請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78476完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林君榮(Chun-Jung Lin) | |
| dc.contributor.author | Po-Hsuan Lai | en |
| dc.contributor.author | 賴柏軒 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:59:06Z | - |
| dc.date.available | 2025-03-13 | |
| dc.date.copyright | 2020-03-13 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-12-25 | |
| dc.identifier.citation | Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia. 2018;14:367-429.
Andersson KME, Wasén C, Juzokaite L, Leifsdottir L, Erlandsson MC, Silfverswärd ST, et al. Inflammation in the hippocampus affects IGF1 receptor signaling and contributes to neurological sequelae in rheumatoid arthritis. Proc Natl Acad Sci USA. 2018;115:12063-72. Andrew RJ, Fernandez CG, Stanley M, et al. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer's disease. Proc Natl Acad Sci U S A. 2017;114:E9665-74. Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Current Pharmaceutical Design. 2005;11:973-84. Barron M, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC. A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease. Exp Gerontol. 2017;94:103-07. Bauer B, Hartz AM, Miller DS. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol. 2007;7:667-75. Boyd TD, Bennett SP, Mori T, Governatori N, Runfeldt M, Norden M, et al. GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J Alzheimers Dis. 2010;21:507-18. Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, et al. Blood-derived amyloid-β protein induces Alzheimer's disease pathologies. Mol Psychiatry. 2018;23:1948-56. Cardoso FL, Kittel A, Veszelka S, et al. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One. 2012;7:35919. Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA. Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A. 2018;115:1896-1905. Diehlmann A, Ida N, Weggen S, Grünberg J, Haass C, Masters CL, Bayer TA, Beyreuther K. Analysis of presenilin 1 and presenilin 2 expression and processing by newly developed monoclonal antibodies. J Neurosci Res. 1999;56:405-19. Donahue JE, Flaherty SL, Johanson CE, Duncan JA 3rd, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol. 2006;112:405-15. Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation. 2012;19:121-30. Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer's disease. Open Biol. 2017;7:170228 Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S, Rostagno A, Frangione B. Systemic catabolism of Alzheimer's Abeta40 and Abeta42. J Biol Chem. 2004;279:45897-908. Ghiso J, Tomidokoro Y, Revesz T, Frangione B, Rostagno A. Cerebral amyloid angiopathy and Alzheimer’s disease. Hirosaki Igaku. 2010;61:111-24. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8:101-12. Hawkes CA, Jayakody N, Johnston DA, Bechmann I, Carare RO. Failure of perivascular drainage of β-amyloid in cerebral amyloid angiopathy. Brain Pathol. 2014;24:396-403. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC, et al. Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934. Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207-216. Jaeger LB, Dohgu S, Sultana R, et al. Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav Immun. 2009;23:507-17. Jewett M, Dickson E, Brolin K, Negrini M, Jimenez-Ferrer I, Swanberg M. Glutathione S-transferase alpha 4 prevents dopamine neurodegeneration in a rat alpha-synuclein model of Parkinson's disease. Front Neurol. 2018;9:222. Kandimalla KK, Curran GL, Holasek SS, Gilles EJ, Wengenack TM, Poduslo JF. Pharmacokinetic analysis of the blood-brain barrier transport of 125I-amyloid beta protein 40 in wild-type and Alzheimer's disease transgenic mice (APP,PS1) and its implications for amyloid plaque formation. J Pharmacol Exp Ther. 2005;313:1370-8. Kaya M, Ahishali B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol. 2011;763:369-82. Kitazawa M, Hsu HW, Medeiros R. Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta. Toxicol Sci. 2016;152:194-204. Kumar A, Singh A, Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67:195-203. Kurokawa S, Hill KE, McDonald WH, Burk RF. Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2 (ApoER2). J Biol Chem. 2012;287:28717-26. Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, Reiner PB. Beta-Amyloid efflux mediated by p-glycoprotein. J Neurochem. 2001;76:1121-8. Lang SC, Harre U, Purohit P, Dietel K, Kienhofer D, Hahn J, et al. Neurodegeneration Enhances the Development of Arthritis. J Immunol. 2017;198:2394-402. Lanz TA, Schachter JB. Demonstration of a common artifact in immunosorbent assays of brain extracts: development of a solid-phase extraction protocol to enable measurement of amyloid-beta from wild-type rodent brain. J Neurosci Methods. 2006;157:71-81. Li Y, Liu L, Barger SW, Griffin WS. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci. 2003;23:1605-11. Lin CH, Hsu KW, Chen CH, Uang YS, Lin CJ. Differential changes in the pharmacokinetics of statins in collagen-induced arthritis rats. Biochemical Pharmacology. 2017;142:216-28. Liya Qin, Jun He, Richard N Hanes, Olivera Pluzarev, et al. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. Journal of Neuroinflammation. 2008;5:10. Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX. HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-α in human umbilical vein endothelial cells. Immunobiology. 2010;215:956-62. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205-19. Meade T, Manolios N, Cumming SR, Conaghan PG, Katz P. Cognitive impairment in rheumatoid arthritis: a systematic review. Arthritis Care Res. 2018;70:39-52. Mohamed LA, Kaddoumi A. In vitro investigation of amyloid-β hepatobiliary disposition in sandwich-cultured primary rat hepatocytes. Drug Metab Dispos. 2013;41:1787-96. Mohamed LA, Keller JN, Kaddoumi A. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-β brain load and related pathology in Alzheimer's disease mouse model. Biochim Biophys Acta. 2016;1862:778-87. Mohamed LA, Qosa H, Kaddoumi A. Age-Related Decline in Brain and Hepatic Clearance of Amyloid-Beta is Rectified by the Cholinesterase Inhibitors Donepezil and Rivastigmine in Rats. ACS Chem Neurosci. 2015;6:725-36. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112. Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol Neurodegener. 2011;22:85. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27-31. Navarro V, Sanchez-Mejias E, Jimenez S, et al. Microglia in Alzheimer's Disease: Activated, Dysfunctional or Degenerative. Front Aging Neurosci. 2018;10:140. Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim Biophys Acta. 2016;1862:887-900. Nicoll JA, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO. Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer's disease. Pro-CAA position statement. Neurobiol Aging. 2004;25:589-97. Nishioku T, Yamauchi A, Takata F, Watanabe T, Furusho K, Shuto H, Dohgu S, Kataoka Y. Disruption of the blood-brain barrier in collagen-induced arthritic mice. Neurosci Lett. 2010;482:208-11. Park SM, Shin JH, Moon GJ, Cho SI, Lee YB, Gwag BJ. Effects of collagen-induced rheumatoid arthritis on amyloidosis and microvascular pathology in APP/PS1 mice. BMC Neurosci. 2011;12:106. Pascale CL, Miller MC, Chiu C, et al. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS. 2011;8:21. Peinnequin A, Mouret C, Birot O, et al. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC Immunol. 2004;5:3. Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 2007;7:161-7. Polazzi E, Mengoni I, Peña-Altamira E, Massenzio F, Virgili M, Petralla S, Monti B. Neuronal Regulation of Neuroprotective Microglial Apolipoprotein E Secretion in Rat In Vitro Models of Brain Pathophysiology. J Neuropathol Exp Neurol. 2015;74:818-34. Policicchio S, Ahmad AN, Powell JF, Proitsi P. Rheumatoid arthritis and risk for Alzheimer's disease: a systematic review and meta-analysis and a Mendelian Randomization study. Sci Rep. 2017;7:12861. Pomilio C, Pavia P, Gorojod RM, et al. Glial alterations from early to late stages in a model of Alzheimer's disease: Evidence of autophagy involvement in Aβ internalization. Hippocampus. 2016;26:194-210. Posthumus MD, Limburg PC, Westra J, Cats HA, Stewart RE, van Leeuwen MA, van Rijswijk MH. Serum levels of matrix metalloproteinase-3 in relation to the development of radiological damage in patients with early rheumatoid arthritis. Rheumatology. 1999;38:1081-7. Ramanathan A, Nelson AR, Sagare AP, Zlokovic BV. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer's disease: the role, regulation and restoration of LRP1. Front Aging Neurosci. 2015;7:136. Rochfort KD, Cummins PM. Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc Res. 2015;100:48-53. Roe AD, Staup MA, Serrats J, Sawchenko PE, Rissman RA. Lipopolysaccharide-induced tau phosphorylation and kinase activity: modulation, but not mediation, by corticotropin-releasing factor receptors. Eur J Neurosci. 2011;34:448-56. Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem. 2005;92:226-34. Roszkowski M, Bohacek J. Stress does not increase blood-brain barrier permeability in mice. J Cereb Blood Flow Metab. 2016;36:1304-15. Ryan TM, Caine J, Mertens HD, et al. Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ. 2013;1:73. Sağ S, Sağ MS, Tekeoğlu I, Kamanlı A, Nas K, Acar BA. Central nervous system involvement in rheumatoid arthritis: possible role of chronic inflammation and tnf blocker therapy. Acta Neurol Belg. 2017:1-7. Sagare A, Deane R, Bell RD, et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med. 2007;13:1029-31. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med. 2016;8:595-608. Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer's amyloid- (1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106:1489-99. Shin SY, Katz P, Wallhagen M, Julian L. Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care Res. 2012;64:1144-50. Swaminathan SK, Ahlschwede KM, Sarma V, et al. Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain. J Cereb Blood Flow Metab. 2018;38:904-18. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci. 2018;21:1318-31. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133-50. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain--implications for Alzheimer diseaser. Nat Rev Neurol. 2016;12:248. Uno S, Uraki M, Ito A, Shinozaki Y, Yamada A, Kawase A, Iwaki M. Changes in mRNA expression of ABC and SLC transporters in liver and intestines of the adjuvant-induced arthritis rat. Biopharm Drug Dispos. 2009;30:49-54. van Assema DM, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD, et al. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain. 2012;135:181-9. Wallin K, Solomon A, Kareholt I, Tuomilehto J, Soininen H, Kivipelto M. Midlife rheumatoid arthritis increases the risk of cognitive impairment two decades later: a population-based study. J Alzheimers Dis. 2012;31:669-76. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535-9 Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13:612-23. Wu KC, Lin CJ. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. J Food Drug Anal. 2019;27:48-59. Wu KC, Lu YH, Peng YH, et al. Decreased expression of organic cation transporters, Oct1 and Oct2, in brain microvessels and its implication to MPTP-induced dopaminergic toxicity in aged mice. J Cereb Blood Flow Metab. 2015;35:37-47. Xaio H, Banks WA, Niehoff ML, Morley JE. Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Res. 2001;30:36-42. Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015;1623:30-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78476 | - |
| dc.description.abstract | 類風溼性關節炎是一種自體免疫疾病,該疾病最大特徵為關節發炎、軟骨損傷以及系統性發炎,此疾病帶來的系統性發炎可能導致神經發炎等影響,進而和神經退化性疾病的產生有所關連。本篇研究利用膠原蛋白誘發關節炎大鼠動物模型來探討類風濕性關節炎對於神經發炎、血腦屏障的影響,結果指出,除了細胞激素在腦部的上升外,類風溼性關節炎還可能造成微膠細胞和星狀細胞的活化。在血腦屏障方面,可觀察到其通透性上升以及ZO-1、Occludin表現量的下降,除了血腦屏障完整性之外,與-類澱粉蛋白在血腦屏障的運輸相關蛋白的表現也受到該疾病影響,其中RAGE、P-gp在腦部血管的表現量皆顯著上升,同時也觀察到β-類澱粉蛋白較容易從周邊進入海馬迴區域,近一步探討β-類澱粉蛋白在腦部外的清除機制後,更發現血中的可溶性Lrp-1和肝臟的P-gp表現量有所下降。綜上所述,類風溼性關節炎可導致神經發炎以及血腦屏障的功能失調,並可能導致-類澱粉蛋白在中樞運輸及周邊清除上的變化,這些影響可能進一步與神經退化疾病或阿茲海默失智症的發生有關。 | zh_TW |
| dc.description.abstract | Rheumatoid arthritis (RA) is an autoimmune disease, characterized by synovial inflammation, cartilage damage, and systemic inflammation. The systemic inflammation in RA can be associated with the occurrence of neuroinflammation and neurodegenerative diseases, like Alzheimer's disease (AD). In this study, the impacts of RA on neuroinflammation and the blood-brain barrier (BBB) were investigated in collagen induced arthritis (CIA) rats, an animal model exhibiting similar clinical features of human RA. As a result, along with an elevation of brain cytokine levels, the immunofluorescence analysis showed that both microglia activation and astrogliosis were increased in the brain of CIA rats. In terms of BBB function, the BBB permeability of sodium fluorescein, a marker compound for BBB integrity, was significantly increased in CIA rats. Moreover, the expression of tight junction proteins, Zona-occludin 1 and occludin, also decreased in brain capillaries of CIA rats. In addition to the change in BBB integrity, it is noted that the protein expression of the receptor of advanced glycation end product (RAGE) and P-glycoprotein (P-gp), both are important proteins for BBB transport of amyloid beta (Aβ), was significantly increased in brain capillaries of CIA rats. For brain transport of Aβ, hippocampus in CIA rats showed higher levels of Aβ influx from peripheral blood significantly. In addition to the change at the BBB, the levels of plasma sLrp-1 and hepatic P-gp were decreased, of which both are important for peripheral clearance of Aβ. In conclusion, significant neuroinflammation and BBB breakdown were observed in CIA rats, suggesting the link between RA and neurodegenerative disease. The increase of P-gp and RAGE at BBB along with the change in peripheral sLrp-1 and P-gp in CIA rats suggest that deposition of Aβ is altered in RA, which may be implicated in amyloid pathogenesis of neurodegenerative diseases or AD. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:59:06Z (GMT). No. of bitstreams: 1 ntu-108-R06423009-1.pdf: 2175004 bytes, checksum: 6e7dc49da8417fd76353a5bd78a6147d (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii Chapter 1 Introduction 1 1.1 Rheumatoid arthritis (RA) 1 1.2 BBB dysfunction 1 1.3 Alzheimer’s disease (AD) and amyloid beta (Aβ) 3 1.4 Clearance of amyloid beta (Aβ) 4 Chapter 2 Objective 10 Chapter 3 Materials and methods 11 3.1 Establishment of collagen induced arthritis (CIA) model in rat 11 3.2 Quantification of IL-1β, IL-6, and TNF-α in plasma 12 3.3 RNA extraction 13 3.3.1 Extraction RNA from brain tissue 13 3.3.2 Quality control 13 3.4 Reverse transcription-quantitative polymerase chain reaction, RT-qPCR 14 3.4.1 Reverse transcription (RT) 14 3.4.2 Real time-quantitative polymerase chain reaction (RT-qPCR) 15 3.5 Perfusion fixation of the rat brain 16 3.6 Immunofluorescence 16 3.7 BBB permeability 18 3.7.1 Administration of sodium fluorescein 18 3.7.2 Extraction of sodium fluorescein 18 3.8 Isolation of brain microvessels for Western blot analysis 19 3.9 Preparation of protein samples for immunoblot 19 3.9.1 Extraction of BMVs proteins 19 3.9.2 The isolation of membrane fraction from the liver 20 3.9.3 Extraction of tissue protein 20 3.10 Western blot 20 3.10.1 Quantification of protein concentration 20 3.10.2 Western blot 21 3.11 Kinetic of human amyloid beta 1-42 (Aβ42) in the plasma 22 3.11.1 Monomerization of human Aβ42 22 3.11.2 Intravenous administration of human Aβ42 22 3.11.3 Quantification of human Aβ42 in the plasma 23 3.12 Brain influx of human amyloid beta 1-42(Aβ42)24 3.12.1 Extraction of Aβ42 in the brain 24 3.12.2 Quantification of Aβ42 in the brain 25 3.13 Quantification of rat soluble LRP-1 in the plasma 25 3.14 Statistical analysis 26 Chapter 4 Results 29 4.1 Evaluation of collagen-induced arthritis (CIA) animal model in rats 29 4.2 Neuroinflammation in CIA rats 29 4.3 BBB dysfunction in CIA rats 30 4.4 The change in the expression of amyloid beta (Aβ) related carriers at brain capillaries in CIA rats 30 4.5 Brain influx of amyloid beta (Aβ) in CIA rats 31 4.6 Peripheral clearance of amyloid beta (Aβ) in CIA rats 32 Chapter 5 Discussion 42 Chapter 6 Conclusion 48 References 49 LIST OF FIGURES Figure 1.1 Blood brain barrier (BBB) 6 Figure 1.2 Generation and oligomerization of Aβ 7 Figure 1.3 Sequences of amyloid beta (Aβ) 1-40 and 42 8 Figure 1.4 Clearance of amyloid beta (Aβ) in the CNS and BBB 8 Figure 1.5 Elimination of amyloid beta (Aβ) in the peripheral system 9 Figure 3.1 Establishment of saline injected control and collagen-induced arthritis (CIA) in Lewis female rats 27 Figure 3.2 Flow charts of brain microvessels (BMVs) isolation 28 Figure 4.1 Evaluation of collagen-induced arthritis (CIA) animal model in rats 33 Figure 4.2 Fold change in the mRNA expression of pro-inflammatory cytokines 34 Figure 4.3 Microglia and astrocyte activation 35 Figure 4.4 BBB permeability and the expression of tight junction proteins 36 Figure 4.5 Expression of amyloid beta (Aβ) related carriers 37 Figure 4.6 Immunofluorescence of P-gp and RAGE in the brain 38 Figure 4.7 Immunoblots of pre-disaggregate human amyloid beta 42 (Aβ42) 39 Figure 4.8 Brain influx of peripheral human amyloid beta 1-42 (Aβ42) 40 Figure 4.9 Clearance of amyloid beta 1-42 (Aβ42) in peripheral 41 | |
| dc.language.iso | en | |
| dc.subject | 血腦屏障 | zh_TW |
| dc.subject | 類澱粉蛋白 | zh_TW |
| dc.subject | 神經發炎 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 類風溼性關節炎 | zh_TW |
| dc.subject | amyloid beta | en |
| dc.subject | neuroinflammation | en |
| dc.subject | BBB | en |
| dc.subject | rheumatoid arthritis | en |
| dc.title | 類風溼性關節炎對於神經發炎以及血腦屏障類澱粉蛋白之運輸在大鼠中之影響之探討 | zh_TW |
| dc.title | The effect of rheumatoid arthritis on neuroinflammation and blood-brain barrier transportation of amyloid beta in rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳儀莊(Yi-Juang Chern),孔繁璐,姚宗珍 | |
| dc.subject.keyword | 類風溼性關節炎,阿茲海默症,類澱粉蛋白,神經發炎,血腦屏障, | zh_TW |
| dc.subject.keyword | rheumatoid arthritis,amyloid beta,neuroinflammation,BBB, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201904424 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-12-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-03-13 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06423009-1.pdf 未授權公開取用 | 2.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
