Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟
dc.contributor.authorChi-Wei Huangen
dc.contributor.author黃紀惟zh_TW
dc.date.accessioned2021-07-11T14:57:28Z-
dc.date.available2025-02-17
dc.date.copyright2020-02-17
dc.date.issued2020
dc.date.submitted2020-02-04
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78446-
dc.description.abstract人造奈米顆粒 (Engineered nanoparticles, ENPs) 於工業之應用及相關消費性、醫療性商品持續增加,使其生態環境釋放量亦隨之增加。奈米氧化鋅 (ZnO-NPs) 屬於高使用量及廣泛應用性之ENPs之一,在水環境中可能產生聚集及沉降而累積人造奈米顆粒 (Engineered nanoparticles, ENPs) 於工業之應用及相關消費性、醫療性商品持續增加,使其生態環境釋放量亦隨之增加。奈米氧化鋅 (ZnO-NPs) 屬於高使用量及廣泛應用性之ENPs之一,在水環境中可能產生聚集及沉降而累積於底泥中。,同時亦有可能隨食物鏈傳輸造成攝食傳輸效應。
有鑑於ZnO-NPs於水域環境的重要性,本論文旨在探討ZnO-NPs於水中、底泥及攝食傳輸中造成之毒性。本研究使用兩種淡水底棲無脊椎生物:秀麗隱桿線蟲 (Caenorhabditis elegans) 及亞洲蜆 (Corbicula fluminea),並完成三項主要目標:(1) 了解ZnO-NPs在環境相關濃度之慢性暴露所造成之毒性;(2) 探討底泥中ZnO-NPs之毒性;(3) 評估ZnO-NPs之攝食傳輸及其毒性效應。
在主要目標一,利用C. elegans評估環境相關濃度之ZnO-NPs之慢性毒性。結果顯示在模擬表面水 (EPA water) 中,環境濃度之ZnO-NPs導致C. elegans行為模式毒性,並顯示顆粒造成之毒性效應。此外亦顯著造成ATP levels下降及ROS (Reactive oxygen species) 上升。
在主要目標二,利用C. elegans評估ZnO-NPs在底泥中之慢性毒性,結果顯示在長期底泥暴露ZnO-NPs後, C. elegans生長及繁殖能力並未受到影響,然而在行為模式及ATP levels則被顯著干擾。此外,C. elegans體內ROS及脂質過氧化皆顯著上升。結果亦發現轉錄因子DAF-16/FOXO入核,進而啟動下游壓力反應相關基因的表達 (mtl-1及sod-3)。
在主要目標三,利用C. fluminea及C. elegans探討ZnO-NPs攝食傳輸效應。結果指出淡水底泥microcosm中覆蓋水、孔隙水及底泥之Zn濃度在28天培養後,底泥累積濃度最為顯著。並且waterborne及foodborne 共同暴露ZnO-NPs之C. fluminea,其死亡率、壓力基因表達量、DNA damage,及體內Zn濃度皆顯著上升,顯示C. fluminea之健康狀況及金屬平衡受到嚴重干擾。此外,結果亦證明ZnO-NPs累積於E. coli OP50並進一步透過攝食傳輸至C. elegans,造成C. elegans行為模式毒性及D-type GABAergic運動神經損傷。然而,和ZnCl2結果比較,ZnO-NPs攝食傳輸造成之行為模式毒性及神經損傷較顯著,顯示ZnO-NPs攝食傳輸造成之神經毒性主要來自於顆粒型態。
綜合而論,本博士論文研究成果顯示ZnO-NPs顆粒毒性效應之重要性,結果亦有助於了解環境中ZnO-NPs之行為以及對底棲生物之衝擊,並能協助相關施政單位決策及評估ENPs於水體及底泥中的環境風險。
zh_TW
dc.description.abstractEngineered nanoparticles (ENPs) have been increasingly used in industrial applications as well as consumer and medical products, leading to potentially increased release of ENPs into the ecosystems. Among ENPs, ZnO nanoparticles (ZnO-NPs) are among the most significant and widespread particles. They might end up in sediment due to aggregation and sedimentation processes of these nanoparticles in aquatic environment. In addition, ZnO-NPs in the environment were suggested to be transferred through food chain, causing dietary transfer effect.
Given the importance of released ZnO-NPs in aquatic environment, I investigated the toxicity of ZnO-NPs in water, sediment, and dietary transfer. Two benthic freshwater invertebrates, nematodes (Caenorhabditis elegans) and bivalves (Corbicula fluminea), were used in the present study. The three specific aims that I aimed to achieve are: (1) to understand the chronic toxicity of ZnO-NPs at environmentally relevant concentrations; (2) to investigate the toxicity of ZnO-NPs in sediment; and (3) to determine the dietary transfer effect of ZnO-NPs and its toxic effects.
In specific aim 1, the aquatic toxicity of ZnO-NPs with chronic exposure at environmentally relevant concentrations using the nematode C. elegans was evaluated. The results showed that predicted environmentally relevant concentrations of ZnO-NPs exposure in simulated surface water (EPA water) caused locomotive toxicities in C. elegans, indicating particle-specific toxic effect. Moreover, metabolic toxicities (decreased ATP levels) and reactive oxygen species (ROS) was induced after ZnO-NPs exposure in EPA water.
In specific aim 2, the nematode C. elegans was used to evaluate the chronic toxicity of ZnO-NPs in sediment. Following long-term sediment exposure to ZnO-NPs, growth and reproduction defects were not observed in C. elegans at the examined concentrations, whereas locomotive behaviours and ATP levels were adversely affected. In addition, significant increases in intracellular ROS and lipid peroxidation were induced by long-term sediment exposure to ZnO-NPs. Furthermore, long-term sediment exposure to ZnO-NPs triggered nuclear translocation of the transcription factor DAF-16/FOXO and further activated the targeted expression of the corresponding stress-responsive genes (mtl-1 and sod-3).
In specific aim 3, the dietary transfer effects of ZnO-NPs on C. fluminea and C. elegans were studied. Analysis of ionic Zn in aquatic sediment microcosms showed that Zn released into overlaying water, pore water, and sediment, with the highest amount of Zn accumulation in sediment over 28 days. Moreover, co-exposure to foodborne and waterborne ZnO-NPs (“ZnO-NPs pretreated algae + ZnO-NPs”) caused significantly increased mortality, stress genes expression, DNA damage, and Zn body burden in Asian clam C. fluminea, indicating a disrupted health state and metal homeostasis C. fluminea in sediment microcosm. In addition, dietary effects of ZnO-NPs were investigated in C. elegans. The results showed that ZnO-NPs accumulated in E. coli OP50 further transfer to C. elegans through dietary exposure, which impairs locomotive behaviors and D-type GABAergic motor neurons. However, the toxic effects on locomotive behaviors and GABAergic neurons were not apparent in C. elegans fed with ZnCl2 pretreated E. coli, indicating particulate effect on the neurotoxicity caused by dietary transfer of ZnO-NPs.
In conclusion, results from this doctoral dissertation highlight the particle-specific toxic effects of ZnO-NPs and improve our understanding in ZnO-NPs environmental behavior and their impact to benthic organisms. This information was helpful for government practitioners and regulators while evaluating environmental risks and making decisions for water bodies and sediment in the environment.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:57:28Z (GMT). No. of bitstreams: 1
ntu-109-D03622015-1.pdf: 4380861 bytes, checksum: 6544bbf62f0f214c00417ba11103376b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
Abstract II
摘要 V
Graphic abstract of the dissertation VII
LIST OF FIGURES XV
LIST OF TABLES XVIII
Abbreviations XIX
Chapter 1. Origin of the study 1
Chapter 2. Literature review 3
2.1 Engineered nanoparticles (ENPs) 3
2.2 ZnO nanoparticles (ZnO-NPs) 4
2.3 ZnO-NPs in sediment 8
2.4 Caenorhabditis elegans 10
2.5 Corbicula fluminea 12
2.6 Dietary transfer 13
Chapter 3. Rationale and specific aims 16
3.1 Rationale 16
3.2 Specific aims 17
3.2.1 Specific aim 1: To understand the chronic toxicity of ZnO-NPs at environmentally relevant concentrations 17
3.2.2 Specific aim 2: To investigate the toxicity of ZnO-NPs in sediment 18
3.2.3 Specific aim 3: To determine the dietary transfer effect of ZnO-NPs and its toxic effects 18
Chapter 4. Materials and methods 20
Experimental flowchart 20
4.1 Specific aim 1 21
4.1.1 Chemicals and preparation of ZnO-NPs suspension 21
4.1.2 Characterization of ZnO-NPs 21
4.1.3 C. elegans strains maintenance and growth condition 22
4.1.4 C. elegans growth assays 23
4.1.5 C. elegans locomotive behaviors assays 23
4.1.6 Analysis of metabolic ATP levels with a transgenic strain PE254 25
4.1.7 C. elegans intracellular ROS measurement 26
4.1.8 Data analysis 27
4.2 Specific aim 2 27
4.2.1 C. elegans sediment exposure and isolation 27
4.2.2 Measurement of Zn concentration in pore water in ZnO-NPs or ZnCl2-spiked sediments 29
4.2.3 C. elegans growth assays in ZnO-NPs or ZnCl2 spiked sediments 30
4.2.4 C. elegans reproduction assays in ZnO-NPs or ZnCl2 spiked sediments 31
4.2.5 C. elegans locomotive behaviour assays in ZnO-NPs or ZnCl2-spiked sediments 31
4.2.6 C. elegans ATP levels determination in ZnO-NP or ZnCl2-spiked sediments 32
4.2.7 C. elegans intracellular ROS level and lipid peroxidation determination in ZnO-NP or ZnCl2-spiked sediments 33
4.2.8 Transgenic C. elegans subcellular DAF-16 localization assay in ZnO-NPs or ZnCl2-spiked sediments 34
4.2.9 Transgenic C. elegans stress-responsive genes expression assays in ZnO-NP or ZnCl2-spiked sediments 34
4.2.10 C. elegans stress-responsive genes 35
mRNA level assays in ZnO-NP or ZnCl2-spiked sediments 35
4.2.11 Data analysis 36
4.3 Specific aim 3 37
4.3.1. ZnO-NPs or ZnCl2 exposure and Zn accumulation in algae Chlorella ellipsoidea 37
4.3.2 Exposure of Asian clam C. fluminea in aquatic sediment microcosms 37
4.3.3. Measurement of Zn concentration in aquatic sediment microcosms 38
4.3.4 Survival and uptake of Zn in Asian clam C. fluminea 39
4.3.5 Analysis of mRNA levels in Asian clam C. fluminea 39
4.3.6 Analysis of increased body burden of Zn in Asian clam C. fluminea 40
4.3.7 Analysis of DNA damage in Asian clam C. fluminea in aquatic sediment microcosms 41
4.3.8 C. elegans strain maintenance 42
4.3.9 Measurement Zn concentration in E. coli OP50 43
4.3.10 C. elegans dietary transfer assay 43
4.3.11 C. elegans locomotive behaviors assay 44
4.3.12 C. elegans GABAergic neuron toxicity assay 45
4.3.13 Data analysis 46
Chapter 5. Results and Discussion 47
5.1 Specific aim 1 47
5.1.1 Characterization of ZnO-NPs in EPA water and SSPW 48
5.1.2 Effects of ZnO-NPs on C. elegans growth in EPA water and SSPW 50
5.1.3 Effects of ZnO-NPs on C. elegans locomotive behaviors in EPA water and SSPW 51
5.1.4 Comparison of effects of ZnO-NPs and ZnCl2 on C. elegans body bends 53
5.1.5 Effects of ZnO-NPs and ZnCl2 on metabolic ATP levels in C. elegans 55
5.1.6 Effects of ZnO-NPs and ZnCl2 on intracellular ROS level in C. elegans 57
5.2 Specific aim 2 69
5.2.1 Ionic Zn concentration in pore water in ZnO-NP or ZnCl2-spiked sediment 70
5.2.2 Long-term sediment exposure to ZnO-NPs or ZnCl2 at the examined concentrations does not result in growth and reproductive toxicity in C. elegans 71
5.2.3 Long-term sediment exposure to ZnO-NPs or ZnCl2 at the examined concentrations affects locomotive behaviours in C. elegans 73
5.2.4 Long-term sediment exposure to ZnO-NPs or ZnCl2 at the examined concentrations reduces metabolic ATP levels in C. elegans 75
5.2.5 Long-term sediment exposure to ZnO-NPs or ZnCl2 at the examined concentrations increases intracellular ROS level and lipid peroxidation in C. elegans 76
5.2.6 Long-term sediment exposure to ZnO-NPs or ZnCl2 at the examined concentrations induces translocation of DAF-16 into nuclei in C. elegans 79
5.2.7 Long-term sediment exposure to ZnO-NPs or ZnCl2 at the examined concentrations induces stress-responsive genes expression in C. elegans 80
5.3 Specific aim 3 100
5.3.1 Zn accumulation in algal cells after ZnO-NPs or ZnCl2 exposure 101
5.3.2 Measurement of Zn concentrations in aquatic sediment microcosms 102
5.3.3 Co-exposure of food-borne and water-borne ZnO-NPs results in significant survival decline of Asian clam C. fluminea in aquatic sediment microcosms 104
5.3.4 Comparison of Zn uptake in Asian clam C. fluminea in aquatic sediment microcosms 106
5.3.5 Stress genes expression in Asian clam C. fluminea in aquatic sediment microcosms 107
5.3.6 Increased body burden of Zn in Asian clam C. fluminea in aquatic sediment microcosms 110
5.3.7 Effect of ZnO-NPs on DNA damage in Asian clam C. fluminea in aquatic sediment microcosms 112
5.3.8 Released Zn concentration from ZnO-NPs in LB medium 114
5.3.9 Zn accumulation in E. coli OP50 115
5.3.10 Distribution and accumulation of ZnO-NPs in C. elegans from dietary transfer 116
5.3.11 Effects of dietary transfer of ZnO-NPs on locomotive behaviors of C. elegans 118
5.3.12 Effects of dietary transfer of ZnO-NPs on D-type GABAergic motor neurons of C. elegans 119
Chapter 6. Conclusions 142
References 146
Appendix 182
Curriculum Vitae 186
dc.language.isoen
dc.subject人造奈米顆粒zh_TW
dc.subject亞洲蜆zh_TW
dc.subject環境相關濃度zh_TW
dc.subject攝食傳輸zh_TW
dc.subject毒性zh_TW
dc.subject生物累積zh_TW
dc.subject秀麗隱桿線蟲zh_TW
dc.subject底泥zh_TW
dc.subject底棲生物zh_TW
dc.subject氧化鋅奈米顆粒zh_TW
dc.subjectZnO-NPsen
dc.subjectCorbicula flumineaen
dc.subjectCaenorhabditis elegansen
dc.subjectbenthic organismen
dc.subjectdietary transferen
dc.subjecttoxicityen
dc.subjectbioaccumulationen
dc.subjectsedimenten
dc.subjectEngineered nanoparticlesen
dc.subjectenvironmentally relevant concentrationsen
dc.title人造氧化鋅奈米顆粒於水中及底泥之毒性與攝食傳輸分析zh_TW
dc.titleToxicity and dietary transfer of engineered ZnO nanoparticles in water and sedimenten
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee廖中明,沈偉強,張俊哲,陳佩貞,童心欣
dc.subject.keyword人造奈米顆粒,氧化鋅奈米顆粒,環境相關濃度,底泥,生物累積,毒性,攝食傳輸,底棲生物,秀麗隱桿線蟲,亞洲蜆,zh_TW
dc.subject.keywordEngineered nanoparticles,ZnO-NPs,environmentally relevant concentrations,sediment,bioaccumulation,toxicity,dietary transfer,benthic organism,Caenorhabditis elegans,Corbicula fluminea,en
dc.relation.page191
dc.identifier.doi10.6342/NTU202000324
dc.rights.note有償授權
dc.date.accepted2020-02-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
dc.date.embargo-lift2025-02-17-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-D03622015-1.pdf
  未授權公開取用
4.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved