請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78447完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖秀娟 | |
| dc.contributor.author | Chun-Han Chang | en |
| dc.contributor.author | 張鈞涵 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:57:31Z | - |
| dc.date.available | 2025-02-13 | |
| dc.date.copyright | 2020-02-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-03 | |
| dc.identifier.citation | Abbas, S., Wink, M., 2009. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Medica 75, 216-221. An, J.H., Blackwell, T.K., 2003. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Development 17, 1882-1893. Ashrafi, K., Chang, F.Y., Watts, J.L., Fraser, A.G., Kamath, R.S., Ahringer, J., Ruvkun, G., 2003. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268-272. Baba, M., Nakajo, S., Tu, P.H., Tomita, T., Nakaya, K., Lee, V.M., Trojanowski, J.Q., Iwatsubo, T., 1998. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. American Journal of Pathology 152, 879-884. Ball, N., Teo, W.P., Chandra, S., Chapman, J., 2019. Parkinson's Disease and the Environment. Frontiers in Neurology 10, 218. Battin, E.E., Perron, N.R., Brumaghim, J.L., 2006. The central role of metal coordination in selenium antioxidant activity. Inorganic Chemistry 45, 499-501. Beckman, K.B., Ames, B.N., 1998. The free radical theory of aging matures. Physiological Reviews 78, 547-581. Beitz, J.M., 2013. Skin and wound issues in patients with Parkinson's disease: an overview of common disorders. Ostomy Wound Management 59, 26-+. Bellinger, F.P., Bellinger, M.T., Seale, L.A., Takemoto, A.S., Raman, A.V., Miki, T., Manning-Bog, A.B., Berry, M.J., White, L.R., Ross, G.W., 2011. Glutathione Peroxidase 4 is associated with Neuromelanin in Substantia Nigra and Dystrophic Axons in Putamen of Parkinson's brain. Molecular Neurodegeneration 6. Benedetto, A., Au, C., Avila, D.S., Milatovic, D., Aschner, M., 2010. Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genetics 6. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O., 2012. Oxidative stress and antioxidant defense. World Allergy Organ J 5, 9-19. Bjornstedt, M., Hamberg, M., Kumar, S., Xue, J., Holmgren, A., 1995. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. Journal of Biological Chemistry 270, 11761-11764. Blackwell, T.K., Steinbaugh, M.J., Hourihan, J.M., Ewald, C.Y., Isik, M., 2015. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biology and Medicine 88, 290-301. Blesa, J., Phani, S., Jackson-Lewis, V., Przedborski, S., 2012. Classic and new animal models of Parkinson's Disease. Journal of Biomedicine and Biotechnology 2012, 845618. Bolanowski, M.A., Russell, R.L., Jacobson, L.A., 1981. Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mechanisms of Ageing and Development 15, 279-295. Brenneisen, P., Steinbrenner, H., Sies, H., 2005. Selenium, oxidative stress, and health aspects. Molecular Aspects of Medicine 26, 256-267. Brock, T.J., Browse, J., Watts, J.L., 2007. Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176, 865-875. Brown, K.M., Arthur, J.R., 2001. Selenium, selenoproteins and human health: a review. Public Health Nutrition 4, 593-599. Brown, M.K., Evans, J.L., Luo, Y., 2006. Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacology Biochemistry and Behavior 85, 620-628. Brown, R.G., Marsden, C.D., 1990. Cognitive function in Parkinson's disease: from description to theory. Trends in Neurosciences 13, 21-29. Buettner, C., Harney, J.W., Berry, M.J., 1999. The Caenorhabditis elegans homologue of thioredoxin reductase contains a selenocysteine insertion sequence (SECIS) element that differs from mammalian SECIS elements but directs selenocysteine incorporation. Journal of Biological Chemistry 274, 21598-21602. Burk, R.F., Hill, K.E., 2015. Regulation of selenium metabolism and transport. Annual Review of Nutrition 35, 109-134. Cenini, G., Lloret, A., Cascella, R., 2019. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative Medicine and Cellular Longevity 2019, 2105607. Chakraborty, S., Aschner, M., 2012. Altered manganese homeostasis: implications for BLI-3-dependent dopaminergic neurodegeneration and SKN-1 protection in C. elegans. Journal of Trace Elements in Medicine and Biology 26, 183-187. Chang, C.H., Ho, C.T., Liao, V.H., 2017. N-gamma-(L-Glutamyl)-L-selenomethionine enhances stress resistance and ameliorates aging indicators via the selenoprotein TRXR-1 in Caenorhabditis elegans. Molecular Nutrition Food Research 61. Chang, L.W., 1996. Introduction to neurotoxicology of metals. In Cahng, L. W., (Ed.). Toxicology of Metals. Lewis Publishers CRC, Bocca Raton, 509-510. Chen, J., Berry, M.J., 2003. Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry 86, 1-12. Chen, P., Martinez-Finley, E.J., Bornhorst, J., Chakraborty, S., Aschner, M., 2013a. Metal-induced neurodegeneration in C. elegans. Frontiers in Aging Neuroscience 5, 18. Chen, Y.J., Liu, Y.J., Tian, L.X., Niu, J., Liang, G.Y., Yang, H.J., Yuan, Y., Zhang, Y.Q., 2013b. Effect of dietary vitamin E and selenium supplementation on growth, body composition, and antioxidant defense mechanism in juvenile largemouth bass (Micropterus salmoides) fed oxidized fish oil. Fish Physiol Biochem 39, 593-604. Cohen, P., Ntambi, J.M., Friedman, J.M., 2003. Stearoyl-CoA desaturase-1 and the metabolic syndrome. Current Drug Targets: Immune, Endocrine and Metabolic Disorders 3, 271-280. Comba, P., Fazzo, L., Zona, A., 2011. Respiratory illness in asbestos contaminated sites: the role of environmental exposure. European Respiratory Journal 38, 248-250. Commans, S., Bock, A., 1999. Selenocysteine inserting tRNAs: an overview. FEMS Microbiol Rev 23, 335-351. Cooke, M.S., Evans, M.D., Dizdaroglu, M., Lunec, J., 2003. Oxidative DNA damage: mechanisms, mutation, and disease. Faseb Journal 17, 1195-1214. Croll, N.A., Smith, J.M., Zuckerman, B.M., 1977. The aging process of the nematode Caenorhabditis elegans in bacterial and axenic culture. Experimental Aging Research 3, 175-189. Das, J.K., Sarkar, S., Sk, U.H., Chakraborty, P., Das, R.K., Bhattacharya, S., 2013. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation inhibition of DNA damage in mice. Indian Journal of Medical Research 137, 1163-1173. Davies, A.G., Pierce-Shimomura, J.T., Kim, H., VanHoven, M.K., Thiele, T.R., Bonci, A., Bargmann, C.I., McIntire, S.L., 2003. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655-666. Dawson, R., Jr., Beal, M.F., Bondy, S.C., Di Monte, D.A., Isom, G.E., 1995. Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicology and Applied Pharmacology 134, 1-17. de Grey, A.D., 1997. A proposed refinement of the mitochondrial free radical theory of aging. Bioessays 19, 161-166. de Villiers, D., Potgieter, M., Ambele, M.A., Adam, L., Durandt, C., Pepper, M.S., 2018. The role of reactive oxygen species in adipogenic differentiation. Advances in Experimental Medicine and Biology 1083, 125-144. Dias, V., Junn, E., Mouradian, M.M., 2013. The role of oxidative stress in Parkinson's disease. Journal of Parkinson's Disease 3, 461-491. Dickson, D.W., 2012. Parkinson's disease and Parkinsonism: neuropathology. Cold Spring Harbor Perspectives in Medicine 2. Ding, Y., Zou, X., Jiang, X., Wu, J., Zhang, Y., Chen, D., Liang, B., 2015. Pu-erh tea down-regulates sterol regulatory element-binding protein and stearyol-CoA desaturase to reduce fat storage in Caenorhaditis elegans. PLoS One 10, e0113815. Dobrzyn, A., Ntambi, J.M., 2005. Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obesity Reviews 6, 169-174. Donma, M.M., Donma, O., 2016. Promising link between selenium and peroxisome proliferator activated receptor gamma in the treatment protocols of obesity as well as depression. Medical Hypotheses 89, 79-83. Duntas, L.H., Benvenga, S., 2015. Selenium: an element for life. Endocrine 48, 756-775. Ezcurra, M., Tanizawa, Y., Swoboda, P., Schafer, W.R., 2011. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO Journal 30, 1110-1122. Facchinetti, F., Dawson, V.L., Dawson, T.M., 1998. Free radicals as mediators of neuronal injury. Cellular and Molecular Neurobiology 18, 667-682. Fairweather-Tait, S.J., Collings, R., Hurst, R., 2010. Selenium bioavailability: current knowledge and future research requirements. American Journal of Clinical Nutrition 91, 1484s-1491s. Ferrer, I., Martinez, A., Blanco, R., Dalfo, E., Carmona, M., 2011. Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J Neural Transm (Vienna) 118, 821-839. Finkel, T., Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. Flatt, T., 2012. A new definition of aging? Front Genet 3, 148. Forno, L.S., 1996. Neuropathology of Parkinson's disease. Journal of Neuropathology Experimental Neurology 55, 259-272. Foster, H.D., Zhang, L.P., 1995. Longevity and selenium deficiency - evidence from the Peoples-Republic-of-China. Science of the Total Environment 170, 133-139. Fridovich, I., 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry 64, 97-112. Fu, R.H., Harn, H.J., Liu, S.P., Chen, C.S., Chang, W.L., Chen, Y.M., Huang, J.E., Li, R.J., Tsai, S.Y., Hung, H.S., Shyu, W.C., Lin, S.Z., Wang, Y.C., 2014. n-Butylidenephthalide protects against dopaminergic neuron degeneration and alpha-synuclein accumulation in Caenorhabditis elegans models of Parkinson's disease. PLoS One 9, e85305. Garigan, D., Hsu, A.L., Fraser, A.G., Kamath, R.S., Ahringer, J., Kenyon, C., 2002. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112. Gladyshev, V.N., Krause, M., Xu, X.M., Korotkov, K.V., Kryukov, G.V., Sun, Q.A., Lee, B.J., Wootton, J.C., Hatfield, D.L., 1999. Selenocysteine-containing thioredoxin reductase in C. elegans. Biochemical and Biophysical Research Communications 259, 244-249. Gomes, A., Fernandes, E., Lima, J.L.F.C., 2005. Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods 65, 45-80. Guha, S., Natarajan, O., Murbach, C.G., Dinh, J., Wilson, E.C., Cao, M., Zou, S.G., Dong, Y.Q., 2014. Supplement timing of cranberry extract plays a key role in promoting Caenorhabditis elegans healthspan. Nutrients 6, 911-921. Guo, S.D., 2014. Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. Journal of Endocrinology 220, T1-T23. Hadrup, N., Ravn-Haren, G., 2019. Acute human toxicity and mortality after selenium ingestion: A review. Journal of Trace Elements in Medicine and Biology 58, 126435. Hansen, E., Buecher, E.J., Yarwood, E.A., 1964. Development and maturation of Caenorhabditis briggsae in response to growth factor. Nematologica 10, 623-630. Hashimoto, M., Hsu, L.J., Xia, Y., Takeda, A., Sisk, A., Sundsmo, M., Masliah, E., 1999. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10, 717-721. Hatfield, D.L., Gladyshev, V.N., 2002. How selenium has altered our understanding of the genetic code. Molecular and Cellular Biology 22, 3565-3576. Heindel, J.J., Blumberg, B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M.A., Nadal, A., Palanza, P., Panzica, G., Sargis, R., Vandenberg, L.N., Saal, F.V., 2017. Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology 68, 3-33. Hekimi, S., Lapointe, J., Wen, Y., 2011. Taking a 'good' look at free radicals in the aging process. Trends in Cell Biology 21, 569-576. Hengartner, M.O., Horvitz, H.R., 1994. Programmed cell death in Caenorhabditis elegans. Current Opinion in Genetics Development 4, 581-586. Hobert, O., 2005. Specification of the nervous system. WormBook: The Online Review of C. Elegans Biology, 1-19. Hogan, P., Dall, T., Nikolov, P., American Diabetes, A., 2003. Economic costs of diabetes in the US in 2002. Diabetes Care 26, 917-932. Hoglund, K., Salter, H., 2013. Molecular biomarkers of neurodegeneration. Expert Review of Molecular Diagnostics 13, 845-861. Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J., Vanfleteren, J.R., 2008. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Molecular Biology 9, 9. Horvitz, H.R., Sulston, J.E., 1980. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435-454. Hosono, R., Sato, Y., Aizawa, S.I., Mitsui, Y., 1980. Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Experimental Gerontology 15, 285-289. Hsu, F.L., Li, W.H., Yu, C.W., Hsieh, Y.C., Yang, Y.F., Liu, J.T., Shih, J., Chu, Y.J., Yen, P.L., Chang, S.T., Liao, V.H., 2012. In vivo antioxidant activities of essential oils and their constituents from leaves of the Taiwanese Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry 60, 3092-3097. Huang, C., Xiong, C.J., Kornfeld, K., 2004. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 101, 8084-8089. Hwang, O., 2013. Role of oxidative stress in Parkinson's disease. Experimental Neurobiology 22, 11-17. Imam, S.Z., Ali, S.F., 2000. Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxynitrite generation. Brain Research 855, 186-191. Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K., Matsumoto, K., 2005. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Development 19, 2278-2283. Irons, R., Carlson, B.A., Hatfield, D.L., Davis, C.D., 2006. Both selenoproteins and low molecular weight selenocompounds reduce colon cancer risk in mice with genetically impaired selenoprotein expression. Journal of Nutrition 136, 1311-1317. Jadiya, P., Khan, A., Sammi, S.R., Kaur, S., Mir, S.S., Nazir, A., 2011. Anti-Parkinsonian effects of Bacopa monnieri: insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson's disease. Biochemical and Biophysical Research Communications 413, 605-610. Jakel, R.J., Townsend, J.A., Kraft, A.D., Johnson, J.A., 2007. Nrf2-mediated protection against 6-hydroxydopamine. Brain Research 1144, 192-201. Jayanthi, L.D., Apparsundaram, S., Malone, M.D., Ward, E., Miller, D.M., Eppler, M., Blakely, R.D., 1998. The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter. Molecular Pharmacology 54, 601-609. Jiang, T., Sun, Q., Chen, S., 2016. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson's disease and Alzheimer's disease. Progress in Neurobiology 147, 1-19. Johnson, C.C., Fordyce, F.M., Rayman, M.P., 2010. Factors controlling the distribution of selenium in the environment and their impact on health and nutrition. Proceedings of the Nutrition Society 69, 119-132. Jones, K.T., Ashrafi, K., 2009. Caenorhabditis elegans as an emerging model for studying the basic biology of obesity. Disease Models Mechanisms 2, 224-229. Jung, J.E., Karoor, V., Sandbaken, M.G., Lee, B.J., Ohama, T., Gesteland, R.F., Atkins, J.F., Mullenbach, G.T., Hill, K.E., Wahba, A.J., et al., 1994. Utilization of selenocysteyl-tRNA[Ser]Sec and seryl-tRNA[Ser]Sec in protein synthesis. Journal of Biological Chemistry 269, 29739-29745. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G., Ahringer, J., 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology 2, RESEARCH0002. Kieliszek, M., 2019. Selenium-fascinating microelement, properties and sources in food. Molecules 24. Kim, G.H., Kim, J.E., Rhie, S.J., Yoon, S., 2015. The role of oxidative stress in neurodegenerative diseases. Experimental Neurobiology 24, 325-340. Kim, K.W., Jin, Y., 2015. Neuronal responses to stress and injury in C-elegans. FEBS Letters 589, 1644-1652. Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigo, R., Gladyshev, V.N., 2003. Characterization of mammalian selenoproteomes. Science 300, 1439-1443. Kryukov, G.V., Gladyshev, V.N., 2004. The prokaryotic selenoproteome. EMBO Reports 5, 538-543. Kwiecien, S., Jasnos, K., Magierowski, M., Sliwowski, Z., Pajdo, R., Brzozowski, B., Mach, T., Wojcik, D., Brzozowski, T., 2014. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress - induced gastric injury. Journal of Physiology and Pharmacology 65, 613-622. Labunskyy, V.M., Hatfield, D.L., Gladyshev, V.N., 2014. Selenoproteins: molecular pathways and physiological roles. Physiological Reviews 94, 739-777. Le Magueresse-Battistoni, B., Labaronne, E., Vidal, H., Naville, D., 2017. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World Journal of Biological Chemistry 8, 108-119. Lee, R.Y.N., Hench, J., Ruvkun, G., 2001. Regulation of C-elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Current Biology 11, 1950-1957. Letavayova, L., Vlasakova, D., Spallholz, J.E., Bromanova, J., Chovanec, M., 2008. Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis 638, 1-10. Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M., Meyer, J.N., 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences 106, 5-28. Lewy, F., 1912. Paralysis agitans. I. Pathologische anatomie. Handbuch der neurologie 3. 920-933. Li, W.H., Chang, C.H., Huang, C.W., Wei, C.C., Liao, V.H., 2014a. Selenite enhances immune response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans. PLoS One 9, e105810. Li, W.H., Hsu, F.L., Liu, J.T., Liao, V.H.C., 2011. The ameliorative and toxic effects of selenite on Caenorhabditis elegans. Food and Chemical Toxicology 49, 812-819. Li, W.H., Shi, Y.C., Chang, C.H., Huang, C.W., Hsiu-Chuan Liao, V., 2014b. Selenite protects Caenorhabditis elegans from oxidative stress via DAF-16 and TRXR-1. Molecular Nutrition Food Research 58, 863-874. Li, W.H., Shi, Y.C., Tseng, I.L., Liao, V.H., 2013. Protective efficacy of selenite against lead-induced neurotoxicity in Caenorhabditis elegans. PLoS One 8, e62387. Liao, V.H., Yu, C.W., Chu, Y.J., Li, W.H., Hsieh, Y.C., Wang, T.T., 2011. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mechanisms of Ageing and Development 132, 480-487. Liao, V.H.C., 2018. Use of Caenorhabditis elegans to study the potential bioactivity of natural compounds. Journal of Agricultural and Food Chemistry 66, 1737-1742. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., Abete, P., 2018. Oxidative stress, aging, and diseases. Clinical Interventions in Aging 13, 757-772. Lipinski, B., 2019. Redox-active selenium in health and disease: a conceptual review. Mini Reviews in Medicinal Chemistry 19, 720-726. Lithgow, G.J., White, T.M., Melov, S., Johnson, T.E., 1995. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proceedings of the National Academy of Sciences of the United States of America 92, 7540-7544. Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., Li, Z., Hui, J., Graham, B.H., Quintana, A., Bellen, H.J., 2015. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177-190. Liu, M.C., Xu, Y., Chen, Y.M., Li, J., Zhao, F., Zheng, G., Jing, J.F., Ke, T., Chen, J.Y., Luo, W.J., 2013. The effect of sodium selenite on lead induced cognitive dysfunction. Neurotoxicology 36, 82-88. Lobanov, A.V., Hatfield, D.L., Gladyshev, V.N., 2009. Eukaryotic selenoproteins and selenoproteomes. Biochimica Et Biophysica Acta-General Subjects 1790, 1424-1428. Lu, J., Berndt, C., Holmgren, A., 2009. Metabolism of selenium compounds catalyzed by the mammalian selenoprotein thioredoxin reductase. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1790, 1513-1519. MacFarquhar, J.K., Broussard, D.L., Melstrom, P., Hutchinson, R., Wolkin, A., Martin, C., Burk, R.F., Dunn, J.R., Green, A.L., Hammond, R., Schaffner, W., Jones, T.F., 2010. Acute selenium toxicity associated with a dietary supplement. Archives of Internal Medicine 170, 256-261. Maritim, A.C., Sanders, R.A., Watkins, J.B., 2003. Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology 17, 24-38. Maulik, M., Mitra, S., Bult-Ito, A., Taylor, B.E., Vayndorf, E.M., 2017. Behavioral phenotyping and pathological indicators of Parkinson's disease in C. elegans models. Front Genet 8, 77. Meex, R.C.R., Watt, M.J., 2017. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nature Reviews Endocrinology 13, 508-520. Miodovnik, A., 2011. Environmental neurotoxicants and developing brain. Mount Sinai Journal of Medicine 78, 58-77. Misu, H., Ishikura, K., Kurita, S., Takeshita, Y., Ota, T., Saito, Y., Takahashi, K., Kaneko, S., Takamura, T., 2012. Inverse correlation between serum levels of selenoprotein P and adiponectin in patients with type 2 diabetes. PLoS One 7. Moore, B.T., Jordan, J.M., Baugh, L.R., 2013. WormSizer: high-throughput analysis of nematode size and shape. PLoS One 8. Mugesh, G., du Mont, W.W., Sies, H., 2001. Chemistry of biologically important synthetic organoselenium compounds. Chemical Reviews 101, 2125-2179. Mustacich, D., Powis, G., 2000. Thioredoxin reductase. Biochemical Journal 346 Pt 1, 1-8. Nass, R., Hall, D.H., Miller, D.M., 3rd, Blakely, R.D., 2002. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America 99, 3264-3269. Nie, G.J., Cao, Y.L., Zhao, B.L., 2002. Protective effects of green tea polyphenols and their major component, (-)-epigallocatechin-3-gallate (EGCG), on 6-hydroxydopamine-induced apoptosis in PC12 cells. Redox Report 7, 171-177. Nielsen, J., 2009. Systems biology of lipid metabolism: From yeast to human. FEBS Letters 583, 3905-3913. Nogueira, C.W., Zeni, G., Rocha, J.B., 2004. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chemical Reviews 104, 6255-6285. Nordberg, J., Arner, E.S.J., 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology and Medicine 31, 1287-1312. Ntambi, J.M., Miyazaki, M., 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Progress in Lipid Research 43, 91-104. Ntambi, J.M., Miyazaki, M., Stoehr, J.P., Lan, H., Kendziorski, C.M., Yandell, B.S., Song, Y., Cohen, P., Friedman, J.M., Attie, A.D., 2002. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proceedings of the National Academy of Sciences of the United States of America 99, 11482-11486. Nuttall, K.L., 2006. Evaluating selenium poisoning. Annals of Clinical and Laboratory Science 36, 409-420. Offenburger, S.L., Gartner, A., 2018. 6-hydroxydopamine (6-OHDA) oxidative stress assay for observing dopaminergic neuron loss in Caenorhabditis elegans. Bio-Protocol 8. Ogden, C.L., Carroll, M.D., Curtin, L.R., McDowell, M.A., Tabak, C.J., Flegal, K.M., 2006. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA 295, 1549-1555. Ono, K., Yamada, M., 2006. Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Journal of Neurochemistry 97, 105-115. Pamphlett, R., Eide, R., Danscher, G., 2005. Does selenium deficiency unmask mercury toxicity in motor neurons? Neurotoxicology and Teratology 27, 241-244. Papp, D., Csermely, P., Soti, C., 2012. A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathogens 8, e1002673. Papp, L.V., Lu, J., Holmgren, A., Khanna, K.K., 2007. From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxidants Redox Signaling 9, 775-806. Partridge, B., Hall, W., 2007. The search for Methuselah. Should we endeavour to increase the maximum human lifespan? EMBO Reports 8, 888-891. Peng, H., Wei, Z., Luo, H., Yang, Y., Wu, Z., Gan, L., Yang, X., 2016. Inhibition of fat accumulation by hesperidin in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry 64, 5207-5214. Perlemuter, G., Davit-Spraul, A., Cosson, C., Conti, M., Bigorgne, A., Paradis, V., Corre, M.P., Prat, L., Kuoch, V., Basdevant, A., Pelletier, G., Oppert, J.M., Buffet, C., 2005. Increase in liver antioxidant enzyme activities in non-alcoholic fatty liver disease. Liver International 25, 946-953. Petersen, M.C., Vatner, D.F., Shulman, G.I., 2017. Regulation of hepatic glucose metabolism in health and disease. Nature Reviews: Endocrinology 13, 572-587. Pitts, M.W., Reeves, M.A., Hashimoto, A.C., Ogawa, A., Kremer, P., Seale, L.A., Berry, M.J., 2013. Deletion of selenoprotein M leads to obesity without cognitive deficits. Journal of Biological Chemistry 288, 26121-26134. Puspita, L., Chung, S.Y., Shim, J.W., 2017. Oxidative stress and cellular pathologies in Parkinson's disease. Molecular Brain 10, 53. Qiao, Y., Zhao, Y., Wu, Q., Sun, L., Ruan, Q., Chen, Y., Wang, M., Duan, J., Wang, D., 2014. Full toxicity assessment of Genkwa Flos and the underlying mechanism in nematode Caenorhabditis elegans. PLoS One 9, e91825. Ratnappan, R., Amrit, F.R.G., Chen, S.W., Gill, H., Holden, K., Ward, J., Yamamoto, K.R., Olsen, C.P., Ghazi, A., 2014. Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans. PLoS Genetics 10. Rayman, M.P., 2012. Selenium and human health. Lancet 379, 1256-1268. Rayman, M.P., Infante, H.G., Sargent, M., 2008. Food-chain selenium and human health: spotlight on speciation. British Journal of Nutrition 100, 238-253. Reeves, M.A., Hoffmann, P.R., 2009. The human selenoproteome: recent insights into functions and regulation. Cellular and Molecular Life Sciences 66, 2457-2478. Rego, A.C., Oliveira, C.R., 2003. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochemical Research 28, 1563-1574. Rodriguez-Rodero, S., Fernandez-Morera, J.L., Menendez-Torre, E., Calvanese, V., Fernandez, A.F., Fraga, M.F., 2011. Aging genetics and aging. Aging and Disease 2, 186-195. Roman, M., Jitaru, P., Barbante, C., 2014. Selenium biochemistry and its role for human health. Metallomics 6, 25-54. Sakamoto, M., Yasutake, A., Kakita, A., Ryufuku, M., Chan, H.M., Yamamoto, M., Oumi, S., Kobayashi, S., Watanabe, C., 2013. Selenomethionine protects against neuronal degeneration by methylmercury in the developing rat cerebrum. Environ Sci Technol 47, 2862-2868. Sampath, H., Ntambi, J.M., 2011. The role of stearoyl-CoA desaturase in obesity, insulin resistance, and inflammation. Annals of the New York Academy of Sciences 1243, 47-53. Saul, N., Pietsch, K., Sturzenbaum, S.R., Menzel, R., Steinberg, C.E., 2011. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. Journal of Natural Products 74, 1713-1720. Sawin, E.R., Ranganathan, R., Horvitz, H.R., 2000. C-elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619-631. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676-682. Schober, A., 2004. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell and Tissue Research 318, 215-224. Seale, L.A., Gilman, C.L., Hashimoto, A.C., Ogawa-Wong, A.N., Berry, M.J., 2015. Diet-induced obesity in the selenocysteine lyase knockout mouse. Antioxidants and Redox Signaling 23, 761-774. Seale, L.A., Hashimoto, A.C., Kurokawa, S., Gilman, C.L., Seyedali, A., Bellinger, F.P., Raman, A.V., Berry, M.J., 2012. Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Molecular and Cellular Biology 32, 4141-4154. Settivari, R., Levora, J., Nass, R., 2009. The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and Parkinson disease. Journal of Biological Chemistry 284, 35758-35768. Shen, P., Yue, Y., Kim, K.H., Park, Y., 2017. Piceatannol reduces fat accumulation in Caenorhabditis elegans. Journal of Medicinal Food 20, 887-894. Shi, Y.C., Liao, V.H., Pan, T.M., 2012a. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radical Biology and Medicine 52, 109-117. Shi, Y.C., Yu, C.W., Liao, V.H., Pan, T.M., 2012b. Monascus-fermented dioscorea enhances oxidative stress resistance via DAF-16/FOXO in Caenorhabditis elegans. PLoS One 7, e39515. Shimamoto, K., Saito, S., Miura, T., 2006. Metabolic syndrome in elderly. Nihon Ronen Igakkai Zasshi 43, 710-713. Shiobara, Y., Yoshida, T., Suzuki, K.T., 1998. Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicology and Applied Pharmacology 152, 309-314. Shreenath, A.P., Dooley, J., 2019. Selenium deficiency, StatPearls. StatPearls Publishing StatPearls Publishing LLC., Treasure Island (FL), pp. Siebert, A., Desai, V., Chandrasekaran, K., Fiskum, G., Jafri, M.S., 2009. Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. Journal of Neuroscience Research 87, 1659-1669. Singh, U., Jialal, I., 2006. Oxidative stress and atherosclerosis. Pathophysiology 13, 129-142. Song, G.L., Zhang, Z.H., Wen, L., Chen, C., Shi, Q.X., Zhang, Y., Ni, J.Z., Liu, Q., 2014. Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer's disease. Journal of Alzheimers Disease 41, 85-99. Song, K.H., Park, J., Ha, H., 2012. High glucose increases mesangial lipid accumulation via impaired cholesterol transporters. Transplantation Proceedings 44, 1021-1025. Spallholz, J.E., 2019. Selenomethionine and methioninase: selenium free radical anticancer activity. Methods in Molecular Biology 1866, 199-210. Srinivasan, S., 2015. Regulation of body fat in Caenorhabditis elegans. Annual Review of Physiology 77, 161-178. Stadtman, E.R., Levine, R.L., 2003. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25, 207-218. Stadtman, T.C., 1991. Biosynthesis and function of selenocysteine-containing enzymes. Journal of Biological Chemistry 266, 16257-16260. Standaert, D.G., Yacoubian, T.A., 2010. Target validation: the Parkinson disease perspective. Disease Models Mechanisms 3, 259-262. Stefanello, S.T., Gubert, P., Puntel, B., Mizdal, C.R., de Campos, M.M., Salman, S.M., Dornelles, L., Avila, D.S., Aschner, M., Soares, F.A., 2015. Protective effects of novel organic | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78447 | - |
| dc.description.abstract | 硒為微量必須元素而無機硒的必須濃度區間十分的狹窄。日常食物中所攝取的硒主要為有機硒的形態。雖然大部分硒在生物體中之分子機制尚不明確,許多研究指出一些人類疾病都與病患體硒蛋白相關。在人類體中目前發現有25個基因負責轉譯硒蛋白,而TRXR-1是模式生物秀麗隱桿線蟲 (C. elegans) 體中唯一的硒蛋白。 本博士論文中我探討有機硒 (N-γ-(L-glutamyl)-L-selenomethionine, Glu-SeMet) 是如何參與於線蟲並調控以下三個生物效應。如何 (1) 改善老化與長壽;(2) 如何抑制肥胖;(3) 如何改善帕金森氏症 (Parkinson’s disease, PD) 之病徵且其上述之調控機制為何。 研究目標一,結果顯示經過Glu-SeMet (0.01 µM) 餵養之野生種線蟲顯著提升其抗氧化以及抗熱壓力之能力,但在延長壽命之試驗中卻沒有顯著的效果。此外, Glu-SeMet的餵養對於其長壽相關的試驗中與老化指標皆有顯著的改善,但在硒蛋白調控相關之trxr-1突變株線蟲中皆無法觀察到此一改善現象。由這些結果可以得知Glu-SeMet餵養之線蟲,在長壽的調控以及在過程中老化行為的改善機制硒蛋白TRXR-1參與於其中。 研究目標二,研究結果顯示無機硒Se(IV) 及Glu-SeMet皆能顯著的降低線蟲體內脂肪的含量。此外,在高糖飲食組別中我們可以發現,Glu-SeMet (0.01 µM) 可以降低大量誘導之脂質累積,與其他已知具減脂作用的resveratrol相比Glu-SeMet在0.01 µM濃度即可以顯著的降低線蟲體內脂質累積並顯著的降低線蟲油酸與硬脂酸之比例。然而在fat-6、fat-7與trxr-1突變株中皆無法觀察到抑制脂肪累積之效應,代表了stearoyl-CoA desaturases FAT-6與FAT-7參與Glu-SeMet抑制脂肪形成過程,此外硒蛋白TRXR-1亦參與其中。 研究目標三中,利用兩株基因轉殖線蟲進行帕金森氏症模式探討,其中BZ555攜帶綠色螢光蛋白於多巴胺神經;NL5901則表達人類α-synuclein於肌肉細胞。結果顯示Glu-SeMet (0.01 µM) 具有顯著的改善被6-OHDA或錳所誘導之多巴胺神經傷害;此外與帕金森氏症臨床用藥L-DOPA與Selegilin在相同濃度下進行比較,Glu-SeMet具有較佳之多巴胺神經保護功效。此外,當BZ555利用6-OHDA誘導,Glu-SeMet (0.01 µM) 顯著的提升GST-4與GCS-1之mRNA表達量,然而此提升效應則無法在進行skn-1 RNAi後觀察到。研究結果進一步顯示,在NL5901線蟲中,Glu-SeMet (0.01 µM) 能夠顯著的降低α-synuclein累積,然而此現象並未在缺失trxr-1基因之NL5901線蟲中觀察到。綜合以上結果,建議Glu-SeMet可能透過SKN-1與硒蛋白TRXR-1參與調控並改善帕金森氏症之效應。 總結來說,本博士論文提供有機硒Glu-SeMet對有益健康效應的新的面向,具有改善老化、肥胖及帕金森氏症的潛能。因線蟲和人類的基因具有高度的同源性,本博士論文建議硒可做為未來有益健康效應相關研究新的方向。 | zh_TW |
| dc.description.abstract | Selenium is an essential trace element but the essentiality window of inorganic selenium for organisms is narrow. The major daily intake of selenium is organic forms from food. Although molecular mechanisms or pathways, where selenium is involved, are little known, human diseases are known to link with selenoproteins. There are 25 genes encoding selenoproteins in human, yet TRXR-1 is the only selenoprotein identified in the nematode Caenorhabditis elegans (C. elegans). In my dissertation, I used the model organism C. elegans to investigate the mechanisms about how the organic selenium (N-γ-(L-glutamyl)-L-selenomethionine, Glu-SeMet) regulates the following three physiological events in C. elegans: how Glu-SeMet (1) ameliorates aging and improves longevity; (2) inhibits obesity, and (3) ameliorates Parkinson’s symptoms and their underlying mechanisms. In aim 1, results showed that Glu-SeMet (0.01 µM) significantly enhanced stress resistance of wild-type N2 worms under oxidative and thermal stress challenges; however, Glu-SeMet treatment did not extend the lifespan of wild-type N2 C. elegans. Glu-SeMet significantly increased the longevity of wild-type N2 C. elegans, but the phenomena were absent from the C. elegans selenoprotein trxr-1 null mutant worms. Furthermore, Glu-SeMet significantly ameliorated the aging indicators as results of improving longevity. Nevertheless, improving effects of longevity were absent from the trxr-1 null mutant worms. These findings suggest that the ameliorative longevity and aging indicators during aging process by Glu-SeMet in C. elegans are mediated via TRXR-1. In aim 2, results showed that both inorganic Se(IV) and Glu-SeMet have ability to reduce lipid droplets content in wild-type N2 C. elegans. In addition, Glu-SeMet (0.01 µM) reduced fat storage under high-glucose condition. Furthermore, comparing with reported compound (resveratrol), Glu-SeMet at 0.01 μM was enough to significantly reduce fat storage in both normal and high-glucose diet and altered the fatty acid composition. The ratio of oleic acid / stearic acid decreased in Glu-SeMet treatment group. Moreover, the anti-obesity effect was absent in fat-6, fat-7 and trxr-1 mutants, suggesting that FAT-6 and FAT-7 and TRXR-1 are involved in Glu-SeMet regulated fat storage in C. elegans. In aim 3, two transgenic strains: BZ555 expressing green fluorescent protein in dopaminergic neurons and NL5901 expressing human α-synuclein in muscle cells were employed as Parkinson’s disease (PD) model. Results showed that Glu-SeMet at 0.01 μM showed an ameliorative effect on improving dopaminergic neuron defects induced by 6-hydroxydopamine (6-OHDA) or manganese in strain BZ555. Furthermore, comparing with other PD clinical drugs (L-DOPA and Selegilin) at same treatment concentration, Glu-SeMet showed better ameliorative effects on 6-OHDA-induced DA neurons damage in strain BZ555. Glu-SeMet (0.01 μM) significantly increased mRNA level of SKN-1, GST-4, and GCS-1 in 6-OHDA-treateded BZ555 strain; however, the effects were absent with skn-1 RNA interference (RNAi). Furthermore, Glu-SeMet (0.01 μM) decreased α-synuclein accumulation in strain NL5901, whereas similar effect was not observed in the absence of trxr-1. Results from the present study suggest that anti-Parkinson’s symptoms by Glu-SeMet might be modulated via SKN-1 and TRXR-1 in C. elegans. In conclusion, this doctoral dissertation provides new aspects of organic selenium Glu-SeMet on the beneficial health effects, suggesting a potential for Glu-SeMet as a new treatment for aging, obesity, Parkinson’s disease or their complications. Since high genetically conserved pathways are shared between C. elegans and human, this study suggests selenium as a new direction in future research about beneficial health effects. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:57:31Z (GMT). No. of bitstreams: 1 ntu-109-F01622047-1.pdf: 4814316 bytes, checksum: c2e1fc7c58b3e577805b586dc5b53e69 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I Abstract III 中文摘要 VII Graphic abstract of the dissertation IX TABLE OF CONTENTS XI LIST OF FIGURES XVII LIST OF TABLES XIX Abbreviations XX Chapter 1. Origin of this study 1 Chapter 2. Literature review 3 2.1 Selenium 3 2.2 Organic selenium 6 2.3 Oxidative stress 7 2.4 Aging, metabolism syndrome and neurodegeneration 8 2.5 Obesity 10 2.6 Neurodegenerative disease: Parkinson’s disease (PD) 12 2.7 Model organism: Caenorhabditis elegans (C. elegans) 14 2.8 Thioredoxin reductase (TRXR-1) 15 Chapter 3. Rationale and specific aims 17 3.1 Rationale 17 3.2 Specific aims 18 Chapter 4. Materials and methods 22 Experimental flowchart 22 4.1 Specific aim 1 23 4.1.1 Chemicals 23 4.1.2 C. elegans strains and handling procedures 23 4.1.3 C. elegans growth, reproduction, oxidative stress and heatshock resistance assays 24 4.1.4 C. elegans intracellular ROS measurement assays 25 4.1.5 C. elegans lifespan assay 26 4.1.6 C. elegans aging indicators assays 26 4.1.7 C. elegans intestinal lipofuscin assay 28 4.1.8 Data analysis 28 4.2 Specific aim 2 30 4.2.1 C. elegans strains and handling procedures 30 4.2.2 Nile Red staining on fixed nematodes assay 30 4.2.3 C. elegans high-glucose induction assay 31 4.2.4 C. elegans triacylglyceride (TAG) quantification assay 31 4.2.5 C. elegans fatty acid composition analysis by gas chromatography–mass spectrometry 32 4.2.6 Real-time quantitative RT-PCR analysis 33 4.2.7 Data analysis 34 4.3 Specific aim 3 35 4.3.1 C. elegans strains and handling procedures 35 4.3.2 C. elegans dopaminergic neurodegeneration assay 35 4.3.3 Quantitative analysis of dopaminergic neurodegeneration 36 4.3.4 C. elegans basal slowing response assay 37 4.3.5 C. elegans intracellular ROS level assay 38 4.3.6 SKN-1 localization assay 38 4.3.7 skn-1 RNA interference (RNAi) assay 39 4.3.8 Real-time quantitative RT-PCR analysis 40 4.3.9 Quantitative analysis of α-synuclein aggregation 41 4.3.10 Data analysis 42 Chapter 5. Results and discussion 43 5.1 Specific aim 1 43 5.1.1 Organic selenium increases stress resistance and decreases intracellular ROS level in wild-type N2 C. elegans 44 5.1.2 Glu-SeMet does not significantly prolong the lifespan of wild-type N2 C. elegans. 48 5.1.3 Glu-SeMet does not increase stress resistance and does not decrease intracellular ROS level in trxr-1 mutant. 49 5.1.4 Glu-SeMet ameliorates aging indicators in wild-type N2 C. elegans but not in trxr-1 mutant 51 5.2 Specific aim 2 80 5.2.1 Glu-SeMet reduces fat storage in wild-type N2 C. elegans in normal diet 81 5.2.2 Glu-SeMet effectively reduces fat storage in wild-type N2 C. elegans in high-glucose diet 83 5.2.3 Glu-SeMet alters fatty acid composition in wild-type N2 C. elegans in high-glucose diet 85 5.2.4 Effects of Glu-SeMet on the mRNA levels of several lipid metabolic genes in wild-type N2 C. elegans in high-glucose diet 87 5.2.5 The reduced fat storage by Glu-SeMet is abolished in fat-6 or fat-7 mutant in high-glucose diet 88 5.2.6 The reduced fat storage by Glu-SeMet is abolished in trxr-1 mutant in high-glucose diet 89 5.3 Specific aim 3 103 5.3.1 Glu-SeMet ameliorates 6-OHDA or manganese-induced neurotoxicity in BZ555 strain 104 5.3.2 Glu-SeMet recovers basal slowing behavior induced by 6-OHDA or Mn2+ in BZ555 strain 106 5.3.3 Glu-SeMet decreases 6-OHDA-induced ROS level in BZ555 strain 108 5.3.4 Glu-SeMet ameliorates 6-OHDA-induced dopaminergic neurons damage via SKN-1 109 5.3.5 Glu-SeMet enhances mRNA expression of GCS-1, GST-4 via SKN-1 and TRXR-1 in PD model 112 5.3.6 Glu-SeMet decreases accumulation of ɑ-synuclein in NL5901 strain but not in the absence of trxr-1 114 Chapter 6. Conclusions 130 References 132 Appendix 164 Curriculum Vitae 167 | |
| dc.language.iso | en | |
| dc.subject | C. elegans | zh_TW |
| dc.subject | 有機硒 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 帕金森氏症 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 抗氧化 | zh_TW |
| dc.subject | aging | en |
| dc.subject | anti-oxidative | en |
| dc.subject | C. elegans | en |
| dc.subject | organic selenium | en |
| dc.subject | obesity | en |
| dc.title | 有機硒 N-γ-(L-glutamyl)-L-selenomethionine 改善老化、肥胖及帕金森氏症之病徵:以秀麗隱桿線蟲探索其機制 | zh_TW |
| dc.title | Organic selenium N-γ-(L-glutamyl)-L-selenomethionine ameliorates aging, obesity, and Parkinson’s symptoms: exploration of underlying mechanisms in the nematode Caenorhabditis elegans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 潘敏雄,張俊哲,陳佩貞,何元順,王應然 | |
| dc.subject.keyword | 有機硒,C. elegans,抗氧化,老化,肥胖,帕金森氏症, | zh_TW |
| dc.subject.keyword | organic selenium,C. elegans,anti-oxidative,aging,obesity, | en |
| dc.relation.page | 172 | |
| dc.identifier.doi | 10.6342/NTU202000299 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-02-13 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-F01622047-1.pdf 未授權公開取用 | 4.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
