Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78486
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖尉斯zh_TW
dc.contributor.advisorWei-Ssu Liaoen
dc.contributor.author呂浩全zh_TW
dc.contributor.authorHao-Quan Luen
dc.date.accessioned2021-07-11T14:59:39Z-
dc.date.available2024-12-01-
dc.date.copyright2019-11-27-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Khan, I.; Saeed, K.; Khan, I., Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2017.
2. Austin, L. A.; Mackey, M. A.; Dreaden, E. C.; El-Sayed, M. A., The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 2014, 88 (7), 1391-1417.
3. Huang, X.; Jain, P. K.; EI-Sayed, I. H.; El-Sayed, M. A.., Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochem. Photobiol. 2006, 82 (2), 412-417.
4. Jacobs, H. O.; Whitesides, G. M., Submicrometer Patterning of Charge in Thin-Film Electrets. Science 2001, 291 (5509), 1763-1766.
5. Park, I.; Ko, S. H.; Pan, H.; Grigoropoulos, C. P.; Pisano, A. P.; J., Fréchet, J. M.; Lee, E. S.; Jeong, J. H., Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles. Adv. Mater. 2008, 20 (3), 489-496.
6. Zheng, G.; Kaefer, K.; Mourdikoudis, S.; Polavarapu, L.; Vaz, B.; Cartmell, S. E.; Bouleghlimat, A.; Buurma, N. J.; Yate, L.; de Lera, Á. R.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J., Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. J. Phys. Chem. Lett. 2015, 6 (2), 230-238.
7. Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J.; Arnold, D. P.; Liu, H.; Zhu, H., Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16 (9), 4272-4285.
8. Tee, S. Y.; Teng, C. P.; Ye, E., Metal nanostructures for non-enzymatic glucose sensing. Mater. Sci. and Eng., C 2017, 70, 1018-1030.
9. Wadell, C.; Syrenova, S.; Langhammer, C., Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides. ACS Nano 2014, 8 (12), 11925-11940.
10. Stokes, D. L.; Vo-Dinh, T., Development of an integrated single-fiber SERS sensor. Sens. Actuators B Chem. 2000, 69 (1), 28-36.
11. Rae, S. I.; Khan, I., Surface enhanced Raman spectroscopy (SERS) sensors for gas analysis. Analyst 2010, 135 (6), 1365-1369.
12. Lee, C. H.; Hankus, M. E.; Tian, L.; Pellegrino, P. M.; Singamaneni, S., Highly Sensitive Surface Enhanced Raman Scattering Substrates Based on Filter Paper Loaded with Plasmonic Nanostructures. Anal. Chem. 2011, 83 (23), 8953-8958.
13. Yu, W. W.; White, I. M., Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper. Anal. Chem. 2010, 82 (23), 9626-9630.
14. Hutter, E.; Fendler, J. H., Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16 (19), 1685-1706.
15. Narayanan, R.; El-Sayed, M. A., Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 2003, 125 (27), 8340-8347.
16. Morag, A.; Froumin, N.; Mogiliansky, D.; Ezersky, V.; Beilis, E.; Richter, S.; Jelinek, R., Patterned Transparent Conductive Au Films through Direct Reduction of Gold Thiocyanate. Adv. Funct. Mater. 2013, 23 (45), 5663-5668.
17. Zhao, W. A.; Ali, M. M.; Aguirre, S. D.; Brook, M. A.; Li, Y. F., Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes. Anal. Chem. 2008, 80 (22), 8431-8437.
18. Lee, D.; Cohen, R. E.; Rubner, M. F., Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005, 21 (21), 9651-9659.
19. Huda, S.; Smoukov, S. K.; Nakanishi, H.; Kowalczyk, B.; Bishop, K.; Grzybowski, B. A., Antibacterial Nanoparticle Monolayers Prepared on Chemically Inert Surfaces by Cooperative Electrostatic Adsorption (CELA). Acs. Appl. Mater. Inter. 2010, 2 (4), 1206-1210.
20. Guo, Q. H.; Xu, M. M.; Yuan, Y. X.; Gu, R. A.; Yao, J. L., Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate. Langmuir 2016, 32 (18), 4530-4537.
21. Zheng, G. C.; Kaefer, K.; Mourdikoudis, S.; Polavarapu, L.; Vaz, B.; Cartmell, S. E.; Bouleghlimat, A.; Buurma, N. J.; Yate, L.; de Lera, A. R.; Liz-Marzan, L. M.; Pastoriza-Santos, I.; Perez-Juste, J., Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. J. Phys. Chem. Lett. 2015, 6 (2), 230-238.
22. Fujiwara, K.; Kasaya, H.; Ogawa, N., Gold Nanoparticle Monolayer Formation on a Chemically Modified Glass Surface. Anal. Sci. 2009, 25 (2), 241-248.
23. He, H. X.; Zhang, H.; Li, Q. G.; Zhu, T.; Li, S. F. Y.; Liu, Z. F., Fabrication of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates. Langmuir 2000, 16 (8), 3846-3851.
24. Fan, H. Y.; Wright, A.; Gabaldon, J.; Rodriguez, A.; Brinker, C. J.; Jiang, Y. B., Three-dimensionally ordered gold nanocrystal/silica superlattice thin films synthesized via sol-gel self-assembly. Adv. Funct. Mater. 2006, 16 (7), 891-895.
25. Pena-Pereira, F.; Duarte, R. M. B. O.; Duarte, A. C., Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. Trac-Trend Anal. Chem. 2012, 40, 90-105.
26. A. Shoghia, A. S., H. Abdizadeh, M. R. Golobostanfarda, Synthesis of Crack-Free PZT thin Films by Sol-gel Processing on Glass Substrate. Procedia Materials Science 2015, 11, 386-390.
27. Smoukov, S. K.; Bishop, K. J. M.; Kowalczyk, B.; Kalsin, A. M.; Grzybowski, B. A., Electrostatically "Patchy" coatings via cooperative adsorption of charged nanoparticles. J. Am. Chem. Soc. 2007, 129 (50), 15623-15630.
28. Ostrander, J. W.; Mamedov, A. A.; Kotov, N. A., Two modes of linear layer-by-layer growth of nanoparticle-polylectrolyte multilayers and different interactions in the layer-by-layer deposition. J. Am. Chem. Soc. 2001, 123 (6), 1101-1110.
29. George, S. M., Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110 (1), 111-131.
30. Jiang, T.; Liu, L.; Yao, J. M., In situ Deposition of Silver Nanoparticles on the Cotton Fabrics. Fiber. Polym. 2011, 12 (5), 620-625.
31. Jiang, H. Q.; Manolache, S.; Wong, A. C. L.; Denes, F. S., Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 2004, 93 (3), 1411-1422.
32. Baytekin, H. T.; Baytekin, B.; Huda, S.; Yavuz, Z.; Grzybowski, B. A., Mechanochemical Activation and Patterning of an Adhesive Surface toward Nanoparticle Deposition. J. Am. Chem. Soc. 2015, 137 (5), 1726-1729.
33. Dorai, R.; J Kushner, M., A model for plasma modification of polypropylene using atmospheric pressure discharges. Journal of Physics D: Applied Physics 2003, 36, 666.
34. Li, Y. C.; Liao, W. S., Break-Seed-Growth Process for Metal-polymer Conjugation. 2016.
35. Gonzalez, E.; Barankin, M. D.; Guschl, P. C.; Hicks, R. F., Remote Atmospheric-Pressure Plasma Activation of the Surfaces of Polyethylene Terephthalate and Polyethylene Naphthalate. Langmuir 2008, 24 (21), 12636-12643.
36. Kuzuya, M.; Noguchi, A.; Ito, H.; Kondo, S. I.; Noda, N., Electron spin resonance studies of plasma‐induced polystyrene radicals. Journal of Polymer Science Part A: Polymer Chemistry 1991, 29, 1-7.
37. Gillian Collins, M. S., Colm O’Dwyer, Gerard McGlacken, and Justin D. Holmes, Enhanced Catalytic Activity of High-Index Faceted Palladium Nanoparticles in Suzuki–Miyaura Coupling Due to Efficient Leaching Mechanism. ACS Catal. 2014, 4 (9), 3105-3111.
38. Arisawa, M.; Al-Amin, M.; Honma, T.; Tamenori, Y.; Arai, S.; Hoshiya, N.; Sato, T.; Yokoyama, M.; Ishii, A.; Takeguchi, M.; Miyazaki, T.; Takeuchi, M.; Maruko, T.; Shuto, S., Formation of Self-Assembled Multi-Layer Stable Palladium Nanoparticles for Ligand-Free Coupling Reactions. RSC Adv. 2015, 5 (1), 676-683.
39. Xiao, Q.; Sarina, S.; Jaatinen, E.; Jia, J.; Arnold, D. P.; Liu, H.; Zhu, H., Efficient Photocatalytic Suzuki Cross-Coupling Reactions on Au-Pd Alloy Nanoparticles under Visible Light Irradiation. Green Chem. 2014, 16 (9), 4272-4285.
40. Linsebigler, A. L.; Lu, G.; Yates, J. T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95 (3), 735-758.
41. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297 (5590), 2243.
42. Kašpar, J.; Fornasiero, P.; Hickey, N., Automotive Catalytic Converters: Current Status and Some Perspectives. Catal. Today 2003, 77 (4), 419-449.
43. Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M., From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis. Angew. Chem. Int. Ed. 2010, 49 (48), 9047-9050.
44. Garrett, C. E.; Prasad, K., The Art of Meeting Palladium Specifications in Active Pharmaceutical Ingredients Produced by Pd-Catalyzed Reactions. Adv. Synth. Catal. 2004, 346 (8), 889-900.
45. Keim, W., Nickel: An Element with Wide Application in Industrial Homogeneous Catalysis. Angew. Chem. Int. Ed. 1990, 29 (3), 235-244.
46. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324 (5932), 1302.
47. Paál, Z.; Tétényi, P., The Mechanism of Aromatization on Platinum Black Catalyst; Dehydrocyclization of Hexadienes and Hexatrienes. J. Catal. 1973, 30 (3), 350-361.
48. Van Meel, K.; Smekens, A.; Behets, M.; Kazandjian, P.; Van Grieken, R., Determination of Platinum, Palladium, and Rhodium in Automotive Catalysts Using High-Energy Secondary Target X-ray Fluorescence Spectrometry. Anal. Chem. 2007, 79 (16), 6383-6389.
49. Gaita, R.; Al-Bazi, S. J., An Ion-Exchange Method for Selective Separation of Palladium, Platinum and Rhodium from Solutions Obtained by Leaching Automotive Catalytic Converters. Talanta 1995, 42 (2), 249-255.
50. Davis, R. J.; Derouane, E. G., A Non-Porous Supported-Platinum Catalyst for Aromatization of n-Hexane. Nature 1991, 349 (6307), 313-315.
51. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Lett. 2006, 6 (2), 215-218.
52. Zhao, J.; Wu, T.; Wu, K.; Oikawa, K.; Hidaka, H.; Serpone, N., Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO2 Dispersions under Visible Light Irradiation:  Evidence for the Need of Substrate Adsorption on TiO2 Particles. Environ. Sci. Technol. 1998, 32 (16), 2394-2400.
53. Fujita, Y.; Ikeda, T., Polypropylene composition. Google Patents: 1987.
54. Zheng, G.; Kaefer, K.; Mourdikoudis, S.; Polavarapu, L.; Vaz, B.; Cartmell, S. E.; Bouleghlimat, A.; Buurma, N. J.; Yate, L.; de Lera, Á. R.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J., Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. J. Phys. Chem. Lett. 2015, 6 (2), 230-238.
55. Xiao, M.; Hoshiya, N.; Fujiki, K.; Honma, T.; Tamenori, Y.; Shuto, S.; Fujioka, H.; Arisawa, M., Development of a Sulfur-Modified Glass-Supported Pd Nanoparticle Catalyst for Suzuki–Miyaura Coupling. Chem. Pharm. Bull. 2016, 64 (8), 1154-1160.
56. Li, D.; Wang, C.; Tripkovic, D.; Sun, S.; Markovic, N. M.; Stamenkovic, V. R., Surfactant Removal for Colloidal Nanoparticles from Solution Synthesis: The Effect on Catalytic Performance. ACS Catal. 2012, 2 (7), 1358-1362.
57. Campisi, S.; Chan-Thaw, C. E.; Wang, D.; Villa, A.; Prati, L., Metal Nanoparticles on Carbon Based Supports: The Effect of The Protective Agent Removal. Catal. Today 2016, 278, Part 1, 91-96.
58. Campisi, S.; Schiavoni, M.; Chan-Thaw, C. E.; Villa, A., Untangling the Role of the Capping Agent in Nanocatalysis: Recent Advances and Perspectives. Catalysts 2016, 6 (12), 185.
59. Liu, J.; Hu, G.; Yang, Y.; Zhang, H.; Zuo, W.; Liu, W.; Wang, B., Rational Synthesis of Pd Nanoparticle-Embedded Reduced Graphene Oxide Frameworks with Enhanced Selective Catalysis in Water. Nanoscale 2016, 8 (5), 2787-2794.
60. Gole, B.; Sanyal, U.; Banerjee, R.; Mukherjee, P. S., High Loading of Pd Nanoparticles by Interior Functionalization of MOFs for Heterogeneous Catalysis. Inorg. Chem. 2016, 55 (5), 2345-2354.
61. Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H., A Highly Active Heterogeneous Palladium Catalyst for the Suzuki–Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media. Angew. Chem. Int. Ed. 2010, 122 (24), 4148-4152.
62. Mori, K.; Yamaguchi, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K., Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts. J. Am. Chem. Soc. 2002, 124 (39), 11572-11573.
63. Crudden, C. M.; Sateesh, M.; Lewis, R., Mercaptopropyl-Modified Mesoporous Silica:  A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions. J. Am. Chem. Soc. 2005, 127 (28), 10045-10050.
64. Xia, J.; He, G.; Zhang, L.; Sun, X.; Wang, X., Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. Applied Catalysis B: Environmental 2016, 180, 408-415.
65. Mourdikoudis, S.; Altantzis, T.; Liz-Marzán, L. M.; Bals, S.; Pastoriza-Santos, I.; Pérez-Juste, J., Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEngComm 2016, 18 (19), 3422-3427.
66. Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J., Ni@Pd core–shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Applied Catalysis B: Environmental 2015, 162, 372–380.
67. Yan, X.; Ge, X.; Zhang, L.; Qi, L.; Liu, Y.; Wei, S.; Zhu, X.; Tang, Y., Preparation of Phosphoric Acid-functionalized Pd/C Catalyst by Coordination Reduction and Its Application. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities 2017, 38, 1619-1626.
68. Li, X.; Zeng, C.; Jiang, J.; Ai, L., Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. Journal of Materials Chemistry A 2016, 4 (19), 7476-7482.
69. Yang, Y.; Li, X.; Yang, F.; Zhang, W.; Zhang, X.; Ren, Y., New route toward integrating large nickel nanocrystals onto mesoporous carbons. Applied Catalysis B: Environmental 2015, 165, 94–102.
70. Zhang, Y.; Xia, X.; Cao, X.; Zhang, B.; Tiep, N.; He, H.; Chen, S.; Huang, Y.; Jin Fan, H., Ultrafine Metal Nanoparticles/N-Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binder-Free Water Splitting Catalysts. Advanced Energy Materials 2017, 1700220.
71. Cheng TANG, Z. Z., Kunpeng SONG, Preparation of Ni-P Co-doped Hyper-Crosslinked Polymer and Used for Reduction of 4-Nitrophenol. 2019, 36 (7), 782-789.
72. Bae, S. E.; Kim, K. J.; Hwang, Y. K.; Huh, S., Simple Preparation of Pd-NP/Polythiophene Nanospheres for Heterogeneous Catalysis. J. Colloid Interface Sci. 2015, 456, 93-99.
73. Tao, A. R.; Habas, S.; Yang, P., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
74. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104 (9), 3893-3946.
75. Mir, S. H.; Ochiai, B., Development of Hierarchical Polymer@Pd Nanowire-Network: Synthesis and Application as Highly Active Recyclable Catalyst and Printable Conductive Ink. ChemistryOpen 2016, 5 (3), 213-218.
76. Bartlett, M. D.; Markvicka, E. J.; Majidi, C., Rapid Fabrication of Soft, Multilayered Electronics for Wearable Biomonitoring. Adv. Funct. Mater. 2016, 26 (46), 8496-8504.
77. Yeo, J.; Kim, G.; Hong, S.; Kim, M. S.; Kim, D.; Lee, J.; Lee, H. B.; Kwon, J.; Suh, Y. D.; Kang, H. W.; Sung, H. J.; Choi, J. H.; Hong, W. H.; Ko, J. M.; Lee, S. H.; Choa, S. H.; Ko, S. H., Flexible Supercapacitor Fabrication by Room Temperature Rapid Laser Processing of Roll-to-Roll Printed Metal Nanoparticle Ink for Wearable Electronics Application. J. Power Sources 2014, 246, 562-568.
78. Eid, K.; Ahmad, Y. H.; Yu, H.; Li, Y.; Li, X.; AlQaradawi, S. Y.; Wang, H.; Wang, L., Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for CO-poisoning. Nanoscale 2017, 9 (47), 18881-18889.
79. Yang, Y.; Luo, L.-M.; Zhang, R.-H.; Du, J.-J.; Shen, P.-C.; Dai, Z.-X.; Sun, C.; Zhou, X.-W., Free-standing ternary PtPdRu nanocatalysts with enhanced activity and durability for methanol electrooxidation. Electrochimica Acta 2016, 222, 1094-1102.
80. Eid, K.; Wang, H.; Malgras, V.; Alothman, Z. A.; Yamauchi, Y.; Wang, L., Trimetallic PtPdRu Dendritic Nanocages with Three-Dimensional Electrocatalytic Surfaces. The Journal of Physical Chemistry C 2015, 119 (34), 19947-19953.
81. Milazzo, G., Caroli, S., and Sharma, V. K. (1978). Tables of Standard Electrode Potentials (Wiley, Chichester).
82. Zhu, Y.; Cao, C.; Tao, S.; Chu, W.; Wu, Z.; Li, Y., Ultrathin Nickel Hydroxide and Oxide Nanosheets: Synthesis, Characterizations and Excellent Supercapacitor Performances. Scientific Reports 2014, 4, 5787.
83. Sun, X.; Wang, G.; Hwang, J.-Y.; Lian, J., Porous nickel oxide nano-sheets for high performance pseudocapacitance materials. Journal of Materials Chemistry 2011, 21 (41), 16581-16588.
84. Das, S. K.; Dickinson, C.; Lafir, F.; Brougham, D. F.; Marsili, E., Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry 2012, 14 (5), 1322-1334.
85. Corma, A.; Garcia, H., Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews 2008, 37 (9), 2096-2126.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78486-
dc.description.abstract本研究探討如何在不同的聚合物基材上鑲嵌各種不同的金屬奈米粒子。此法利用氧氣電漿處理將聚合物表面活化,之後浸入金屬前驅物溶液,便可於聚合物表面原位還原生成金屬奈米粒子。這項技術仰賴於氧氣電漿活化過程中聚合物表面之化學鍵斷鍵,並於表面所生成之帶有自由基活性物種。這些自由基的存在促使金屬離子於介面上發生還原反應並產生金屬核種,同時能均勻地分布鑲嵌於聚合物之表面上。而隨著持續性之還原沉積,最終聚合物表面將形成單或多層覆蓋之金屬奈米粒子層。架構於先前我們實驗室已經合成出鈀和銀奈米粒子的基礎,本研究利用此斷鍵-成核-長晶法更進一步成功合成了鉑、釕、鎳和金的奈米粒子,並將這些金屬奈米粒子之承載基材成功拓展至聚對苯二甲酸乙二酯薄膜、聚丙烯微量離心管和三聚氰胺海綿等三類聚合物。zh_TW
dc.description.abstractWe have successfully synthesized different metal nanoparticles on various polymer substrates via the Break-Seed-Growth process. The polymer surface is first activated by oxygen plasma, and then immediately immersed into the metal precursor solution for in situ metal particle growth. During the activation process, chemical bonds of the polymer break, and active species rendering free radicals are formed on the polymer surface. These free radicals promote the reduction of metal ions to produce metal seeds that are evenly distributed on the polymer surface. After a continuous reduction process, single or multiple layers of metal nanoparticles can be formed on the polymer surface. While previous studies reported the successful production of palladium and silver nanoparticles on the polymer substrate, here the break-seed-growth process has been further extended to platinum, ruthenium, nickel, and gold nanoparticle generation. Furthermore, three distinct polymer substrates are also demonstrated, including polyethylene terephthalate films, polypropylene microcentrifuge tubes, and melamine sponges.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:59:39Z (GMT). No. of bitstreams: 1
ntu-108-R06223158-1.pdf: 4293189 bytes, checksum: b644030b95cf192121da1162730ebb43 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 引言 1
1.2 斷鍵-成核-長晶法 7
1.3 金屬催化劑 11
第二章 實驗材料與方法 14
2.1 實驗藥品 14
2.2 實驗材料 14
2.3 實驗儀器 15
2.4 實驗步驟 16
2.4.1 金屬前驅物溶液的製備 16
2.4.2 金屬/PET薄膜的製備 17
2.4.3 金屬/PP微量離心管的製備 18
2.4.4 金屬/美耐皿海綿的製備 20
2.4.5 兩步合成金屬奈米粒子 22
2.4.6 利用金屬/PP微量離心管將4-NP還原為4-AP 23
第三章 實驗結果與討論 25
3.1 利用斷鍵-成核-長晶法合成金屬奈米粒子 25
3.1.1 鉑 27
3.1.2 釕 30
3.1.3 鎳 33
3.1.4 金 36
3.2 利用金屬/PP微量離心管進行有機催化反應: 4-NP還原為4-AP 38
3.2.1 單金屬/PP微量離心管 38
3.2.2 多金屬/PP微量離心管 45
第四章 結論 58
第五章 參考文獻 59
-
dc.language.isozh_TW-
dc.title利用斷鍵-成核-長晶法將金屬奈米粒子合成在不同的聚合物基材上zh_TW
dc.titleMetal Nanoparticle Synthesis on Various Polymer Substrates via the Break-Seed-Growth Processen
dc.typeThesis-
dc.date.schoolyear108-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹益慈;陳浩銘;王宗興;戴桓青zh_TW
dc.contributor.oralexamcommitteeYi-Tsu Chan;Hao Ming Chen;Tsung-Shing Wang;Hwan-Ching Taien
dc.subject.keyword鉑,釕,鎳,金,奈米粒,聚合物,zh_TW
dc.subject.keywordplatinum,ruthenium,nickel,gold,nanoparticle,polymer,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU201904280-
dc.rights.note未授權-
dc.date.accepted2019-11-19-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2024-12-01-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
4.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved