and Mak, H.Y. (2012). The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 198, 895-911. 40. <Deficiencies in C20 Polyunsaturated Fatty Acids Cause Behavioral.pdf>. 41. Adahchour, M., Brandt, M., Baier, H.U., Vreuls, R.J., Batenburg, A.M., and Brinkman, U.A. (2005). Comprehensive two-dimensional gas chromatography coupled to a rapid-scanning quadrupole mass spectrometer: principles and applications. Journal of chromatography A 1067, 245-254. 42. Ba, S., I, C., Jc, S., and Wpt, J. (2007). Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition 7, 123-146. 43. Bazan, N.G., Stark, D.T., and Petasis, N.A. (2012). Chapter 36 - Lipid Mediators: Eicosanoids, Docosanoids and Platelet-Activating Factor. In Basic Neurochemistry (Eighth Edition), S.T. Brady, G.J. Siegel, R.W. Albers, and D.L. Price, eds. (New York: Academic Press), pp. 643-662. 44. Benenati, G., Penkov, S., Müller-Reichert, T., Entchev, E.V., and Kurzchalia, T.V. (2009). Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo. Mechanisms of Development 126, 382-393. 45. Boyce, J.A. (2007). Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunological reviews 217, 168-185. 46. Carvalho, M., Sampaio, J.L., Palm, W., Brankatschk, M., Eaton, S., and Shevchenko, A. (2012). Effects of diet and development on the Drosophila lipidome. Molecular Systems Biology 8, 600. 47. Castro, C., Sar, F., Shaw, W.R., Mishima, M., Miska, E.A., and Griffin, J.L. (2012a). A metabolomic strategy defines the regulation of lipid content and global metabolism by Delta9 desaturases in Caenorhabditis elegans. BMC Genomics 13, 36. 48. Castro, C., Sar, F., Shaw, W.R., Mishima, M., Miska, E.A., and Griffin, J.L. (2012b). A metabolomic strategy defines the regulation of lipid content and global metabolism by Δ9 desaturases in Caenorhabditis elegans. BMC Genomics 13, 36. 49. Chalfie, M., Sulston, J., White, J., Southgate, E., Thomson, J., and Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of Neuroscience 5, 956-964. 50. Chen, X., Cheskin, L.J., Shi, L., and Wang, Y. (2011). Americans with diet-related chronic diseases report higher diet quality than those without these diseases. J Nutr 141, 1543-1551. 51. Chmurzynska, A. (2006). The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. Journal of applied genetics 47, 39-48. 52. Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C., Green, L.A., Izzo, J.L., Jr., Jones, D.W., Materson, B.J., Oparil, S., Wright, J.T., Jr., et al. (2003). The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama 289, 2560-2572. 53. Clokey, G.V., and Jacobson, L.A. (1986). The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mechanisms of Ageing and Development 35, 79-94. 54. Cruz, M.M., Lopes, A.B., Crisma, A.R., de Sa, R.C.C., Kuwabara, W.M.T., Curi, R., de Andrade, P.B.M., and Alonso-Vale, M.I.C. (2018). Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes. Lipids in health and disease 17, 55. 55. Dancy, B.C.R., Chen, S.-W., Drechsler, R., Gafken, P.R., and Olsen, C.P. (2015). 13C- and 15N-Labeling Strategies Combined with Mass Spectrometry Comprehensively Quantify Phospholipid Dynamics in C. elegans. PLOS ONE 10, e0141850. 56. Dettmer, K., Aronov, P.A., and Hammock, B.D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews 26, 51-78. 57. Domenichiello, A.F., Kitson, A.P., and Bazinet, R.P. (2015). Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Progress in Lipid Research 59, 54-66. 58. Dubland, J.A., and Francis, G.A. (2015). Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front Cell Dev Biol 3, 3-3. 59. Duffin, K.L., Henion, J.D., and Shieh, J.J. (1991). Electrospray and tandem mass spectrometric characterization of acylglycerol mixtures that are dissolved in nonpolar solvents. Analytical chemistry 63, 1781-1788. 60. Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R., Shimizu, T., Spener, F., van Meer, G., Wakelam, M.J., and Dennis, E.A. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50 Suppl, S9-14. 61. Folick, A., Oakley, H.D., Yu, Y., Armstrong, E.H., Kumari, M., Sanor, L., Moore, D.D., Ortlund, E.A., Zechner, R., and Wang, M.C. (2015a). Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 347, 83-86. 62. Folick, A., Oakley, H.D., Yu, Y., Armstrong, E.H., Kumari, M., Sanor, L., Moore, D.D., Ortlund, E.A., Zechner, R., and Wang, M.C. (2015b). Lysosomal signaling molecules regulate longevity in <em>Caenorhabditis elegans</em>. Science 347, 83-86. 63. Funk, C.D., Song, W.-C., and FitzGerald, G.A. (2014). Chapter 6 - Prostaglandins and Other Lipid Mediators in Reproductive Medicine. In Yen & Jaffe's Reproductive Endocrinology (Seventh Edition), J.F. Strauss, and R.L. Barbieri, eds. (Philadelphia: W.B. Saunders), pp. 108-123.e104. 64. Furuhashi, M., and Hotamisligil, G.S. (2008). Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nature reviews Drug discovery 7, 489-503. 65. García-González, D.L., Aparicio-Ruiz, R., and Aparicio, R. (2009). 1 - Olive Oil. In Gourmet and Health-Promoting Specialty Oils, R.A. Moreau, and A. Kamal-Eldin, eds. (AOCS Press), pp. 33-72. 66. German, J.B. (1998). Fatty Acids (Dietary) and the Immune System. In Encyclopedia of Immunology (Second Edition), P.J. Delves, ed. (Oxford: Elsevier), pp. 884-886. 67. Glatz, J.F.C. (2015). Lipids and lipid binding proteins: A perfect match. Prostaglandins, Leukotrienes and Essential Fatty Acids 93, 45-49. 68. Goh, G.Y.S., Martelli, K.L., Parhar, K.S., Kwong, A.W.L., Wong, M.A., Mah, A., Hou, N.S., and Taubert, S. (2014). The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13, 70-79. 69. Griffiths, W.J., Jonsson, A.P., Liu, S., Rai, D.K., and Wang, Y. (2001). Electrospray and tandem mass spectrometry in biochemistry. Biochem J 355, 545-561. 70. Grogan, D.W., and Cronan, J.E. (1997). Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews 61, 429-441. 71. Han, X., and Gross, R.W. (2003). Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44, 1071-1079. 72. Han, X., and Gross, R.W. (2005). Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24, 367-412. 73. Hermann, G.J., Scavarda, E., Weis, A.M., Saxton, D.S., Thomas, L.L., Salesky, R., Somhegyi, H., Curtin, T.P., Barrett, A., Foster, O.K., et al. (2012). C. elegans BLOC-1 functions in trafficking to lysosome-related gut granules. PLoS One 7, e43043. 74. Hermann, G.J., Schroeder, L.K., Hieb, C.A., Kershner, A.M., Rabbitts, B.M., Fonarev, P., Grant, B.D., and Priess, J.R. (2005). Genetic Analysis of Lysosomal Trafficking in Caenorhabditis elegans. Molecular Biology of the Cell 16, 3273-3288. 75. Hermansson, M., Uphoff, A., Kakela, R., and Somerharju, P. (2005). Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Analytical chemistry 77, 2166-2175. 76. Hersh, B.M., Hartwieg, E., and Horvitz, H.R. (2002). The <em>Caenorhabditis elegans</em> mucolipin-like gene <em>cup-5</em> is essential for viability and regulates lysosomes in multiple cell types. Proceedings of the National Academy of Sciences 99, 4355-4360. 77. Hilgemann, D.W., Dai, G., Collins, A., Larricia, V., Magi, S., Deisl, C., and Fine, M. (2018). Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. The Journal of General Physiology 150, 211-224. 78. Hsu, F.F., and Turk, J. (1999). Structural characterization of triacylglycerols as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisionally activated dissociation on a triple stage quadrupole instrument. Journal of the American Society for Mass Spectrometry 10, 587-599. 79. Hugh Waters, M.G. (2018). The Cost of Chronic Diseases in the U.S. 80. Jump, D.B., Botolin, D., Wang, Y., Xu, J., Christian, B., and Demeure, O. (2005). Fatty Acid Regulation of Hepatic Gene Transcription. J Nutr 135, 2503-2506. 81. Kosel, M., Wild, W., Bell, A., Rothe, M., Lindschau, C., Steinberg, C.E., Schunck, W.H., and Menzel, R. (2011). Eicosanoid formation by a cytochrome P450 isoform expressed in the pharynx of Caenorhabditis elegans. Biochem J 435, 689-700. 82. Kostich, M., Fire, A., and Fambrough, D.M. (2000). Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. Journal of Cell Science 113, 2595-2606. 83. Kulas, J., Schmidt, C., Rothe, M., Schunck, W.H., and Menzel, R. (2008). Cytochrome P450-dependent metabolism of eicosapentaenoic acid in the nematode Caenorhabditis elegans. Archives of biochemistry and biophysics 472, 65-75. 84. Lapierre, L.R., Gelino, S., Melendez, A., and Hansen, M. (2011). Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Current biology : CB 21, 1507-1514. 85. Laufer, J.S., Bazzicalupo, P., and Wood, W.B. (1980). Segregation of developmental potential in early embryos of caenorhabditis elegans. Cell 19, 569-577. 86. Lee, D., Jeong, D.-E., Son, H.G., Yamaoka, Y., Kim, H., Seo, K., Khan, A.A., Roh, T.-Y., Moon, D.W., Lee, Y., et al. (2015). SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29, 2490-2503. 87. Lesa, G.M., Palfreyman, M., Hall, D.H., Clandinin, M.T., Rudolph, C., Jorgensen, E.M., and Schiavo, G. (2003). Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 116, 4965-4975. 88. Mahesar, S.A., Sherazi, S.T.H., Khaskheli, A.R., Kandhro, A.A., and uddin, S. (2014). Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods 6, 4956-4963. 89. Mulcahy, B., Holden-Dye, L., and O'Connor, V. (2013). Pharmacological assays reveal age-related changes in synaptic transmission at the <em>Caenorhabditis elegans</em> neuromuscular junction that are modified by reduced insulin signalling. The Journal of Experimental Biology 216, 492-501. 90. Murphy, J.T., Liu, H., Ma, X., Shaver, A., Egan, B.M., Oh, C., Boyko, A., Mazer, T., Ang, S., Khopkar, R., et al. (2019). Simple nutrients bypass the requirement for HLH-30 in coupling lysosomal nutrient sensing to survival. PLOS Biology 17, e3000245. 91. O'Rourke, E.J., and Ruvkun, G. (2013). MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 15, 668-676. 92. Oaks, J., and Ogretmen, B. (2015). Regulation of PP2A by Sphingolipid Metabolism and Signaling. Front Oncol 4, 388-388. 93. Ogura, K., Okada, T., Mitani, S., Gengyo-Ando, K., Baillie, D.L., Kohara, Y., and Goshima, Y. (2010). Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans. Development (Cambridge, England) 137, 1657-1667. 94. Oh, K.H., and Kim, H. (2017). Aldicarb-induced Paralysis Assay to Determine Defects in Synaptic Transmission in Caenorhabditis elegans. Bio Protoc 7, e2400. 95. Papackova, Z., and Cahova, M. (2015). Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 16, 3831-3855. 96. Perez, C.L., and Van Gilst, M.R. (2008). A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell metabolism 8, 266-274. 97. Plenefisch, J., Xiao, H., Mei, B., Geng, J., Komuniecki, P.R., and Komuniecki, R. (2000). Secretion of a novel class of iFABPs in nematodes: coordinate use of the Ascaris/Caenorhabditis model systems. Molecular and Biochemical Parasitology 105, 223-236. 98. Ramachandran, P.V., Savini, M., Folick, A.K., Hu, K., Masand, R., Graham, B.H., and Wang, M.C. (2019). Lysosomal Signaling Promotes Longevity by Adjusting Mitochondrial Activity. Developmental cell 48, 685-696.e685. 99. Roh, Hyun C., Collier, S., Guthrie, J., Robertson, J.D., and Kornfeld, K. (2012). Lysosome-Related Organelles in Intestinal Cells Are a Zinc Storage Site in C. elegans. Cell metabolism 15, 88-99. 100. Seshacharyulu, P., Pandey, P., Datta, K., and Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett 335, 9-18. 101. Settembre, C., and Ballabio, A. (2014). Lysosome: regulator of lipid degradation pathways. Trends Cell Biol 24, 743-750. 102. Shi, X., Li, J., Zou, X., Greggain, J., Rodkaer, S.V., Faergeman, N.J., Liang, B., and Watts, J.L. (2013). Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J Lipid Res 54, 2504-2514. 103. Simopoulos, A.P. (2008). The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease. Asia Pacific journal of clinical nutrition 17 Suppl 1, 131-134. 104. Spector, A.A., and Kim, H.Y. (2015). Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochimica et biophysica acta 1851, 356-365. 105. Sun, L., and Ye, R.D. (2012). Role of G protein-coupled receptors in inflammation. Acta Pharmacol Sin 33, 342-350. 106. Szymanski, J., Brotman, Y., Willmitzer, L., and Cuadros-Inostroza, Á. (2014). Linking Gene Expression and Membrane Lipid Composition of <em>Arabidopsis</em>. The Plant Cell 26, 915-928. 107. Taubert, S., Hansen, M., Van Gilst, M.R., Cooper, S.B., and Yamamoto, K.R. (2008). The Mediator subunit MDT-15 confers metabolic adaptation to ingested material. PLoS genetics 4, e1000021. 108. Taubert, S., Van Gilst, M.R., Hansen, M., and Yamamoto, K.R. (2006). A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20, 1137-1149. 109. Thelen, A.M., and Zoncu, R. (2017). Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol 27, 833-850. 110. Touzani, O., and MacKenzie, E.T. (2007). CHAPTER 41 - ANATOMY AND PHYSIOLOGY OF CEREBRAL AND SPINAL CORD CIRCULATION. In Neurology and Clinical Neuroscience, A.H.V. Schapira, E. Byrne, S. DiMauro, R.S.J. Frackowiak, R.T. Johnson, Y. Mizuno, M.A. Samuels, S.D. Silberstein, and Z.K. Wszolek, eds. (Philadelphia: Mosby), pp. 540-549. 111. Voelkel-Johnson, C., Norris, J.S., and White-Gilbertson, S. (2018). Chapter Ten - Interdiction of Sphingolipid Metabolism Revisited: Focus on Prostate Cancer. In Advances in Cancer Research, C.E. Chalfant, and P.B. Fisher, eds. (Academic Press), pp. 265-293. 112. Wang, M.C., O'Rourke, E.J., and Ruvkun, G. (2008). Fat Metabolism Links Germline Stem Cells and Longevity in <em>C. elegans</em>. Science 322, 957-960. 113. Watts, J.L., and Browse, J. (2002a). Genetic dissection of polyunsaturated fatty acid synthesis in <em>Caenorhabditis</em> <em>elegans</em>. Proceedings of the National Academy of Sciences 99, 5854. 114. Watts, J.L., and Browse, J. (2002b). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 99, 5854-5859. 115. Watts, J.L., Phillips, E., Griffing, K.R., and Browse, J. (2003). Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics 163, 581-589. 116. Watts, J.L., and Ristow, M. (2017). Lipid and Carbohydrate Metabolism in <em>Caenorhabditis elegans</em>. Genetics 207, 413-446. 117. Witting, M., and Schmitt-Kopplin, P. (2016). The Caenorhabditis elegans lipidome: A primer for lipid analysis in Caenorhabditis elegans. Archives of biochemistry and biophysics 589, 27-37. 118. Xu, J., Teran-Garcia, M., Park, J.H., Nakamura, M.T., and Clarke, S.D. (2001). Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. The Journal of biological chemistry 276, 9800-9807. 119. Xu, M., Choi, E.-Y., and Paik, Y.-K. (2014). Mutation of the lbp-5 gene alters metabolic output in Caenorhabditis elegans. BMB Rep 47, 15-20. 120. Xu, M., Joo, H.J., and Paik, Y.K. (2011). Novel functions of lipid-binding protein 5 in Caenorhabditis elegans fat metabolism. The Journal of biological chemistry 286, 28111-28118. 121. Xu, N., Zhang, S.O., Cole, R.A., McKinney, S.A., Guo, F., Haas, J.T., Bobba, S., Farese, R.V., Jr., and Mak, H.Y. (2012). The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 198, 895-911. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78520 | - |
| dc.description.abstract | 脂肪對於大部分的生物體是必要存在的物質,它不止提供生存所需能量還是一個重要的調控因子。在脂肪分解的過程中,脂肪酸會被游離出來變成游離脂肪酸 (Free fatty acids),而游離脂肪酸和其衍生物已被知道可當作訊號因子去調控基因轉錄啟動與酵素活化。但對於飲食影響而產生的脂肪訊號因子如何去影響生物體功能,我們所知卻還是很少。我們實驗室以線蟲 (C. elegans)當作模式生物並餵食不同的細菌來研究飲食對於生物體的影響。在我們實驗室過去的研究中,發現線蟲在餵食不同飲食的狀況下,線蟲的生物體表現在脂肪含量和移動性相當不一樣。為了剖析差異中的分子機轉,我們使用了氣相層析質譜儀 (GC-MS)和液相層析質譜 (LC-MS)來分析線蟲和所食用的細菌。另外我們也採用阻斷線蟲產生這些游離脂肪酸以及外加游離脂肪酸的方法來探討其在線蟲中的功能。我們發現在特定的飲食餵食下特別的長碳鏈脂肪酸會影響線蟲內酸性胞器數目。另外也發現在特定飲食餵食下的突變線蟲可以回復神經傳遞物質的活性以及身體大小。而有些參與在脂肪代謝的酵素在不同飲食下基因轉錄表現也不同,其顯示飲食可能透過基因轉錄來調控線蟲脂肪組成和生理現象。總結來說,我們的實驗結果呈現了飲食上的差異會影響生物體脂質組成進而產生不同的脂質訊號分子並改變生物體的生理變化。 | zh_TW |
| dc.description.abstract | Lipids are important for cellular and physiological functions. Emerging evidences show that lipids not only provide energy but also play regulatory and signaling roles in multiple cellular processes. During lipid breakdown, the released free fatty acids (FFA) or resultant lipid derivatives have been shown to function as signaling molecules to regulate gene transcriptional activation and as co-activators to control enzyme activities. Still, little is known about how diets may be involved in lipid signaling to regulate host physiology. In our lab, we used C. elegans as a modal organism and fed them on different diets to study the dietary effects on C. elegans physiology. Our previous data indicated that C. elegans on different diets showed several physiological changes, including lipid content and locomotion. To dissect the mechanisms, we performed lipodomic analyses using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) approaches to identify variations in lipid compositions among bacteria and C. elegans fed on them. In addition, we examined the effects of the lipid compositions in bacteria and C. elegans may impact on C. elegans phenotypic changes by genetic mutations and lipid supplementation experiments. We found specific PUFAs that control the intestinal acidic organelles numbers of C. elegans fed on one but not the other bacterial diets. In addition, we found that some bacterial diet can rescue the phenotypes of uncoordinated movement and small body size in a mutant defective in lipid metabolism. Moreover, we found some genes involved in lipid metabolism are differentially expressed in worms fed on different diets, indicating that diets may modulate lipid composition and physiology through transcriptional regulation of these genes. Together, our results revealed that diets could impact lipidome within the organism, modulating lipid signaling molecules which may result in alteration in lifespan, locomotion, lipid contents etc. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T15:01:42Z (GMT). No. of bitstreams: 1 ntu-108-R06b43030-1.pdf: 1832566 bytes, checksum: 18bb21d5b6dbec7cc86612022c1f6f1a (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Introduction 1 Dietary effects on human health 1 Lipid and cell signaling 2 Lipidomic analysis 4 Lipases and lipid-binding proteins 6 Materials and Methods 9 C. elegans strains 9 Bacterial strains and plates preparation 9 Bacteria Mixture Assay 10 C. elegans synchronization 10 GFP reporter analysis and quantification 11 Oil Red O staining and quantification 11 Lipid extraction of worms 12 Lipid extraction of bacteria 13 Gas Chromatography Analysis for Fatty Acid Profiling 14 Liquid Chromatography Analysis for Fatty Acid Profiling 15 Aldicarb Sensitivity Assay 15 LysoTracker staining 16 Locomotion assay 17 Results 18 Comamonas DA1877 diet contains bioactive molecules to exhibit dominant effect on lipid content and locomotion in the worms 18 Comamonas DA1877 is enriched in palmitoleic acid (16:1n7) compared to E.coli OP50 19 FA 16:1n7, FA 18:1, and FA 18:4n3 appeared accumulation in DA1877-fed worms 19 DA1877-fed worms showed less cyclopropane fatty acid 22 fat-1 participates in the lipid content reduction in DA1877-fed worms 23 DA1877-mediated LRO density increase could be suppressed by fat-1 24 fat-3 is required for aldicarb sensitivity and lipid content on OP50 diets 26 DA1877 diet induced several lysosomal lipases and lipid binding proteins significantly at transcriptional level 27 Enhanced free fatty acids signal in DA1877 worms were not through specific lysosomal lipase 29 Lysosomal lipase could modulate lipid metabolism and neural activity on both diets 30 Discussion 31 The reduction expression of fat-5 and fat-7 in DA1877-fed worms 31 The dominant effect of DA1877 on neurotransmission enhancement by aldicarb sensitivity 32 Lysosomal lipase activity and LROs 33 EPA signal effect on DA1877 diet 34 Figures 36 Figure 1. DA1877 diets exhibited the dominant effect on worm lipid content and locomotion 36 Figure 2. Comamonas DA1877 is enriched in palmitoleic acid (16:1n7) and absent of cyclopropane fatty acid 39 Figure 3. Free fatty acid C16:1, C18:1 and C18:4 are increased in DA-fed worms 41 Figure 4. C. elegans fatty acid synthesis pathway with relative transcriptional expression of elongases and desaturases on different diets 43 Figure 5. DA1877-mediated lipid content increase in fat-1 mutants could be rescued by PUFA 45 Figure 6. Loss of fat-1 reversed the high levels of LysoTracker signals in DA1877-fed worms and could be rescued by EPA (20:5n3) 48 Figure 7. Loss of fat-3 exhibits different effects on aldicarb sensitivity and lipid content 50 Figure 8. DA1877 diet induced several lysosomal lipases and lipid binding proteins significantly at transcriptional level 53 Figure 9. Increased free fatty acids in DA1877 worms were not via specific lysosomal lipase, but monounsaturated fatty (18:1) and EPA (20:5n3) could be regulated by glo-1 56 Figure 10. lipl-1, lipl-2 and lipl-5 could modulate lipid metabolism and neural activity on both diets 60 Supplementary 62 Figure S1. genetic mutation disrupted PC synthesis and ceramide de novo pathway suppressed neural transmission enhancement in DA1877-fed worms 63 Figure S2. LC-MS analysis of lysosomal lipase mutants and LRO mutants 68 Table S1. (Figure 5A) 70 Table S2. (Figure 5A) 71 Table S3. (Figure 5B) 72 Table S4. (Figure 5C) 73 Table S5. (Figure 7C) 74 Table S6. (Figure 6B) 75 Table S7. (Figure 6B) 76 Table S8. (Figure 10A) 77 Table S9. (Figure 10B) 77 Table S10. (Figure S1B) 78 Table S11. (Figure S1D) 79 Acknowledgements 81 Reference 82 | - |
| dc.language.iso | en | - |
| dc.subject | 游離脂肪酸 | zh_TW |
| dc.subject | 酸性胞器 | zh_TW |
| dc.subject | 脂質組成 | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 運動性 | zh_TW |
| dc.subject | Free fatty acid | en |
| dc.subject | C. elegans | en |
| dc.subject | lipid composition | en |
| dc.subject | acidic organelles | en |
| dc.subject | movement | en |
| dc.title | 透過特定脂肪訊號調控線蟲脂肪代謝及神經活性 | zh_TW |
| dc.title | Diets regulate fat levels and neural activity through specific lipid signaling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳昌熙;王昭雯;金翠庭 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 秀麗隱桿線蟲,游離脂肪酸,脂質組成,酸性胞器,運動性, | zh_TW |
| dc.subject.keyword | C. elegans,Free fatty acid,lipid composition,acidic organelles,movement, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU201904046 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-19 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2024-08-26 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 1.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
