Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鎧鍵(Kai-Chien Yang)
dc.contributor.authorMin-Yi Youen
dc.contributor.author游閔亦zh_TW
dc.date.accessioned2021-07-11T14:57:34Z-
dc.date.available2025-03-13
dc.date.copyright2020-03-13
dc.date.issued2020
dc.date.submitted2020-01-30
dc.identifier.citation1. WHO. The top 10 causes of death (24 May 2018). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
2. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on E, Prevention Statistics C and Stroke Statistics S. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139:e56-e528.
3. Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1-20.
4. Hori M and Okamoto H. Heart rate as a target of treatment of chronic heart failure. J Cardiol. 2012;60:86-90.
5. Gerber Y, Weston SA, Redfield MM, Chamberlain AM, Manemann SM, Jiang R, Killian JM and Roger VL. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern Med. 2015;175:996-1004.
6. Elgendy IY, Mahtta D and Pepine CJ. Medical Therapy for Heart Failure Caused by Ischemic Heart Disease. Circ Res. 2019;124:1520-1535.
7. Clapham DE. Calcium signaling. Cell. 2007;131:1047-58.
8. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198-205.
9. Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W and Morgan JP. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987;61:70-6.
10. Hoydal MA, Kirkeby-Garstad I, Karevold A, Wiseth R, Haaverstad R, Wahba A, Stolen TL, Contu R, Condorelli G, Ellingsen O, Smith GL, Kemi OJ and Wisloff U. Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure. ESC Heart Fail. 2018;5:332-342.
11. Bassani JW, Bassani RA and Bers DM. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol. 1994;476:279-93.
12. Frank KF, Bolck B, Brixius K, Kranias EG and Schwinger RH. Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol. 2002;97 Suppl 1:I72-8.
13. Zarain-Herzberg A, Afzal N, Elimban V and Dhalla NS. Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem. 1996;163-164:285-90.
14. Lipskaia L, Chemaly ER, Hadri L, Lompre AM and Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther. 2010;10:29-41.
15. Fearnley CJ, Roderick HL and Bootman MD. Calcium signaling in cardiac myocytes. Cold Spring Harb Perspect Biol. 2011;3:a004242.
16. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E and Periasamy M. Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res. 1998;83:1205-14.
17. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN and Shull GE. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem. 1999;274:2556-62.
18. del Monte F, Harding SE, Schmidt U, Matsui T, Kang ZB, Dec GW, Gwathmey JK, Rosenzweig A and Hajjar RJ. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation. 1999;100:2308-11.
19. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A and Hajjar RJ. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A. 2000;97:793-8.
20. del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK, Lewandowski ED and Hajjar RJ. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation. 2001;104:1424-9.
21. Kawase Y, Ly HQ, Prunier F, Lebeche D, Shi Y, Jin H, Hadri L, Yoneyama R, Hoshino K, Takewa Y, Sakata S, Peluso R, Zsebo K, Gwathmey JK, Tardif JC, Tanguay JF and Hajjar RJ. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol. 2008;51:1112-9.
22. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ and Kaye DM. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther. 2008;15:1550-7.
23. Sakata S, Lebeche D, Sakata N, Sakata Y, Chemaly ER, Liang LF, Tsuji T, Takewa Y, del Monte F, Peluso R, Zsebo K, Jeong D, Park WJ, Kawase Y and Hajjar RJ. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol. 2007;42:852-61.
24. Hadri L, Bobe R, Kawase Y, Ladage D, Ishikawa K, Atassi F, Lebeche D, Kranias EG, Leopold JA, Lompre AM, Lipskaia L and Hajjar RJ. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Mol Ther. 2010;18:1284-92.
25. del Monte F, Lebeche D, Guerrero JL, Tsuji T, Doye AA, Gwathmey JK and Hajjar RJ. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci U S A. 2004;101:5622-7.
26. Gwathmey JK, Yerevanian AI and Hajjar RJ. Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol. 2011;50:803-12.
27. Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ and Calcium Up-Regulation by Percutaneous Administration of Gene Therapy In Cardiac Disease Trial I. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail. 2009;15:171-81.
28. Jessup M, Greenberg B, Mancini D, Cappola T, Pauly DF, Jaski B, Yaroshinsky A, Zsebo KM, Dittrich H, Hajjar RJ and Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease I. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation. 2011;124:304-13.
29. Zsebo K, Yaroshinsky A, Rudy JJ, Wagner K, Greenberg B, Jessup M and Hajjar RJ. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res. 2014;114:101-8.
30. Mattick JS. The central role of RNA in human development and cognition. FEBS Lett. 2011;585:1600-16.
31. Mercer TR, Dinger ME and Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155-9.
32. Nie L, Wu HJ, Hsu JM, Chang SS, Labaff AM, Li CW, Wang Y, Hsu JL and Hung MC. Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res. 2012;4:127-50.
33. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE and Lander ES. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477:295-300.
34. Yang Q, Wan Q, Zhang L, Li Y, Zhang P, Li D, Feng C, Yi F, Zhang L, Ding X, Li H and Du Q. Analysis of LncRNA expression in cell differentiation. RNA Biol. 2018;15:413-422.
35. Thapar R. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs. Molecules. 2018;23.
36. Ponnusamy M, Liu F, Zhang YH, Li RB, Zhai M, Liu F, Zhou LY, Liu CY, Yan KW, Dong YH, Wang M, Qian LL, Shan C, Xu S, Wang Q, Zhang YH, Li PF, Zhang J and Wang K. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2019;139:2668-2684.
37. Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A, Ginsberg D and Grummt I. LncRNA Khps1 Regulates Expression of the Proto-oncogene SPHK1 via Triplex-Mediated Changes in Chromatin Structure. Mol Cell. 2015;60:626-36.
38. Achour C and Aguilo F. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology. Front Biosci (Landmark Ed). 2018;23:2106-2132.
39. Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F and de Herreros AG. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008;22:756-69.
40. Shan Y, Ma J, Pan Y, Hu J, Liu B and Jia L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis. 2018;9:722.
41. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E and Gustincich S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491:454-7.
42. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E and Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311-23.
43. Feng J, Bi C, Clark BS, Mady R, Shah P and Kohtz JD. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20:1470-84.
44. Ohno M, Fukagawa T, Lee JS and Ikemura T. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma. 2002;111:201-13.
45. Korostowski L, Sedlak N and Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 2012;8:e1002956.
46. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y and Tanaka T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087-99.
47. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL and Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129:1009-21.
48. Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H and Wang Y. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med. 2016;22:1131-1139.
49. Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T and Chang CP. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514:102-106.
50. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD and Wu JC. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855-60.
51. Gagnon KT, Li L, Janowski BA and Corey DR. Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc. 2014;9:2045-60.
52. Blank-Giwojna A, Postepska-Igielska A and Grummt I. lncRNA KHPS1 Activates a Poised Enhancer by Triplex-Dependent Recruitment of Epigenomic Regulators. Cell Rep. 2019;26:2904-2915 e4.
53. Toischer K, Teucher N, Unsold B, Kuhn M, Kogler H and Hasenfuss G. BNP controls early load-dependent regulation of SERCA through calcineurin. Basic Res Cardiol. 2010;105:795-804.
54. Goncalves GK, Scalzo S, Alves AP, Agero U, Guatimosim S and Reis AM. Neonatal cardiomyocyte hypertrophy induced by endothelin-1 is blocked by estradiol acting on GPER. Am J Physiol Cell Physiol. 2018;314:C310-C322.
55. Hilal-Dandan R, He H, Martin JL, Brunton LL and Dillmann WH. Endothelin downregulates SERCA2 gene and protein expression in adult rat ventricular myocytes: regulation by pertussis toxin-sensitive Gi protein and cAMP. Am J Physiol Heart Circ Physiol. 2009;296:H728-34.
56. Ronkainen VP, Skoumal R and Tavi P. Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements. J Mol Cell Cardiol. 2011;50:1008-16.
57. Angrisano T, Schiattarella GG, Keller S, Pironti G, Florio E, Magliulo F, Bottino R, Pero R, Lembo F, Avvedimento EV, Esposito G, Trimarco B, Chiariotti L and Perrino C. Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. PLoS One. 2014;9:e106024.
58. Kanhere A, Viiri K, Araujo CC, Rasaiyaah J, Bouwman RD, Whyte WA, Pereira CF, Brookes E, Walker K, Bell GW, Pombo A, Fisher AG, Young RA and Jenner RG. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell. 2010;38:675-88.
59. Mondal T, Subhash S, Vaid R, Enroth S, Uday S, Reinius B, Mitra S, Mohammed A, James AR, Hoberg E, Moustakas A, Gyllensten U, Jones SJ, Gustafsson CM, Sims AH, Westerlund F, Gorab E and Kanduri C. MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun. 2015;6:7743.
60. Choi SW, Kim HW and Nam JW. The small peptide world in long noncoding RNAs. Brief Bioinform. 2019;20:1853-1864.
61. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F, Reese AL, McAnally JR, Chen X, Kavalali ET, Cannon SC, Houser SR, Bassel-Duby R and Olson EN. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351:271-5.
62. Zhang Y, Jiao L, Sun L, Li Y, Gao Y, Xu C, Shao Y, Li M, Li C, Lu Y, Pan Z, Xuan L, Zhang Y, Li Q, Yang R, Zhuang Y, Zhang Y and Yang B. LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca(2+) Overload and Contractile Dysfunction in a Mouse Model of Myocardial Infarction. Circ Res. 2018;122:1354-1368.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78448-
dc.description.abstract根據WHO的資料顯示,心臟疾病至今仍是造成全球死亡的最主要原因之一,儘管現代醫學取得了許多進展,但與心臟衰竭相關的患病率和死亡率仍高居不下,為全球社會帶來沉重負擔。RNA定序(RNA-seq)發現心衰竭病人左心室調控鈣離子恆定的基因表現量顯著降低,其中心肌肌漿網鈣泵(SERCA2)的主要亞型SERCA2a表現量的下降,會導致肌膜鈣離子恆定異常及心肌細胞收縮力受損。因此,於心衰竭期間維持SERCA2a的表現量和功能,被認為是治療心臟衰竭的潛在策略。我們利用RNA定序取得人類心臟內所有可檢測到的mRNA / lncRNA建立加權基因共表達網絡分析(WGCNA),並發現了坐落於蛋白編碼基因SYNPO2的3’端非轉錄區的長鏈非編碼RNA ”lnc-Synpo”是SERCA2a的潛在調控者。
為了確定lnc-Synpo對人類心臟鈣離子調控和心肌收縮的作用,以了解lnc-Synpo調控SERCA2a表達的分子機制。我們在人類誘導多能幹細胞(hiPSC)分化出來的心肌細胞中,發現敲低lnc-Synpo能顯著增加SERCA2a的mRNA和蛋白的表達量,而過量表達lnc-Synpo則會降低SERCA2a的表達。此外,lnc-Synpo的過量表達會損害心肌細胞的收縮能力、鈣離子瞬時峰值和肌漿網中鈣離子的回收速率,而降低lnc-Synpo的表達則會逆轉這種現象。此外,我們發現敲低lnc-Synpo能促使SERCA2a啟動子的表觀遺傳標記H3K4me3增加和H3K27me3減少。而透過ChIRP的實驗也證實,lnc-Synpo能直接與此段啟動子DNA結合。另外,RNA免疫沉澱(RIP)以及RNA pull down皆顯示lnc-Synpo能與多梳抑制複合體2(PRC2)中的關鍵蛋白EZH2結合。綜上所述,我們的數據證明lnc-Synpo能夠引導與之結合的EZH2和PRC2到SERCA2a的啟動子來改變其表觀遺傳修飾進而導致SERCA2a轉錄活性降低。因此,靶向lnc-Synpo可能是改善衰竭心臟中鈣離子恆定和心臟收縮功能的新型治療方法。
zh_TW
dc.description.abstractDespite the advances in modern medicine, the prevalence, morbidity, and mortality associated with heart failure (HF) remain high, which imposes a considerable burden on the global society. There is an urgent need to identify novel mediators/pathways of HF to develop new therapeutics for HF patients. The abnormal sarcolemmal Ca2+ handling and impaired systolic contractility owing to decreased SERCA2a, a major isoform of SERCA, are pathognomonic hallmarks of HF. Finding novel ways to increase SERCA pump expression and activity during HF has been considered a potentially useful therapeutic strategy for HF. Exploiting Weighted Gene Co-expression Network Analysis (WGCNA) of all detectable human cardiac mRNA/lncRNA from an RNASeq dataset, lnc-Synpo, a fragment of 3’ untranslated region of protein-coding gene SYNPO2, has been identified as a potential regulator of SERCA2a expression.
To determine the role of lnc-Synpo in cardiac Ca2+ homeostasis and contractile function, knockdown and overexpression experiments were conducted to reveal the molecular mechanisms through which lnc-Synpo modulates SERCA2a gene expression. In vitro, knocking down lnc-Synpo with antisense oligonucleotide in hiPSC-CM significantly increased the mRNA and protein level of SERCA2a, whereas overexpression lnc-Synpo decreases SERCA2a expression. Meanwhile, forced expression of lnc-Synpo impaired myocyte contraction ability, Ca2+ transient peak height, and sarcoplasmic reticulum Ca2+ uptake, while depletion of lnc-Synpo reverse such phenomenon. Mechanistically, knockdown of lnc-Synpo led to increased transcriptional activity of SERCA2a, as evidenced by increased H3K4me3 and reduced H3K27me3 epigenetic marks revealed by ChIP-qPCR. Chromatin isolation by RNA purification (ChIRP) showed that lnc-Synpo binds directly to SERCA2a promoter DNA. In addition, RNA immunoprecipitation showed that lnc-Synpo binds to EZH2, a critical component of the polycomb repressor complex 2 (PRC2). Taken together, our data suggest that lnc-Synpo represses SERCA2a transcript expression by recruiting EZH2 and PRC2 complex to the promoter of SERCA2a, leading to epigenetic silencing of SERCA2a transcriptional activity. Targeting lnc-Synpo, therefore, could be a novel therapeutic approach to improve Ca2+ homeostasis and contractile function in failing human heart.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:57:34Z (GMT). No. of bitstreams: 1
ntu-109-R06443004-1.pdf: 2380869 bytes, checksum: bff0ce420e29a515662b2197c53a064b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xii
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Heart failure: the growing health problem 1
1.2 Abnormal Calcium handling and heart failure 1
1.3 SERCA2a as a therapeutic target in heart failure 3
1.4 The emerging role of long noncoding RNA in cardiovascular diseases 5
Chapter 2 Material and Methods 8
2.1 Animal and human studies 8
2.2 Human induced pluripotent stem cells (hiPSC) culture 8
2.3 Human induced pluripotent stem cells derived cardiomyocytes 9
2.4 Isolation of neonatal mouse cardiomyocytes (P1CM) 9
2.5 Disease modeling of heart failure in vitro 10
2.6 Locked nucleic acids (LNA™) for gene knockdown in vitro 10
2.7 Lentiviral transduction for gene knockdown in vitro 11
2.8 AAV transduction for gene overexpression in vitro 11
2.9 Measurement of intracellular Ca2+ transient 12
2.10 Cytoplasmic and nuclear RNA extraction 12
2.11 Cytoplasmic, Nuclear, Chromatin RNA extraction 12
2.12 RNA fluorescent in situ hybridization (RNA-FISH) 13
2.13 Chromatin immunoprecipitation (ChIP) 13
2.14 Nuclear RNA immunoprecipitation 14
2.15 Chromatin isolation by RNA purification (ChIRP) 14
2.16 in vitro RNA transcription 15
2.17 Biotinylated RNA 15
2.18 in vitro RNA pull-down 16
2.19 In vitro triplex pull-down assay 16
2.20 Immunofluorescence staining 17
2.21 AAV package 17
2.22 RNA extraction and qRT-PCR 18
2.23 Protein extraction and western blot 18
Chapter 3 Results 20
3.1 RNA Sequencing (RNA-Seq) reveals Ca2+-handling protein genes downregulation in the human failing heart 20
3.2 WGCNA co-expression network analyses identified lnc-Synpo inversely correlated to SERCA2a expression 20
3.3 Human induced pluripotent stem cells (hiPSC) and hiPSC derived cardiomyocyte characterization 21
3.4 Knockdown of lnc-Synpo increased SERCA2 expression level and improved cardiomyocyte contractile function 22
3.5 Overexpression of lnc-Synpo markedly reduced SERCA2 expression and impaired cardiomyocyte contractile function 23
3.6 Endothelin-1 (ET-1) induced SERCA2 loss and Ca2+ imbalance were attenuated by knocking down lnc-Synpo 24
3.7 Myocardial Infarction induced heart failure mouse model reveals strongly correlation of lnc-Synpo and Serca2a 25
3.8 The role of lnc-Synpo in SERCA2 regulation was SYNPO2 independent 26
3.9 lnc-Synpo regulated SERCA2 expression through epigentically modified SERCA2 promoter 26
3.10 lnc-Synpo interacts with PRC2 complex through physical binding with EZH2 28
3.11 lnc-Synpo guided PRC2 complex to SERCA2a promoter through binding with promoter 29
Chapter 4 Discussion 31
4.1 Mouse heart injury model identified negative correlation between lnc-Synpo and SERCA2a in diseased heart 31
4.1.1 Knockdown lnc-Synpo restores SERCA2a expression under diseases 32
4.2 The epigenetic profile of SERCA2 promoter is altered in heart disease 33
4.3 lnc-Synpo regulates SERCA2a expression through histone modification of SERCA2 promoter 34
4.3.1 lnc-Synpo has physical interaction with EZH2 34
4.3.2 lnc-Synpo binds with PRC2 complex through its 3’ sequences 35
4.3.3 lnc-Synpo binds specifically with SERCA2 promoter 35
4.4 Future direction 36
REFERENCE 38
FIGURES AND TABLES 51
APPENDIX 73
dc.language.isoen
dc.subject心臟疾病zh_TW
dc.subjectlnc-Synpozh_TW
dc.subject心衰竭zh_TW
dc.subject心肌肌漿網鈣泵zh_TW
dc.subject多梳抑制複合體zh_TW
dc.subject表觀遺傳修飾zh_TW
dc.subject人類誘導型多能性幹細胞zh_TW
dc.subjectPRC2en
dc.subjectlnc-Synpoen
dc.subjectHeart failureen
dc.subjectHuman induced pluripotent stem cells-derived cardiomyocytesen
dc.subjectCardiovascular diseaseen
dc.subjectSERCA2aen
dc.subjectEpigenetic modificationen
dc.title長鏈非編碼核醣核酸lnc-Synpo透過表觀遺傳抑制SERCA2a損害心肌收縮功能與鈣離子恆定zh_TW
dc.titleLong Noncoding RNA lnc-Synpo Impairs Cardiac Contractile Function and Ca2+ homeostasis by Epigenetically Silencing of SERCA2aen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝清河(Ching-Ho Hsieh),王書品(Shu-Ping Wang),陳文彬(Wen-Pin Chen)
dc.subject.keywordlnc-Synpo,心衰竭,心臟疾病,心肌肌漿網鈣泵,多梳抑制複合體,表觀遺傳修飾,人類誘導型多能性幹細胞,zh_TW
dc.subject.keywordlnc-Synpo,Heart failure,Cardiovascular disease,SERCA2a,PRC2,Epigenetic modification,Human induced pluripotent stem cells-derived cardiomyocytes,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202000220
dc.rights.note有償授權
dc.date.accepted2020-02-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
dc.date.embargo-lift2025-03-13-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-109-R06443004-1.pdf
  未授權公開取用
2.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved