Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳思節zh_TW
dc.contributor.author劉佳鑫zh_TW
dc.contributor.authorChia-Hsin Liuen
dc.date.accessioned2021-07-11T15:01:00Z-
dc.date.available2024-08-20-
dc.date.copyright2019-08-26-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. 王丽娟、张永忠、张丽丽. 2009. 超声波辅助法提取大豆酱渣饼中大豆异黄酮. 中國油脂 34:52-55.
2. 行政院主計總處綠色國民所得帳. 2018. 綠色國民所得帳編製報告.
3. 行政院農委會. 2014. 農業廢棄物管理策略.
4. 李健、陈姝娟、李刚、陈晶、王敏. 2008. 醬油渣中黃酮及纖維素提取工藝的研究. 農產品加工學刊 7:200-202.
5. 黃憲騰. 2019. 利用耐鹽菌自醬油粕生產保濕因子四氫嘧啶之研究. 國立台灣大學園藝暨景觀學系碩士論文. 台北.
6. 楊明泉、賈愛娟、陳穗、張慶宇、胡鋒、吾廣泉. 2010. 利用酱油渣製備飼料主料的加工方法研究. 中國食物與營養. 2010:61-63.
7. 經濟部統計處工業產銷存動態調查. 2019. <https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx>.
8. 孙建钢、曹日亮、赵娟. 2009. 醬油渣在豬育肥中的應用試驗. 畜牧與飼料科學 30:83-84.
9. 郑昕、张苓花. 2009. Ectoine提高啤酒麥芽中酶的熱穩定性的研究. 釀酒科技. 2009:36-38.
10. 阎杰、宋光泉. 2006. 值得開發的 “廢物”-醬油渣. 中國調味品 10:14-17.
11. Abdel-Aziz, H., W. Wadie, D.M. Abdallah, G. Lentzen, and M.T. Khayyal. 2013. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine 20:585-591.
12. Abdel-Aziz, H., W. Wadie, O. Scherner, T. Efferth, and M.T. Khayyal. 2015. Bacteria-derived compatible solutes ectoine and 5α-hydroxyectoine act as intestinal barrier stabilizers to ameliorate experimental inflammatory bowel disease. J. Nat. Prod. 78:1309-1315.
13. Abu Yazid, N., R. Barrena, D. Komilis, and A. Sánchez. 2017. Solid-state fermentation as a novel paradigm for organic waste valorization: a review. Sustainability 9:224.
14. Bazazzadegan, N., M.D. Shasaltaneh, K. Saliminejad, K. Kamali, M. Banan, R. Nazari, G.H. Riazi, and H.R.K. Khorshid. 2017. Effects of Ectoine on Behavior and Candidate Genes Expression in ICV-STZ Rat Model of Sporadic Alzheimer’s Disease. Adv. Pharm. Bull. 7:629.
15. Behazin, R. and A. Ebrahimi. 2018. The physicochemical properties and tyrosinase inhibitory activity of ectoine and its analogues: A theoretical study. Comput. Theor. Chem. 1130:6-14.
16. Boer, M., E. Duchnik, R. Maleszka, and M. Marchlewicz. 2016. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol. Alergol. 33:1-5.
17. Bolognia, J.L. and J.M. Pawelek. 1988. Biology of hypopigmentation. J. Am. Acad. Dermatol. 19:217-255.
18. Bownik, A., and Z. Stępniewska. 2016. Ectoine as a promising protective agent in humans and animals. Arh. Hig. Rada. Toksikol. 67:260-265.
19. Brown, A. and J.R. Simpson. 1972. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J. Gen. Microbiol. 72:589-591.
20. Bruunsgaard, H. 2006. The clinical impact of systemic low-level inflammation in elderly populations. Dan. Med. Bull. 53:285-309.
21. Bursy, J., A.J. Pierik, N. Pica, and E. Bremer. 2007. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J. Biol. Chem. 282:31147-31155.
22. Castelo-Branco, C., and I. Soveral. 2014. The immune system and aging: a review. Gynecol. Endocrinol. 30:16-22.
23. Chen, R., L. Zhu, L. Lv, S. Yao, B. Li, and J. Qian. 2017. Optimization of the extraction and purification of the compatible solute ectoine from Halomonas elongata in the laboratory experiment of a commercial production project. World J. Microb. Biot. 33:1-7.
24. Chen, Y.H., C.W. Lu, Y.T. Shyu, and S.S. Lin. 2017. Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches. Sci. Rep. 7:13037.
25. Choi, J.W., J. Lee, and Y.I. Park. 2017. 7, 8-Dihydroxyflavone attenuates TNF-α-induced skin aging in Hs68 human dermal fibroblast cells via down-regulation of the MAPKs/Akt signaling pathways. Biomed. Pharmacother. 95:1580-1587.
26. Chung, J.H., J.Y. Seo, H.R. Choi, M.K. Lee, C.S. Youn, G.E. Rhie, K.H. Cho, K.H. Kim, K.C. Park and H.C. Eun. 2001. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J. Invest. Dermatol. 117:1218-1224.
27. Cole, M.A., T. Quan, J.J. Voorhees, and G.J. Fisher. 2018. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J. Cell Commun. Signal. 12:35-43.
28. Costin, G.E., and V.J. Hearing. 2007. Human skin pigmentation, melanocytes modu-late skin color in response to stress. FASEB J. 21:976–994.
29. Crowley, E. 2017. Compatible solute ectoine review: protection mechanisms and production methods. J. Undergraduate Stud. Trent (JUST), 5:32-39.
30. Czech, L., L. Hermann, N. Stöveken, A. Richter, A. Höppner, S. Smits, Johann Heider and E. Bremer. 2018. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes 9:177.
31. Dąbrowska, A.K., F. Spano, S. Derler, C. Adlhart, N.D. Spencer, and R.M. Rossi. 2018. The relationship between skin function, barrier properties, and body‐dependent factors. Skin Res. Technol. 24:165-174.
32. Dinarello, C.A. 2009. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27:519-550.
33. Dinarello, C.A. 2011. A clinical perspective of IL‐1β as the gatekeeper of inflammation. Eur. J. Immunol. 41:1203-1217.
34. Empadinhas, N. and M.S. da Costa. 2008. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int. Microbiol. 11:151-161.
35. Empadinhas, N. and M.S. da Costa. 2008. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol. 11:151-161.
36. Fallet, C., P. Rohe, and E. Franco‐Lara. 2010. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo‐osmotic stress. Biotechnol. Bioeng. 107:124-133.
37. Farage, M.A., K.W. Miller, P. Elsner, and H.I. Maibach. 2007. Structural characteristics of the aging skin: a review. Cutan. Ocul. Toxicol. 26:343-357.
38. Franceschi, C., M. Bonafè, S. Valensin, F. Olivieri, M. De Luca, E. Ottaviani, and G. De Benedictis. 2000. Inflamm‐aging: an evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908:244-254.
39. Fraternale A., S. Brundu, M. Magnani. 2015. Polarization and repolarization of macrophages. J. Clin. Cell. Immunol. 6:2.
40. Freund, A., A.V. Orjalo, P.Y. Desprez, and J. Campisi. 2010. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16:238-246.
41. Fuller, B. 2019. Role of PGE-2 and other inflammatory mediators in skin aging and their inhibition by topical natural anti-inflammatories. Cosmetics 6:6.
42. Galinski, E.A. and R.M. Herzog. 1990. The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch. Microbiol. 153:607-613.
43. Graf, R., S. Anzali, J. Buenger, F. Pfluecker, and H. Driller. 2008. The multifunctional role of ectoine as a natural cell protectant. Clin. Dermatol. 26:326-333.
44. Grammann, K., A. Volke, and H.J. Kunte. 2002. New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J. Bacterial. 184:3078-3085.
45. Guillerme, J.B., C. Couteau, and L. Coiffard. 2017. Applications for marine resources in cosmetics. Cosmetics 4:35.
46. Guzmán, H., D. Van-Thuoc, J. Martín, R. Hatti-Kaul, and J. Quillaguamán. 2009. A process for the production of ectoine and poly (3-hydroxybutyrate) by Halomonas boliviensis. Appl. Microbial. Biotechnol. 84:1069-1077.
47. Hahn, M.B., S. Meyer, M.A. Schröter, H.J. Kunte, T. Solomun, and H. Sturm. 2017. DNA protection by ectoine from ionizing radiation: molecular mechanisms. Phys. Chem. Chem. Phys. 19: 25717-25722.
48. Imokawa, G., T. Kobayashi, M. Miyagishi, K. Higashi, and Y. Yada. 1997. The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Res. 10:218-228.
49. Ishihara, K. and T. Hirano. 2002. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 13:357-368.
50. Jebbar, M., R. Talibart, K. Gloux, T. Bernard, and C. Blanco. 1992. Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J. Bacteriol. 174:5027-5035.
51. Kanaki, T., E. Makrantonaki, and C.C. Zouboulis. 2016. Biomarkers of skin aging. Rev. Endocr. Metab. Dis. 17:433-442.
52. Kindzierski, V., S. Raschke, N. Knabe, F. Siedler, B. Scheffer, K. Pflüger-Grau, F. Pfeiffer, D. Oesterhelt, A. Marin-Sanguino and H.J. Kunte. 2017. Osmoregulation in the halophilic bacterium Halomonas elongata: A case study for integrative systems biology. PloS one 12: e0168818.
53. Kolp, S., M. Pietsch, E.A. Galinski, and M. Gütschow. 2006. Compatible solutes as protectants for zymogens against proteolysis. Biochim. Biophys. Acta. 1764:1234-1242.
54. Kunte, H.J., G. Lentzen, and E.A. Galinski. 2014. Industrial production of the cell protectant ectoine : protection mechanisms, processes, and products. Curr. Biotechnol. 3:10-25.
55. Kushner, D.J. 1968. Halophilic Bacteria, p.73-99. In: W.W. Umbreit, D. Perlman, and F.M. Richards (eds.). Adv. Appl. Microbiol. Massachusetts: Academic Press.
56. Lai-Cheong, J.E. and J.A. McGrath. 2017. Structure and function of skin, hair and nails. Medicine. 45:347-351.
57. Lang, Y.J., L. Bai, Y.N. Ren, L.H. Zhang, and S. Nagata. 2011. Production of ectoine through a combined process that uses both growing and resting cells of Halomonas salina DSM 5928T. Extremophiles 15:303-310.
58. Langton, A.K., H.K. Graham, C.E. Griffiths, and R.E. Watson. 2019. Ageing significantly impacts the biomechanical function and structural composition of skin. Exp. Dermatol. 28:981-984.
59. Lentzen, G., and T. Schwarz. 2006. Extremolytes: natural compounds from extremophiles for versatile applications. Appl. Microbial. Biotechnol. 72:623-634.
60. Lippert, K. and E.A. Galinski. 1992. Enzyme stabilization be ectoine-type compatible solutes: protection against heating, freezing and drying. Appl. Microbiol. Biotechnol. 37:61-65.
61. Magishi, N., N. Yuikawa, M. Kobayashi, and S. Taniuchi. 2017. Degradation and removal of soybean allergen in Japanese soy sauce. Mol. Med. Rep. 16:2264-2268.
62. Maheshwari, D.K., and M. Saraf. 2015. Halophiles. Switzerland: Springer International Publishing.
63. Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature. 454:428-435.
64. Melmer, G. and T. Schwarz. 2009. Ectoines: a new type of compatible solutes with great commercial potential. Extremophiles 3:298.
65. Nagata, S., Y. Maekawa, T. Ikeuchi, Y.B. Wang, and A. Ishida, 2002. Effect of compatible solutes on the respiratory activity and growth of Escherichia coli K-12 under NaCl stress. J. Biosci. Bioeng. 94:384-389.
66. Nagata, S., Y. Wang, A. Oshima, L. Zhang, H. Miyake, H. Sasaki, and A. Ishida. 2008. Efficient cyclic system to yield ectoine using Brevibacterium sp. JCM 6894 subjected to osmotic downshock. Biotechnol. Bioeng. 99:941-948.
67. Ng, K.W. and W.M. Lau. 2015. Skin deep: the basics of human skin structure and drug penetration. p. 3-11. Percutaneous penetration enhancers chemical methods in penetration enhancement. Springer. Berlin. Heidelberg.
68. Onraedt, A.E., B.A. Walcarius, W.K. Soetaert, and E.J. Vandamme. 2005. Optimization of ectoine synthesis through fed‐batch fermentation of Brevibacterium epidermis. Biotechnol. Prog. 21:1206-1212.
69. Oprzeska-Zingrebe, E.A., S. Meyer, A. Roloff, H.J. Kunte, and J. Smiatek. 2018. Influence of compatible solute ectoine on distinct DNA structures: thermodynamic insights into molecular binding mechanisms and destabilization effects. Phys. Chem. Chem. Phys. 20:25861-25874.
70. Orlow, S.J. 1995. Melanosome are specialized members of the lysosomal lineage of organelles. J. Invest. Dermatol. 105:3-7.
71. Pastor, J.M., M. Salvador, M. Argandoña, V. Bernal, M. Reina-Bueno, L.N. Csonka, J.L. Iborra, C. Vargas, J.J. Nieto, and M. Cánovas. 2010. Ectoines in cell stress protection: uses and biotechnological production. Biotechnol. Adv. 28:782-801.
72. Peng, L.H., S. Liu, S.Y. Xu, L. Chen, Y.H. Shan, W. Wei, W.Q. Liang and J.Q. Gao. 2013. Inhibitory effects of salidroside and paeonol on tyrosinase activity and melanin synthesis in mouse B16F10 melanoma cells and ultraviolet B-induced pigmentation in guinea pig skin. Phytomedicine 20:1082-1087.
73. Piubeli, F., M. Salvador, M. Argandoña, J.J. Nieto, V. Bernal, J.M. Pastor, M. Cánovas. and C. Vargas. 2018. Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model. Microb. Cell Fact. 17:2-20.
74. Popa, C., M.G. Netea, P.L. Van Riel, J.W. Van Der Meer, and A.F. Stalenhoef. 2007. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 48:751-762.
75. Raetz, C. R. and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Ann. Rev. biochem. 71:635-700.
76. Rajesh, A., L. Wise, and M. Hibma. 2019. The role of Langerhans cells in pathologies of the skin. Immunol. Cell Boil.
77. Ravindran, R., and A.K. Jaiswal. 2016. Exploitation of food industry waste for high-value products. Trends Biotechnol. 34:58-69.
78. Regev, R., I. Peri, H. Gilboa, and Y. Avi-Dor. 1990. 13C NMR study of the interrelation between synthesis and uptake of compatible solutes in two moderately halophilic eubacteria: bacterium Ba1 and Vibro costicola. Arch. Biochem. Biophys. 278:106-112.
79. Rittié, L., and G.J. Fisher. 2015. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 5:a015370.
80. Salmannejad, F. and N. Nafissi-Varcheh. 2017. Ectoine and hydroxyectoine inhibit thermal-induced aggregation and increase thermostability of recombinant human interferon Alfa2b. Eur. J. Pharm. Sci. 97:200-207.
81. Sauer, T. and E.A. Galinski. 1998. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol. Bioeng. 57:306-313.
82. Schröter, M.A., S. Meyer, M.B. Hahn, T. Solomun, H. Sturm, and H.J. Kunte. 2017. Ectoine protects DNA from damage by ionizing radiation. Sci. Rep. 7:15272.
83. Schweikhard, E.S., S.I. Kuhlmann, H.J. Kunte, K. Grammann, and C.M. Ziegler. 2010. Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581T. Biochemistry. 49:2194-2204.
84. Sharma J., A. Al-Omran, S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252-259.
85. Shiomi, N. 2016. Molecular mechanisms of skin aging and rejuvenation. p.57-74. In: Kim, M., and H.J. Park (eds.). Molecular mechanisms of the aging process and rejuvenatio n. InTech: Manila, Philippines.
86. Shivanand, P., and G. Mugeraya. 2011. Halophilic bacteria and their compatible solutes–osmoregulation and potential applications. Curr. Sci. 100:1516-1521.
87. Shuster, S.A.M., M.M. BLACK, and E.V.A. Mcvitie. 1975. The influence of age and sex on skin thickness, skin collagen and density. Br. J. Dermatol. 93:639-643.
88. Sugibayashi, K. 2017. Skin Morphology and Permeation Pathway Through the Skin. p. 3-11. Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds. Springer. Tokyo.
89. Tobin, D.J. 2017. Introduction to skin aging. J. Tissue Viability. 26:37-46.
90. Tuncer Budanur, D., N. Zibandeh, D. Genç, M. Gökalp, K. Kaşali, T. Akkoç, and E. Sepet. 2018. Effect of cDMEM media containing Ectoine on human periodontal ligament mesenchymal stem cell survival and differentiation. Dent. Traumatol. 34:188-200.
91. Van-Thuoc, D., H. Guzmán, J. Quillaguamán, and R. Hatti-Kaul. 2010. High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. J. biotechnol. 147:46-51.
92. Vargas, C., M. Jebbar, R. Carrasco, C. Blanco, M. Calderón, F. Iglesias‐Guerra, and J. Nieto. 2006. Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens. J. Appl. Microbiol. 100:98-107.
93. Ventosa, A., J.J. Nieto, and A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62:504-544.
94. Wan, P.K., J.C.W. Lan, P.W. Chen, J.S. Tan, and H.S. Ng. 2018. Recovery of intracellular ectoine from Halomonas salina cells with poly(propylene) glycol/salt aqueous biphasic system. J. Taiwan Inst. Chem. Eng. 82:28-32.
95. Wang K.H., R.D. Lin, F.L. Hsu, Y.H. Huang, H.C. Chang, C.Y. Huang, and M.H. Lee. 2006. Cosmetic applications of selected traditional Chinese herbal medicines. J. Ethnopharmacol. 106:353-359.
96. Wang, C.Y., S.J. Wu, C.C. Ng, W.S. Tzeng, and Y.T. Shyu. 2012. Halomonas beimenensis sp. nov., isolated from an abandoned saltern. Int. J. Syst. Evol. Microbial. 62:3013-3017.
97. Wedeking, A., N. Hagen-Euteneuer, M. Gurgui, R. Broere, G. Lentzen, R.H. Tolba, E. Galinski and G. van Echten-Deckert. 2014. A lipid anchor improves the protective effect of ectoine in inflammation. Curr. Med. Chem. 21:2565-2572.
98. Yao, C.L., Y.M. Lin, M.S. Mohamed, and J.H. Chen. 2013. Inhibitory effect of ectoine on melanogenesis in B16-F0 and A2058 melanoma cell lines. Biochem. Eng. J. 78:163-169.
99. Yin, J., J.C. Chen, Q. Wu, and G.Q. Chen. 2015. Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv. 33:1433-1442.
100. Zhang Y., C. Liu, B. Dong, X. Ma, L. Hou, X. Cao, and C. Wang. 2015. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation 38:756-764.
101. Zhang, L., Y. Wang, C. Zhang, Y. Wang, D. Zhu, C. Wang, and S. Nagata. 2006. Supplementation effect of ectoine on thermostability of phytase. J. Biosci. Bioeng. 102:560-563.
102. Zhang, L.H., Y.J. Lang, and S. Nagata. 2009. Efficient production of ectoine using ectoine-excreting strain. Extremophiles 13:717-724.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78508-
dc.description.abstract四氫嘧啶(1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid, ectoine)為環狀胺基酸,對微生物在高滲透壓下具保護功能,屬於一種相容性溶質,其可支持細胞膨壓,並維持體內酵素的穩定性,因此如四氫嘧啶等物質能幫助嗜鹽菌(halophile)在高鹽的環境下存活。四氫嘧啶具有改善皮膚乾燥與彈性及防止紫外線照射所引起的細胞損傷等功能,目前應用於化妝品方面,具輔助增加保濕、抗UV及抗老化等功效。四氫嘧啶通常以微生物培養進行量產,在生產上主要以高鹽濃度環境刺激嗜鹽菌而大量累積後,再以低鹽濃度使菌體因滲透壓差釋放的循環方式萃取。本實驗以Halomonas beimenensis耐鹽菌株利用醬油粕整合培養生產四氫嘧啶,進一步利用甲醇、陽離子交換(cation exchange)及活性碳(activated carbon)脫色(decolorization)等步驟建立純化分離四氫嘧啶之製程,平均純度目前可達85.1%。在皮膚抗老化評估方面,採用LPS誘導巨噬細胞(macrophage)之抗發炎模式、黑色素(melanin)含量抑制模式及TNF-α誘導纖維母細胞(fibroblast)之皮膚抗老化模式進行,結果顯示,純化後之四氫嘧啶對細胞沒有毒性,且於1至1000 mg·L-1的濃度下具有能抑制一氧化氮(nitric oxide)含量與減少黑色素生成之效果,而於100 mg·L-1濃度下,四氫嘧啶對膠原蛋白(collagen)含量有較高之延緩效果。本研究建立利用醬油粕(soy sauce residue)以耐鹽菌生產四氫嘧啶純化製程,來幫助減少為生產四氫嘧啶所需要的大量鹽分,在廢棄物再利用上具有潛力,且可應用於化妝品方面,以期增進農業副產物之附加價值。zh_TW
dc.description.abstractEctoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is a cyclic amino acid, which is easily soluble in water and can accumulate in cells in large quantities without affecting cell metabolism. It is a compatible solute, which has a protective function that helps microbes against under high osmotic pressure. Thus it can maintain the osmotic pressure balance exo- and endo-cellular and offer the stability of the enzyme in the body. Therefore, halophilic or salt-tolerant bacteria can survive under high salt environment due to compatible solute. There is an increasing demand in the production and purification of ectoine at present, especially for cosmetic and healthcare applications. Ectoine has been mainly mass-produced by microorganisms. In the way of production, microbes accumulate a large amount of ectoine mainly by high salt concentration, and the osmotic pressure difference is caused by low salt concentration. This study used salt tolerant strain Halomonas beimenensis to integrate soya pomace of fermentation techniques. Methanol, cation exchange, and activated carbon were used to establish a process for purification of ectoine. The average purity was up to 85.1%. The purified ectoine was evaluated on anti-inflammatory, whitening and anti-aging effects with model of LPS-induced macrophages, melanocytes and TNF-α-induced fibroblasts. The results showed that the purified ectoine was not toxic to cells. It is potential to inhibit nitric oxide levels and melanin content at 1 to 1000 mg·L-1 of ectoine. And at 100 mg·L-1 ectoine, it has a great effect to delay collagen loss. Agricultural by-products that added value of the use will help the utilization and innovation of waste resources and create a new agricultural industry value chain.en
dc.description.provenanceMade available in DSpace on 2021-07-11T15:01:00Z (GMT). No. of bitstreams: 1
ntu-108-R06628212-1.pdf: 3826164 bytes, checksum: 36696ae9ae031e9bcff90ddebcda9ac4 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝誌 I
中文摘要 II
Abstract III
目 錄 IV
圖目錄 VII
表目錄 IX
第一章 前言 1
第二章 前人研究 2
第一節 農業廢棄物現況 2
第二節 醬油與醬油粕 6
第二節 嗜鹽菌 9
一、嗜鹽菌對高鹽濃度適應的機制 9
二、相容性溶質 10
第三節 Halomonas beimenensis介紹 12
第四節 四氫嘧啶 15
一、現況與特性 15
二、功效與應用 18
三、生合成路徑及調控 21
四、生產現況 24
五、萃取與純化 27
第五節 皮膚抗老化功效評估 29
一、人體皮膚之介紹 29
二、皮膚老化機制 31
三、發炎反應 35
四、巨噬細胞發炎與其影響 37
五、LPS誘導發炎模型 38
六、黑色素生合成及其影響 40
七、抑制黑色素功效評估 42
八、纖維母細胞與膠原蛋白 43
九、TNF-α誘導抗衰老模型 43
第三章 材料與方法 45
第一節 試驗動機與目的 45
第二節 試驗架構 46
第三節 實驗材料與設備 47
一、儀器設備 47
二、樣品來源 49
三、試驗材料 49
四、培養基配置 49
第四節 實驗方法 51
一、接種Halomonas beimenensis 51
二、批次饋料 51
三、培養於醬油粕培養基 51
四、萃取及甲醇初步純化 51
五、陽離子交換之條件建立 52
六、甲醇精煉與活性碳脫色 52
七、四氫嘧啶之含量分析 52
八、四氫嘧啶之純度測定 53
九、細胞培養 53
十、一氧化氮生成抑制試驗 55
十一、細胞激素生成試驗 56
十二、細胞黑色素含量測定 56
十三、細胞膠原蛋白含量測定 57
第五節 統計分析 57
第四章 結果討論 58
第一節 自醬油粕純化之四氫嘧啶 58
一、醬油粕初步分離與萃取 58
二、陽離子交換製程之建立 60
三、甲醇回溶 64
四、活性碳過濾 64
五、純度與回收率之探討 66
第二節 細胞功效評估 70
一、巨噬細胞RAW264.7存活率 70
二、抑制一氧化氮生成 73
三、細胞激素生成 75
四、黑色素瘤細胞B16F10存活率 80
五、抑制黑色素生成 83
四、纖維母細胞Hs68存活率 85
五、延緩膠原蛋白流失 88
第五章 結論 90
第六章 參考文獻 91
-
dc.language.isozh_TW-
dc.subject四氫嘧啶zh_TW
dc.subject純化zh_TW
dc.subject萃取zh_TW
dc.subject皮膚老化zh_TW
dc.subjectextractionen
dc.subjectskin agingen
dc.subjectpurificationen
dc.subjectectoineen
dc.title利用醬油粕以耐鹽菌生產天然四氫嘧啶及其在皮膚抗老化功效評估zh_TW
dc.titleProduction of Ectoine, a Natural Tetrahydropyrimidine, by Salt-tolerant Bacteria from Soy Sauce By-product and Evaluation of its Skin Anti-aging Effectsen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐源泰;劉育姍;曾文聖zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keyword四氫嘧啶,萃取,純化,皮膚老化,zh_TW
dc.subject.keywordectoine,extraction,purification,skin aging,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU201904084-
dc.rights.note未授權-
dc.date.accepted2019-08-20-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2024-08-26-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
3.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved