請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78485完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳 | zh_TW |
| dc.contributor.advisor | Yufeng Jane Tseng | en |
| dc.contributor.author | 張家瑜 | zh_TW |
| dc.contributor.author | Chia-Yu Chang | en |
| dc.date.accessioned | 2021-07-11T14:59:35Z | - |
| dc.date.available | 2024-11-25 | - |
| dc.date.copyright | 2019-11-27 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | D. C. Andersen and C. F. Goochee. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells. Biotechnology and Bioengineering, 1995.
M. J. Anderson and C. J. Ter Braak. Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation, 73(2):85–113, 2003. S. Andreozzi, L. Miskovic, and V. Hatzimanikatis. ISCHRUNK - In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genomescale Metabolic Networks. Metabolic Engineering, 2016. A. P. Arkin, R. W. Cottingham, C. S. Henry, N. L. Harris, R. L. Stevens, S. Maslov, P. Dehal, D. Ware, F. Perez, S. Canon, M. W. Sneddon, M. L. Henderson, W. J. Riehl, D. Murphy-Olson, S. Y. Chan, R. T. Kamimura, S. Kumari, M. M. Drake, T. S. Brettin, E. M. Glass, D. Chivian, D. Gunter, D. J. Weston, B. H. Allen, J. Baumohl, A. A. Best, B. Bowen, S. E. Brenner, C. C. Bun, J. M. Chandonia, J. M. Chia, R. Colasanti, N. Conrad, J. J. Davis, B. H. Davison, M. Dejongh, S. Devoid, E. Dietrich, I. Dubchak, J. N. Edirisinghe, G. Fang, J. P. Faria, P. M. Frybarger, W. Gerlach, M. Gerstein, A. Greiner, J. Gurtowski, H. L. Haun, F. He, R. Jain, M. P. Joachimiak, K. P. Keegan, S. Kondo, V. Kumar, M. L. Land, F. Meyer, M. Mills, P. S. Novichkov, T. Oh, G. J. Olsen, R. Olson, B. Parrello, S. Pasternak, E. Pearson, S. S. Poon, G. A. Price, S. Ramakrishnan, P. Ranjan, P. C. Ronald, M. C. Schatz, S. M. Seaver, M. Shukla, R. A. Sutormin, M. H. Syed, J. Thomason, N. L. Tintle, D. Wang, F. Xia, H. Yoo, S. Yoo, and D. Yu. KBase: The United States department of energy systems biology knowledgebase. Nature Biotechnology, 2018. M. K. Aurich, G. Paglia, Ó. Rolfsson, S. Hrafnsdóttir, M. Magnúsdóttir, M. M. Stefaniak, B. Palsson, R. M. T. Fleming, and I. Thiele. Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics, 11(3):603–619, 2015. M. B. Badsha, H. Kurata, M. Onitsuka, T. Oga, and T. Omasa. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions. Journal of Bioscience and Bioengineering, 122(1):117–124, 2016. A. Berting, M. R. Farcet, and T. R. Kreil. Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnology and Bioengineering, 2010. F. Bertrand and M. Maumy. Using partial triadic analysis for depicting the temporal evolution of spatial structures: assessing phytoplankton structure and succession in a water reservoir. Case Studies In Business, Industry And Government Statistics, 4(1):23–43, 2014. S. Bougeard and S. Dray. Supervised multiblock analysis in R with the ade4 package. Journal of Statistical Software, 86(1):1–17, 2018. J. Camacho, A. Pérez-Villegas, R. A. Rodríguez-Gómez, and E. Jiménez-Mañas. Multivariate Exploratory Data Analysis (MEDA) Toolbox for Matlab. Chemometrics and Intelligent Laboratory Systems, 2015. J. Camacho, R. A. Rodríguez-ómez, and E. Saccenti. Group-Wise Principal Component Analysis for Exploratory Data Analysis. Journal of Computational and Graphical Statistics, 26(3):501–512, 2017. A. Chakrabarti, L. Miskovic, K. C. Soh, and V. Hatzimanikatis. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric thermodynamic and physiological constraints. Biotechnology Journal, 8(9):1043–1057, 2013. P. Chen and S. W. Harcum. Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metabolic Engineering, 2006. J. Chong, O. Soufan, C. Li, I. Caraus, S. Li, G. Bourque, D. S. Wishart, and J. Xia. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 2018. W. P. K. Chong, S. H. Thng, A. P. Hiu, D. Y. Lee, E. C. Y. Chan, and Y. S. Ho. LC-MS-based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells. Biotechnology and Bioengineering, 2012. L. Chu and D. K. Robinson. Industrial choices for protein production by large-scale cell culture. Current Opinion in Biotechnology, 2001. L. Cottret, C. Frainay, M. Chazalviel, F. Cabanettes, Y. Gloaguen, E. Camenen, B. Merlet, S. Heux, J. C. Portais, N. Poupin, F. Vinson, and F. Jourdan. MetExplore: Collaborative edition and exploration of metabolic networks. Nucleic Acids Research, 2018. O. De la Cruz and S. Holmes. The duality diagram in data analysis: Examples of modern applications. Annals of Applied Statistics, 5(4):2266–2277, 2011. S. Dietmair, M. P. Hodson, L. E. Quek, N. E. Timmins, P. Chrysanthopoulos, S. S. Jacob, P. Gray, and L. K. Nielsen. Metabolite profiling of CHO cells with different growth characteristics. Biotechnology and Bioengineering, 109(6):1404–1414, 2012. S. DOLÉDEC and D. CHESSEL. Co-inertia analysis: an alternative method for studying species–environment relationships. Freshwater Biology, 1994. S. Dray, D. Chessel, and J. Thioulouse. Co-inertia analysis and the linking of ecological data tables. Ecology, 84(11):3078–3089, 2003 S. Dray, A.B. Dufour, and D. Chessel. The ade4 package – II: Two-table and K-table methods. R News, 7(2):47–52, 2007. A. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke. COBRApy: COnstraintsBased Reconstruction and Analysis for Python. BMC Systems Biology, 2013. J. Engel, L. Blanchet, B. Bloemen, L. P. Van den Heuvel, U. H. Engelke, R. A. Wevers, and L. M. Buydens. Regularized MANOVA (rMANOVA) in untargeted metabolomics. Analytica Chimica Acta, 2015. S. N. Galleguillos, D. Ruckerbauer, M. P. Gerstl, N. Borth, M. Hanscho, and J. Zanghellini. What can mathematical modelling say about CHO metabolism and protein glycosylation? Computational and Structural Biotechnology Journal, 15:212–221, 2017. G. Gelius-Dietrich, A. A. Desouki, C. J. Fritzemeier, and M. J. Lercher. Sybil-Efficient constraint-based modelling in R. BMC Systems Biology, 2013. F. Giacomoni, G. Le Corguillé, M. Monsoor, M. Landi, P. Pericard, M. Pétéra, C. Duperier, M. Tremblay-Franco, J. F. Martin, D. Jacob, S. Goulitquer, E. A. Thévenot, and C. Caron. Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics, 2015. A. Golabgir, J. M. Gutierrez, H. Hefzi, S. Li, B. O. Palsson, C. Herwig, and N. E. Lewis. Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow, 2016. S. Guisset, M. Martin, and B. Govaerts. Comparison of PARAFASCA, AComDim, and AMOPLS approaches in the multivariate GLM modelling of multi-factorial designs. Chemometrics and Intelligent Laboratory Systems, 184(November 2018):44–63, 2019 H. A. Hansen and C. Emborg. Influence of Ammonium on Growth, Metabolism, and Productivity of a Continuous Suspension Chinese Hamster Ovary Cell Culture. Biotechnology Progress, 1994. F. Hartley, T. Walker, V. Chung, and K. Morten. Mechanisms driving the lactate switch in Chinese hamster ovary cells. Biotechnology and Bioengineering, 115(8):1890–1903, 2018. H. Hefzi, K. S. S. Ang, M. Hanscho, A. Bordbar, D. Ruckerbauer, M. Lakshmanan, C. A. A. Orellana, D. Baycin-Hizal, Y. Huang, D. Ley, V. S. S. Martinez, S. Kyriakopoulos, N. E. E. Jiménez, D. C. C. Zielinski, L.-E. Quek, T. Wulff, J. Arnsdorf, S. Li, J. S. S. Lee, G. Paglia, N. Loira, P. N. N. Spahn, L. E. E. Pedersen, J. M. M. Gutierrez, Z. A. A. King, A. M. M. Lund, H. Nagarajan, A. Thomas, A. M. M. AbdelHaleem, J. Zanghellini, H. F. F. Kildegaard, B. G. G. Voldborg, Z. P. P. Gerdtzen, M. J. J. Betenbaugh, B. O. O. Palsson, M. R. R. Andersen, L. K. K. Nielsen, N. Borth, D.-Y. Lee, and N. E. E. Lewis. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism. Cell Systems, 3(5):434–443.e8, 2016. Y. M. Huang, W. W. Hu, E. Rustandi, K. Chang, H. Yusuf-Makagiansar, and T. Ryll. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnology progress, 2010. J. H. Tjio and Theodore T. Puck. Genetics of somatic mammalian cells. II. Chromosomal constitution of cells in tissue culture. The Journal of experimental medicine, 1958. N. Jamshidi and B. Palsson. Mass action stoichiometric simulation models: Incorporating kinetics and regulation into stoichiometric models. Biophysical Journal, 2010. R. Jefferis. Glycosylation as a strategy to improve antibodybased therapeutics. Nature Reviews Drug Discovery, 8(3):226–234, 2009. L. John Wiley & Sons, L. Kaufman, P. J. Rousseeuw, L. John Wiley & Sons, S. Description, and O. F. The. Agglomerative Nesting (Program AGNES). John Wiley & Sons, Ltd, 1990. M. S. Lao and D. Toth. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture. Biotechnology Progress, 1997. J. S. Lee, L. M. Grav, N. E. Lewis, and H. Faustrup Kildegaard. CRISPR/Cas9 mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology journal, 10(7):979–994, jul 2015 F. Li, N. Vijayasankaran, A. Shen, R. Kiss, and A. Amanullah. Cell culture presses for monoclonal antibody production. MAbs, 2(5):466–479, 2010. M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. cluster: Cluster Analysis Basics and Extensions, 2019. R package version 2.0.9 — For new features, see the ’Changelog’ file (in the package source). S. Moretti, O. Martin, T. Van Du Tran, A. Bridge, A. Morgat, and M. Pagni. MetaNetX/MNXref - Reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic Acids Research, 2016. K. Mori, R. Kuni-Kamochi, N. Yamane-Ohnuki, M. Wakitani, K. Yamano, H. Imai, Y. Kanda, R. Niwa, S. Iida, K. Uchida, K. Shitara, and M. Satoh. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnology and Bioengineering, 2004. S. Moritz and T. Bartz-Beielstein. imputeTS: Time Series Missing Value Imputation in R. The R Journal, 9(1):207–218, 2017. B. C. Mulukutla, S. Khan, A. Lange, and W. S. Hu. Glucose metabolism in mammalian cell culture: New insights for tweaking vintage pathways. Trends in Biotechnology, 28(9):476–484, 2010 J. Neermann and R. Wagner. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. Journal of Cellular Physiology, 1996. M. A. Oberhardt, B. Palsson, and J. A. Papin. Applications of genome-scale metabolic reconstructions. Molecular Systems Biology, 5, 2009. J. D. Orth, I. Thiele, and B. O. Palsson. What is flux balance analysis? Nature Biotechnology, 28(3):245–248, 2010. X. Pan, A. A. Alsayyari, C. Dalm, J. A. Hageman, R. H. Wijffels, and D. E. Martens. Transcriptome Analysis of CHO Cell Size Increase During a Fed-Batch Process. Biotechnology Journal, 14(3):1800156, 2019. X. Pan, C. Dalm, R. H. Wijffels, and D. E. Martens. Metabolic characterization of a CHO cell size increase phase in feb-batch cultures. Applied Microbiology and Biotechnology, 101(22):8101–8113, 2017. K. Peters, J. Bradbury, S. Bergmann, M. Capuccini, M. Cascante, P. de Atauri, T. M. Ebbels, C. Foguet, R. Glen, A. Gonzalez-Beltran, U. L. Günther, E. Handakas, T. Hankemeier, K. Haug, S. Herman, P. Holub, M. Izzo, D. Jacob, D. Johnson, F. Jourdan, N. Kale, I. Karaman, B. Khalili, P. Emami Khonsari, K. Kultima, S. Lampa, A. Larsson, C. Ludwig, P. Moreno, S. Neumann, J. A. Novella, C. O’Donovan, J. T. Pearce, A. Peluso, M. E. Piras, L. Pireddu, M. A. Reed, P. RoccaSerra, P. Roger, A. Rosato, R. Rueedi, C. Ruttkies, N. Sadawi, R. M. Salek, S. A. Sansone, V. Selivanov, O. Spjuth, D. Schober, E. A. Thévenot, M. Tomasoni, M. van Rijswijk, M. van Vliet, M. R. Viant, R. J. Weber, G. Zanetti, and C. Steinbeck. PhenoMeNal: processing and analysis of metabolomics data in the cloud. GigaScience, 2019. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. D. Rago, K. Mette, G. Gürdeniz, F. Marini, M. Poulsen, and L. O. Dragsted. A LCMS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome. Metabolomics, 2013. J. Robitaille, J. Chen, and M. Jolicoeur. A single dynamic metabolic model can describe mAb producing CHO cell batch and fed-atch cultures on different culture media. PLoS ONE, 10(9), 2015. Ó. Rolfsson and B. O. Palsson. Decoding the jargon of bottom-up metabolic systems biology. BioEssays, 37(6):588–591, 2015. T. Ryll, U. Valley, and R. Wagner. Biochemistry of growth inhibition by ammonium ions in mammalian cells. Biotechnology and Bioengineering, 1994. E. Saccenti and J. Camacho. On the use of the observationwise k-fold operation in PCA cross-validation. Journal of Chemometrics, 2015. E. Saccenti, H. C. Hoefsloot, A. K. Smilde, J. A. Westerhuis, and M. M. Hendriks. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10(3):361–374, 2014. S. Selvarasu, Y. S. Ho, W. P. Chong, N. S. Wong, F. N. Yusufi, Y. Y. Lee, M. G. Yap, and D. Y. Lee. Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnology and Bioengineering, 2012. N. Sengupta, S. T. Rose, and J. A. Morgan. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnology and Bioengineering, 2011. A. K. Smilde, J. J. Jansen, H. C. Hoefsloot, R. J. A. Lamers, J. van der Greef, and M. E. Timmerman. ANOVAsimultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics, 2005. R. Steuer, T. Gross, J. Selbig, and B. Blasius. Structural kinetic modeling of metabolic networks. Proceedings of the National Academy of Sciences of the United States of America, 2006. R. Tautenhahn, G. J. Patti, D. Rinehart, and G. Siuzdak. XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 2012. N. Templeton, J. Dean, P. Reddy, and J. D. Young. Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnology and Bioengineering, 2013. M. Thiel, B. Féraud, and B. Govaerts. ASCA+ and APCA+: Extensions of ASCA and APCA in the analysis of unbalanced multifactorial designs. Journal of Chemometrics, 31(6):1–13, 2017. J. Thioulouse. Simultaneous analysis of a sequence of paired ecological tables: A comparison of several methods. Annals of Applied Statistics, 2011. W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition, 2002. ISBN 0-387-95457-0. S. Vijayakumar, M. Conway, P. Lio, and C. Angione. Seeing the wood for the trees: A forest of methods for optimization and omicnetwork integration in metabolic modelling. Briefings in Bioinformatics, 2017. D. J. Vis, J. A. Westerhuis, A. K. Smilde, and J. van der Greef. Statistical validation of megavariate effects in ASCA. BMC Bioinformatics, 8:1–8, 2007. G. Walsh. Biopharmaceutical benchmarks 2018. Nature Biotechnology, 36:1136, dec 2018. A. Woo Suk and M. R. Antoniewicz. Parallel labeling experiments with [1,2-13C]glucose and [U-13C] glutamine provide new insights into CHO cell metabolism. Metabolic Engineering, 2013. F. M. Wurm. CHO quasispecies-Implications for manufacturing processes. Processes, 1(3):296–311, 2013. G. Xu, L. Lin, P. Wei, and W. Pan. An adaptive two-sample test for high-dimensional means. Biometrika, 2016. J. Xu, F. R. Yan, Z. H. Li, D. Wang, H. L. Sheng, and Y. Liu. Serum-free medium optimization based on trial design and support vector regression. BioMed Research International, 2014. Y. Xu, S. J. Fowler, A. Bayat, and R. Goodacre. Chemometrics models for overcoming high between subject variability: Applications in clinical metabolic profiling studies. Metabolomics, 2014. M. Yang and M. Butler. Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnology and Bioengineering, 2000. G. Zwanenburg, H. C. Hoefsloot, J. A. Westerhuis, J. J. Jansen, and A. K. Smilde. ANOVA–principal component analysis and ANOVA–simultaneous component analysis: A comparison. Journal of Chemometrics, 25(10):561–567, 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78485 | - |
| dc.description.abstract | 單株抗體(monoclonal antibody, mAb)為目前最主要也最具有價值的生物藥物 (biopharmaceutical),而中國倉鼠卵巢細胞(Chinese hamster ovary cell)為目前生物藥物最主要的生產系統。近五十年來,細胞的抗體產量不斷的成長,主要歸功於於培養系統的改善、細胞的改良及篩選。然而,這些改良方式並非基於對生產系統(system)及機制(mechanism)的理解,而是基於經驗(empirical),因此每一株細胞的生產條件最佳化往往需要投入大量的人力及時間才得以完成。近年來代謝體學(metabolomics)的進步,提供了進一步改善的契機。一般常用的代謝體分析方式有兩種:基於模型(model-based)以及基於統計(statistical base)的方式,兩者皆為提升抗體生產率做出不同的貢獻。然而,過去的研究鮮少提供多種定量(quantitative)的胞外(extracellular)與胞內(intracellular)代謝物(metabolites)濃度、單一細胞抗體產率、單一細胞代謝物的產出/吸收率以及細胞大小等變數間的關係,且通常只關注單一品系(cell strain)的中國倉鼠卵巢細胞於少數培養環境下的行為。因此,在此研究中,我們以超高壓液相層析儀串接紫外光譜(UHPLC-UV)以及 AbsoluteIDQ p180 Kit 兩種定量的測量分析方式,測量四種培養策略下的細胞內外代謝物濃度;並引入GASCA (Group-wise ANOVA simultaneous component analysis) 及 STATICO兩方法,分析上述變數間的多變量關係。胞外代謝物資料的主成份分析 (PCA, Principal components analysis) 結果顯示時間以及補料 (fed-batch supplement) 為影響胞外細胞代謝物輪廓 (profile) 的主要因子;而細胞特徵(cell features,包含細胞內代謝物濃度、細胞代謝物分泌速率及細胞大小等三群變數)的GASCA結果顯示,細胞特徵顯著地受到培養基(media)及時間因子和培養基、時間及細胞品系(cell strain)三因子的交互作用影響。此外,GASCA分析中Group-wise PCA所產生的主成份中所包含的變數,可以代表某些生物意義,例如細胞大小、細胞異質性 (heterogeneity),培養過程中被過度餵食/生產的代謝物等。STATICO結果則顯示胞外代謝物濃度細胞特徵兩群變數間的關係,並指出七個可能用於改善單一細胞抗體產量的代謝物。我們選擇了白胺酸 (leucine),異白胺酸 (isoleucine) 及組胺酸 (histidine) 三種代謝物進行驗證實驗。其結果顯示,額外添加此三種胺基酸會些微增加CHOK1細胞以Mix作為培養基Feed A/B補料的細胞的單位細胞抗體產量(cell-specific antibody production rate),然而此增加幅度並未達到預先設定的顯著水準 (α = .10)。因此,驗證實驗的結果顯示,僅添加少量的特定的代謝物對於抗體產量的增加的效果有限,仍需要更多證據支持驗證實驗中發現的的抗體量增加並非隨機造成。 | zh_TW |
| dc.description.abstract | Nowadays, monoclonal antibodies (mAbs) are the most lucrative and dominance biopharmaceutical product, and Chinese hamster ovary (CHO) cells are the predominant system for their production. A constant increase in the antibody production of CHO cells during the last fifty years resulted from sustained, considerable efforts for culturing system optimization, host cell engineering, and screening. These empirical approaches are time-consuming and labor-intensive because we only have limited knowledge about the production system and the mechanism. Recently, metabolomics research sheds light on this issue. Two different approaches, including model-based methods, and statistical-based methods, are used in the cell metabolomics analysis to provide suggestions for the optimization of the production. However, previous studies only included limited metabolites, cell strains, and feeding strategies. They failed to answer which factors significantly affect the cell state: intracellular metabolite levels, cell-specific metabolite consumption rates, the size of cells, and the antibody production rate. Besides, they also failed to provide multivariate relationships between and within extracellular metabolite concentrations, and cell state. Hence, we quantitatively measured both the intra- and the extracellular metabolite concentrations of CHO cells under four culturing strategies by UHPLC-UV and AbsoluteIDQ p180 Kit. GASCA (Group-wise ANOVA simultaneous component analysis) and STATICO were introduced to extract multivariate relationships between variables. The results showed that sampling times and fed-batch supplements were the primary factors that affect the extracellular metabolite profile, and the interaction of time, cell, and media, and the main effect of media and time significantly affect the state of the cell. Besides, the loading and the score by Group-wise PCA (GPCA), the second step of GASCA, could represent biological meanings, such as cell size increment, heterogeneity of culturing cells, and possible overfed/overproduced metabolites during the culturing process. The results form STATICO showed the relationship between and within extracellular metabolite concentrations and cell state, and indicate seven metabolites that could increase the cell-specific antibody production rate. L-leucine, L-isoleucine, and L-histidine were selected to perform a validation experiment. An increment in cell-specific antibody production rate was observed; nevertheless, the increment was insignificant. The results indicated that the effect of the extra addition of a minority of extracellular metabolites for CHOK1 with Mix basal medium and FeedA/B fed-batch supplements might be limited, and more evidence is necessary to evaluate whether the increment is meaningful. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:59:35Z (GMT). No. of bitstreams: 1 ntu-108-R05945025-1.pdf: 5876489 bytes, checksum: 15d6a87d90fe6c27fa46709ef1f57622 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 v
摘要 vii Abstract ix 1 Introduction 1 1.1 Monoclonal antibodies production and CHO cell . . . . . . . . . . . . . 1 1.2 Approaches to CHO cell metabolomics analysis . . . . . . . . . . . . . . 2 1.2.1 Model-based approaches . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Statistical-based approaches . . . . . . . . . . . . . . . . . . . . 4 1.3 Cell phase of CHO cell under fed-batch culturing . . . . . . . . . . . . . 6 1.4 Factors that limited the mAb production . . . . . . . . . . . . . . . . . . 7 1.5 Specific aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Materials and Methods 9 2.1 Experimental Design and Analytic Workflow . . . . . . . . . . . . . . . 9 2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Materials for time points selection experiment . . . . . . . . . . . 13 2.2.2 Materials for High throughput metabolites quantification . . . . . 13 2.2.3 Materials for validation . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Targeted metabolites profiling . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 UHPLC-UV and Vi-CELL™ cell viability analyzer (Vi-CELL analyzer) Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 AbsoluteIDQ™ p180 kit . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Computational analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Interpolation and Self-defined variables calculation procedure . . 18 2.4.2 Data arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.3 Anova-Simultaneous Component Analysis (ASCA) . . . . . . . . 23 2.4.4 Partitioning Around Medoids (PAM) . . . . . . . . . . . . . . . 26 2.4.5 AbsoluteIDQ™ p180 kit (Biocrates p180 kit) Data Preprocessing 27 2.4.6 Metric Multidimensional Scaling (mMDS) . . . . . . . . . . . . 28 2.4.7 Agglomerative hierarchical clustering (agnes) . . . . . . . . . . . 29 2.4.8 Group-wise principal component analysis (GPCA) . . . . . . . . 30 2.4.9 STATIS and Co-Inertia (STATICO) . . . . . . . . . . . . . . . . 30 2.4.10 Metabolites selection . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Results 35 3.1 Sample selections and poolings . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Metabolites quantification and analysis . . . . . . . . . . . . . . . . . . . 41 3.2.1 AbsoluteIDQ™ p180 kit data preprocessing . . . . . . . . . . . . 41 3.2.2 Amino acid concentrations measured by the two platforms were coherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.3 The metabolite concentrations in the medium were mainly depended on the feeding supplements and the sampling time, instead of the antibody production rate . . . . . . . . . . . . . . . . . . . 44 3.2.4 Permutation tests for ASCA+ revealed that the main effect of media, the main effect of time and the interaction of time, cell and media were statistically significant . . . . . . . . . . . . . . . . . 47 3.2.5 The stable relationship of extracellular metabolites concentration and cell features showed nineteen metabolites always positively correlated with the cell specific antibody production rate, and seven of them satisfied the predefined selection criteria. . . . . . . . . . 56 3.3 Additional amino acids did not affect the cell state and only slightly in#creased the cell-specific mAb production rate of CHO cells . . . . . . . . 62 4 Discussions and Limitations 65 4.1 The time effect of the extracellular metabolite profile, the cell-specific metabolite secretion rates, and the cell size could reflect cell phases . . . 65 4.2 The characteristics of each growth phase for different cell strains are not entirely aligned with the previous research . . . . . . . . . . . . . . . . . 67 4.3 The increment of cell size with a constant cell number is a general feature for the two selected CHO strains . . . . . . . . . . . . . . . . . . . . . . 68 4.4 The relationship between cell-specific antibody production rate and the extracellular lactate concentration changed over time, and but that be#tween the extracellular ammonia concentration stayed constant . . . . . . 69 4.5 Selected metabolites have higher variations which indicate more control should be done to ensure the difference of antibody production rate of between groups is not caused by random . . . . . . . . . . . . . . . . . . 70 4.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.6.1 Limitations of AbsoluteIDQ™ p180 . . . . . . . . . . . . . . . 71 4.6.2 Limitations of data preprocessing . . . . . . . . . . . . . . . . . 73 4.6.3 Limitations of statistical analysis . . . . . . . . . . . . . . . . . . 73 5 Conclusions 75 A Supplementary Data 77 Bibliography 87 | - |
| dc.language.iso | en | - |
| dc.subject | STATICO | zh_TW |
| dc.subject | 縱向數據 | zh_TW |
| dc.subject | ASCA+ | zh_TW |
| dc.subject | 單株抗體生產 | zh_TW |
| dc.subject | 中國倉鼠卵巢細胞 | zh_TW |
| dc.subject | 代謝體學 | zh_TW |
| dc.subject | STATICO | en |
| dc.subject | CHO cells | en |
| dc.subject | Monoclonal antibodies production | en |
| dc.subject | Metabolomics | en |
| dc.subject | Longitudinal data | en |
| dc.subject | ASCA+ | en |
| dc.title | 縱向代謝物資料分析於中國倉鼠卵巢細胞單株抗體生產最佳化之研究 | zh_TW |
| dc.title | Longitudinal metabolomic data analysis of Chinese hamster ovary cells for mAb production optimization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 108-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 紀威光;王三源 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Kuang Chi;San-Yuan Wang | en |
| dc.subject.keyword | 中國倉鼠卵巢細胞,單株抗體生產,代謝體學,縱向數據,ASCA+,STATICO, | zh_TW |
| dc.subject.keyword | CHO cells,Monoclonal antibodies production,Metabolomics,Longitudinal data,ASCA+,STATICO, | en |
| dc.relation.page | 102 | - |
| dc.identifier.doi | 10.6342/NTU201904286 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-11-25 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2024-11-27 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 5.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
