Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78425
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文貞(Wen-Jen Lin)
dc.contributor.authorYi-Ching Leeen
dc.contributor.author李宜靜zh_TW
dc.date.accessioned2021-07-11T14:56:20Z-
dc.date.available2025-03-13
dc.date.copyright2020-03-13
dc.date.issued2020
dc.date.submitted2020-02-21
dc.identifier.citationU.S. FOOD & DRUG dissolution methods. 2019; Available from: https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults.cfm.

Acharya G, Shin CS, Vedantham K, McDermott M, Rish T, Hansen K, et al. A study of drug release from homogeneous PLGA microstructures. J Control Release. 2010;146(2):201-6.

Alai M, Lin WJ. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation. J Microencapsul. 2013;30(6):519-29.

Alai M, Lin WJ. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: in vitro and in vivo evaluations. Int J Nanomedicine. 2015;10:4029-41.

Arya A, Majumdar DK, Pathak DP, Sharma AK, Ray AR. Design and evaluation of acrylate polymeric carriers for fabrication of pH-sensitive microparticles. Drug Dev Ind Pharm. 2017;43(2):305-18.

Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH. Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release. 2014;181:11-21.

Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release. 2016;238:176-85.

Bannunah AM, Vllasaliu D, Lord J, Stolnik S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm. 2014;11(12):4363-73.

Bernard AF, Robert WB. Schizophrenia in adults: Clinical manifestations, course, assessment, and diagnosis. In: Stephen M, editor. UpToDate. UpToDate. Waltham, MA: UpToDate Inc. https://www.uptodate.com (Accessed on January 15, 2020.).

Bile J, Bolzinger MA, Vigne C, Boyron O, Valour JP, Fessi H, et al. The parameters influencing the morphology of poly(varepsilon-caprolactone) microspheres and the resulting release of encapsulated drugs. Int J Pharm. 2015;494(1):152-66.

Caccia S. Pharmacokinetics and metabolism update for some recent antipsychotics. Expert Opin Drug Metab Toxicol. 2011;7(7):829-46.

Chaisri W, Ghassemi AH, Hennink WE, Okonogi S. Enhanced gentamicin loading and release of PLGA and PLHMGA microspheres by varying the formulation parameters. Colloids Surf B Biointerfaces. 2011;84(2):508-14.

Chen W, Palazzo A, Hennink WE, Kok RJ. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol Pharm. 2017;14(2):459-67.

Chernysheva YV, Babak VG, Kildeeva NR, Boury F, Benoit JP, Ubrich N, et al. Effect of the type of hydrophobic polymers on the size of nanoparticles obtained by emulsification–solvent evaporation. Mendeleev Communications. 2003;13(2):65-7.

Choudhary S, Jain A, Amin M, Mishra V, Agrawal GP, Kesharwani P. Stomach specific polymeric low density microballoons as a vector for extended delivery of rabeprazole and amoxicillin for treatment of peptic ulcer. Colloids Surf B Biointerfaces. 2016;141:268-77.

Christopher L, Murray., Aland D L. The global burden of disease. Cambridge, MA.: Harvard University Press; 1996.

Chung HJ, Kim HK, Yoon JJ, Park TG. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm Res. 2006;23(8):1835-41.

Clarke MC, Harley M, Cannon M. The role of obstetric events in schizophrenia. Schizophr Bull. 2006;32(1):3-8.

Conus P, Abdel-Baki A, Harrigan S, Lambert M, McGorry PD, Berk M. Pre-morbid and outcome correlates of first episode mania with psychosis: is a distinction between schizoaffective and bipolar I disorder valid in the early phase of psychotic disorders? J Affect Disord. 2010;126(1-2):88-95.

Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences. 2001;13(2):123-33.

Costo R, Heinke D, Gruttner C, Westphal F, Morales MP, Veintemillas-Verdaguer S, et al. Improving the reliability of the iron concentration quantification for iron oxide nanoparticle suspensions: a two-institutions study. Anal Bioanal Chem. 2019;411(9):1895-903.

Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol. 2006;26(4-6):365-84.

Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505-22.

Dash S, Murthy P, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica ñ Drug Research. 2010;67:217-23.

Dash TK, Konkimalla VB. Poly-є-caprolactonebased formulations for drug delivery and tissue engineering:A review. J Control Release. 2012;158(1):15-33.

Davatzikos C, Koutsouleris N. Computational neuroanatomy of schizophrenia. The Neurobiology of Schizophrenia2016. p. 263-82.

Dening TJ, Rao S, Thomas N, Prestidge CA. Oral nanomedicine approaches for the treatment of psychiatric illnesses. J Control Release. 2016;223:137-56.

Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68-96.

Dondapati D, Srimathkandala MH, Sanka K, Bakshi V. Improved solubility and dissolution release profile of lurasidone by solid self-nanoemulsifying drug delivery system. Analytical Chemistry Letters. 2016;6(2):86-97.

El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano- and microparticles for drug delivery. Glob Cardiol Sci Pract. 2015;2015:2.

Elder DP, Holm R, Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm. 2013;453(1):88-100.

Fatani BZ, Aldawod RA, Alhawaj FA. Schizophrenia : Etiology, pathophysiology and management : A review. The Egyptian Journal of Hospital Medicine. 2017;69(6):2640-6.

Ferreira LP, Gaspar VM, Mano JF. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Biomaterials. 2018;185:155-73.

Fokong S, Theek B, Wu Z, Koczera P, Appold L, Jorge S, et al. Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J Control Release. 2012;163(1):75-81.

Foram J, Vaishali L. Solubility enhancement of Lurasidone hydrochloride by preparing SMEDDS. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(11).

Fornaguera C, Solans C. Methods for the in vitro characterization of nanomedicines—biological component Iinteraction. Journal of Personalized Medicine. 2017;7(1).

Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. Int J Pharm. 2011;415(1-2):34-52.

Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1-2):1-18.

Fusar-Poli P, Papanastasiou E, Stahl D, Rocchetti M, Carpenter W, Shergill S, et al. Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr Bull. 2015;41(4):892-9.

G.M.Clarke, J.M.Newton, M.B.Short. Comparative gastrointestinal transit of pellet systems of varying density. International Journal of Pharmaceutics 1995;114:1-11.

Gaebel W, Zielasek J. Schizophrenia in 2020: Trends in diagnosis and therapy. Psychiatry Clin Neurosci. 2015;69(11):661-73.

Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640-59.

Gold JM, Hahn B, Strauss GP, Waltz JA. Turning it upside down: areas of preserved cognitive function in schizophrenia. Neuropsychol Rev. 2009;19(3):294-311.

Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl). 2004;174(1):3-16.

Goyal R, Macri L, Kohn J. Formulation strategy for the delivery of cyclosporine A: Comparison of two polymeric nanospheres. Sci Rep. 2015;5:13065.

Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17(8):524-32.

Greenberg WM, Citrome L. Pharmacokinetics and pharmacodynamics of lurasidone hydrochloride, a second-generation antipsychotic: A systematic review of the published literature. Clin Pharmacokinet. 2017;56(5):493-503.

Grossman LS, Harrow M, Rosen C, Faull R, Strauss GP. Sex differences in schizophrenia and other psychotic disorders: a 20-year longitudinal study of psychosis and recovery. Compr Psychiatry. 2008;49(6):523-9.

Gu B, Burgess DJ. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach. Int J Pharm. 2015;495(1):393-403.

Guo F, Zhang M, Gao Y, Zhu S, Chen S, Liu W, et al. Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation. Drug Deliv. 2016;23(6):2003-14.

Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol. 2016;7:185.

He B, Lin P, Jia Z, Du W, Qu W, Yuan L, et al. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 2013;34(25):6082-98.

He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657-66.

Heng W, Wei Y, Zhou S, Ma D, Gao Y, Zhang J, et al. Effects of temperature and ionic strength of dissolution medium on the gelation of amorphous lurasidone hydrochloride. Pharm Res. 2019;36(5):72.

Hilgers A, Conradi R, Burton P. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm Res. 1990:10.

Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35(3):549-62.

Jaaskelainen E, Juola P, Hirvonen N, McGrath JJ, Saha S, Isohanni M, et al. A systematic review and meta-analysis of recovery in schizophrenia. Schizophr Bull. 2013;39(6):1296-306.

Jazuli I, Annu, Nabi B, Moolakkadath T, Alam T, Baboota S, et al. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using box-behnken design for brain targeting: In vitro and in vivo studies. J Pharm Sci. 2019;108(9):3082-90.

Je HJ, Kim ES, Lee JS, Lee HG. Release properties and cellular uptake in Caco-2 cells of size-controlled chitosan nanoparticles. J Agric Food Chem. 2017;65(50):10899-906.

Joshi G, Kumar A, Sawant K. Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug Deliv. 2016;23(9):3492-504.

Kanaujia P, Poovizhi P, Ng WK, Tan RBH. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technology. 2015;285:2-15.

Katara R, Sachdeva S, Majumdar DK. Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery. Pharm Dev Technol. 2019;24(3):368-79.

Korzhikov V, Averianov I, Litvinchuk E, Tennikova TB. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release. J Microencapsul. 2016;33(3):199-208.

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18.

Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484-504.

Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114(1):169-79.

Lee KR, Chae YJ, Koo TS. Pharmacokinetics of lurasidone, a novel atypical anti-psychotic drug, in rats. Xenobiotica. 2011;41(12):1100-7.

Li Z, Jiang H, Xu C, Gu L. A review: Using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocolloids. 2015;43:153-64.

Li Z, Tan BH. Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Mater Sci Eng C Mater Biol Appl. 2014;45:620-34.

Liu L, Zhang Y, Yu S, Yang Z, He C, Chen X. Dual stimuli-responsive nanoparticle-incorporated hydrogels as an oral insulin carrier for intestine-targeted delivery and enhanced paracellular permeation. ACS Biomaterials Science & Engineering. 2018;4(8):2889-902.

Londhe VY, Deshmane AB, Singh SR, Kulkarni YA. Lurasidone-β-cyclodextrin complexes: Physicochemical characterization and comparison of their antidepressant, antipsychotic activities against that of self microemulsifying formulation. Journal of Molecular Structure. 2018;1157:395-400.

Lopes CM, Bettencourt C, Rossi A, Buttini F, Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm. 2016;510(1):144-58.

Lu S, Yu P-p, He J-H, Zhang S-s, Xia Y-L, Zhang W-L, et al. Enhanced dissolution and oral bioavailability of lurasidone hydrochloride nanosuspensions prepared by antisolvent precipitation–ultrasonication method. RSC Advances. 2016;6(54):49052-9.

Mahajan A, Surti N, Koladiya P. Solid dispersion adsorbate technique for improved dissolution and flow properties of lurasidone hydrochloride: characterization using 3(2) factorial design. Drug Dev Ind Pharm. 2018;44(3):463-71.

Mahmoud S, Enas E, Abdulfattah A, Samar M, Abdelhameed ES. Dual buoyant mucoadhesive macroporous polypropylene microparticles for gastric delivery of Repaglinide. International Journal of Drug Delivery. 2015;7:197-207.

Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377-97.

Mandl HK, Quijano E, Suh HW, Sparago E, Oeck S, Grun M, et al. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J Control Release. 2019;314:92-101.

Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering: C. 2016;60:569-78.

Mauri MC, Paletta S, Maffini M, Colasanti A, Dragogna F, Di Pace C, et al. Clinical pharmacology of atypical antipsychotics : an update. EXCLI J. 2014;13:1163–91.

McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67-76.

Meyer JM, Loebel AD, Schweizer E. Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs. 2009;18(11):1715-26.

Miao Y, Sun J, Chen G, Lili R, Ouyang P. Enhanced oral bioavailability of lurasidone by self-nanoemulsifying drug delivery system in fasted state. Drug Dev Ind Pharm. 2016;42(8):1234-40.

Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9(7):2009-16.

Mitsuru Toda B, Anissa Abi-Dargham M. Dopamine hypothesis of schizophrenia-making sense of it all. Current Psychiatry Reports. 2007;9(4):329–36.

Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37(1):4-15.

Mohamed RM, Yusoh K. A review on the recent research of polycaprolactone (PCL). Advanced Materials Research. 2015;1134:249-55.

Mooter GVd. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e71-e174.

Ni R, Muenster U, Zhao J, Zhang L, Becker-Pelster EM, Rosenbruch M, et al. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung: In vitro and in vivo characterization. J Control Release. 2017;249:11-22.

Nidhi, Rashid M, Kaur V, Hallan SS, Sharma S, Mishra N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm J. 2016;24(4):458-72.

Niyom Y, Phakkeeree T, Flood A, Crespy D. Synergy between polymer crystallinity and nanoparticles size for payloads release. J Colloid Interface Sci. 2019;550:139-46.

Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017;147:145-54.

Pastor EL, Reguera-Nunez E, Matveeva E, Garcia-Fuentes M. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles. PeerJ. 2015;3:e1277.

Patel MH, Mundada VP, Sawant KK. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia. Drug Dev Ind Pharm. 2019;45(8):1242-57.

Patel MH, Sawant KK. Self microemulsifying drug delivery system of lurasidone hydrochloride for enhanced oral bioavailability by lymphatic targeting: In vitro, Caco-2 cell line and in vivo evaluation. Eur J Pharm Sci. 2019;138:105027.

Patil H, Tiwari RV, Repka MA. Recent advancements in mucoadhesive floating drug delivery systems: A mini-review. Journal of Drug Delivery Science and Technology. 2016;31:65-71.

Patra CN, Priya R, Swain S, Kumar Jena G, Panigrahi KC, Ghose D. Pharmaceutical significance of Eudragit: A review. Future Journal of Pharmaceutical Sciences. 2017;3(1):33-45.

Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12(9):1459-73.

Qian S, Heng W, Wei Y, Zhang J, Gao Y. Coamorphous lurasidone hydrochloride–saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior. Crystal Growth & Design. 2015;15(6):2920-8.

Qian S, Wang S, Li Z, Wang X, Ma D, Liang S, et al. Charge-assisted bond N(+)H mediates the gelation of amorphous lurasidone hydrochloride during dissolution. Int J Pharm. 2017;518(1-2):335-41.

Raymond CR, Paul JS, Marian EQ. Handbook of pharmaceutical excipients. London: Amer Pharmacists Assn; 2009.

Ritesh K, Amrish C, Shiva S, Pawan Kumar G. Advanced multiple unit controlled release floating beads A review. World Journal of Pharmaceutical Research. 2017;(2277– 7105).

Roger. E, Lagarce. F, Garcion. E, Benoit. J-P. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine 2010;5(2):287–306.

Salamat-Miller N, Johnston TP. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int J Pharm. 2005;294(1-2):201-16.

Satheesh Madhav N V, . , . KS. Review on microparticulate drug delivery. International Journal of PharmTech Research. 2011;3:1242-54.

Seeman P. Atypical antipsychotics mechanisms of action. The Canadian Journal of Psychiatry. 2002;48(1):62-4.

Shah S, Parmar B, Soniwala M, Chavda J. Design, optimization, and evaluation of lurasidone hydrochloride nanocrystals. AAPS PharmSciTech. 2016;17(5):1150-8.

Shahzad MK, Ubaid M, Murtaza G. Formulation and optimization of celecoxib-loaded microspheres using response surface methodology. Tropical Journal of Pharmaceutical Research. 2013;11(5).

Sharma A, Goyal AK, Rath G. Development and characterization of gastroretentive high-density pellets lodged with zero valent iron nanoparticles. J Pharm Sci. 2018;107(10):2663-73.

Siepmann J, Faisant N, Akiki J, Richard J, Benoit JP. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release. 2004;96(1):123-34.

Simeone JC, Ward AJ, Rotella P, Collins J, Windisch R. An evaluation of variation in published estimates of schizophrenia prevalence from 1990 horizontal line 2013: a systematic literature review. BMC Psychiatry. 2015;15:193.

Singh J, Pandit S, Bramwell VW, Alpar HO. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods. 2006;38(2):96-105.

Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm. 2008;350(1-2):320-9.

Thakral S, Thakral NK, Majumdar DK. Eudragit: a technology evaluation. Expert Opin Drug Deliv. 2013;10(1):131-49.

Tsai T, Kao CY, Chou CL, Liu LC, Chou TC. Protective effect of magnolol-loaded polyketal microparticles on lipopolysaccharide-induced acute lung injury in rats. J Microencapsul. 2016;33(5):401-11.

Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry andClinical Neurosciences 2019;73:204–15.

Verma A, Sharma S, Gupta PK, Singh A, Teja BV, Dwivedi P, et al. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016;31:288-300.

Westphal F, Junge T, Rosner P, Sonnichsen F, Schuster F. Mass and NMR spectroscopic characterization of 3,4-methylenedioxypyrovalerone: a designer drug with alpha-pyrrolidinophenone structure. Forensic Sci Int. 2009;190(1-3):1-8.

Xie Y, Hu X, He H, Xia F, Ma Y, Qi J, et al. Tracking translocation of glucan microparticles targeting M cells: implications for oral drug delivery. Journal of Materials Chemistry B. 2016;4(17):2864-73.

Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater. 2017;105(6):1692-716.

Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials. 2009;30(10):1947-53.

Yong JM, Mantaj J, Cheng Y, Vllasaliu D. Delivery of nanoparticles across the intestinal epithelium via the transferrin transport pathway. Pharmaceutics. 2019;11(7).

Yu M, Yang Y, Zhu C, Guo S, Gan Y. Advances in the transepithelial transport of nanoparticles. Drug Discov Today. 2016;21(7):1155-61.

Yu P, Lu S, Zhang S, Zhang W, Li Y, Liu J. Enhanced oral bioavailability and diminished food effect of lurasidone hydrochloride nanosuspensions prepared by facile nanoprecipitation based on dilution. Powder Technology. 2017;312:11-20.

Zhang C, Xu M, Tao X, Tang J, Liu Z, Zhang Y, et al. A floating multiparticulate system for ofloxacin based on a multilayer structure: In vitro and in vivo evaluation. Int J Pharm. 2012;430(1-2):141-50.

Zhang L, Zhang X, Li J, Beck-Broichsitter M, Muenster U, Wang X, et al. Optimization of budesonide-loaded large-porous microparticles for inhalation using quality by design approach. Journal of Drug Delivery Science and Technology. 2019;53.

Zhou X, Chen Q, Ma Y, Huang Y, Gou S, Xiao B. Porous polymeric microparticles as an oral drug platform for effective ulcerative colitis treatment. J Pharm Sci. 2019;108(7):2238-42.

Ziv V, Weiner S. Bone crystal sizes: a comparison of transmission electron microscopic and X-ray diffraction line width broadening techniques. Connect Tissue Res. 1994;30(3):165-75.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78425-
dc.description.abstract鹽酸魯拉西酮(LSD-HCl)是一種帶鹽類的結晶化合物,在2010年由FDA核准上市為第二代非典型抗精神病藥,其溶解度不佳(0.224 mg/mL at 20℃),生體可用率只有約9-19%,因此如何提升LSD-HCl之生體可用率是需要被解決的問題。本研究利用三種不同的高分子,分別為聚乳酸-甘醇酸(Poly(lactide-co-glycolide), PLGA)、聚己內酯(poly(caprolactone), PCL)及聚丙烯酸樹脂(Eudragit® RS100, ERS)作為載體材料,希望開發具有胃滯留特性,可延長藥物釋放的微球劑型,及因奈米尺寸的優勢,促使藥物更容易被胃壁細胞吸收的奈米顆粒劑型,來遞送鹽酸鲁拉西酮,進而達到提升其生體可用率的目的。
在第一部分中,使用均質機以油/水溶媒乳化揮發法的方法製作微球,由實驗結果顯示有機相的聚合物濃度與微球的粒徑大小及包覆率有依存性,當有機相聚合物的濃度越高時,因有機相黏度提高使其製備出來的微球粒徑越大,而藥物的包覆率反而因脫去鹽酸鹽的量增加而下降。在掃描式顯微鏡的觀察下,三種高分子製備出來的微球呈現良好的球形。此外,紅外線分光光譜儀、示差掃描量熱儀的結果顯示,製備劑型後藥物已脫去鹽酸鹽,粉末X光繞射呈現藥物不僅脫去鹽類且結晶度亦下降。體內藥物釋放實驗的結果發現,整體而言,以LSD-PCL-MPs釋放速度最快,LSD-ERS-MPs次之,而LSD-PLGA-MPs則最慢且慢於LSD-HCl,三種微球的藥物釋放機制皆為Higuchi動力模式,藥物釋放速度提升原因來自於藥物結晶度的下降,而不同聚合物的釋放差異來自於微球表面的型態,LSD-PLGA-MPs的緩慢釋放來自於其表面上的無孔洞產生。在4小時的漂浮試驗中,三種聚合物所製備的微球其浮力皆隨著聚合物在有機相濃度越高而降低,且在相同濃度中,漂浮力排序為LSD-ERS-MPs > LSD-PCL-MPs > LSD-PLGA-MPs,與聚合物的密度排序呈現負相關,而LSD-PLGA-MPs、LSD-ERS-MPs及LSD-PCL-MPs漂浮力最高組別,其漂浮力依序為56.9±3.3%、73.6±5.9%、67.3±1.9%,顯示其劑型有幫助藥物漂浮的效果。在Wistar雄性大鼠的體內藥物動力學試驗,發現與LSD-HCl相比,三種微球的Cmax皆上升,Tmax皆下降,推測為藥物結晶度下降導致藥物溶解速度上升釋放速度變快且較完全;且因微球具有胃滯留效果使藥物釋放延長,因此三種微球的藥物t1/2皆變長,這兩種效果使LSD-PLGA-MPs、LSD-ERS-MP及LSD-PCL-MPs相較於LSD-HCl,顯著提升2.25±0.30、2.40±0.16及2.18±0.40倍的生體可用率。
而第二部分,同樣使用三種高分子為載體,用探針式超音波震盪器油/水溶媒揮發法製備包覆魯拉西酮的LSD-PLGA-NPs、LSD-ERS-NPs及LSD-PCL-NPs,粒徑大小分別為143.8±5.6、139.4±14.4、201.6±12.4 nm,表面電位為-24.5±2.2、33.7±1.3、-30.3±5.7 mV,三者的PDI皆在0.3以下。於4℃水中及冷凍乾燥後回溶於水的安定性試驗顯示,在28天內三種奈米劑型皆有良好的安定性。而經過紅外線分光光譜儀、示差掃描量熱儀、粉末X光繞射儀的測試後發現,與微球相同,製備奈米劑型後的藥物已脫去了鹽類且結晶度下降。體外釋放顯示,三種奈米劑型在48小時的釋放比例(LSD-PLGA-NPs: 87.7±9.7%, LSD-ERS-NPs: 87.4±2.8%, LSD-PCL-NPs: 84.2±4.3%)皆比單純藥物(LSD-HCl) (59.0±8.6%)高,此結果來自於藥物結晶度的下降及奈米尺寸的優勢。以Caco-2細胞作為腸壁細胞模型,進行細胞攝取及細胞轉運試驗,以流式細胞儀分析細胞攝取的結果,奈米顆粒的細胞攝取量皆顯著大於未包覆的Coumarin 6,說明奈米顆粒有幫助細胞攝取的能力。而細胞轉運試驗顯示奈米載體有幫助細胞攝取及轉運的效果,其表觀穿透係數依序為LSD-ERS-NPs (6.76±0.66×10-6 cm/s) > LSD-PLGA-NPs (4.85±0.14×10-6 cm/s) > LSD-PCL-NPs (4.56±0.43×10-6 cm/s cm/s) > LSD-HCl (1.35±0.26×10-6 cm/s)。在Wistar雄性大鼠的體內藥物動力學試驗中,奈米劑型比LSD-HCl,皆可顯著提高Cmax及縮短Tmax,推測為藥物結晶度下降導致藥物溶解速度上升、釋放速度變快且較完全,且奈米顆粒可以促進細胞攝取及細胞轉運的效果所致,而三種奈米顆粒其Cmax依序為LSD-ERS-NPs>LSD-PLGA-NPs>LSD-PCL-NPs,與表觀穿透係數排序相同,顯示細胞轉運能力是影響體內吸收的重要因素,以上因素使LSD-PLGA-NPs、LSD-ERS-NPs及LSD-PCL-NPs相較於LSD-HCl,顯著提升藥物生體可用率達2.91±0.32、3.30±0.48及2.37±0.24倍。
zh_TW
dc.description.abstractLurasidone·HCl (LSD-HCl), the hydrochloride form of lurasidone, was approved by FDA as a second generation antipsychotic drug (SGA) in 2010 and usually used in treatment for schizophrenia and bipolar disorder. Because of low solubility (0.224 mg/mL at 20℃), the bioavailability of LSD-HCl is only about 9-19%. Therefore, how to improve its bioavailability is urgently required. In this study, three potential polymers, including poly(lactic-co-glycolic acid) (PLGA), Eudragit RS100 (ERS) and poly(caprolactone) (PCL), were selected to develop microparticle and nanoparticle delivery systems for LSD-HCl. It was expected the gastroretentive properties of microparticles (MPs) and the enhanced permeability and retention effect of nanoparticles (NPs) in gastrointestinal tract could improve the bioavailability.
In the first part of study, LSD loaded PLGA, ERS, and PCL MPs were prepared by o/w solvent emulsion-evaporation method. The results showed that polymer concentration affected the particle size and encapsulation efficiency (EE) of MPs. Increase of the polymer concentration increased the particle size of MPs due to raising the viscosity of organic phase. However, the EE was decreased which resulted from the presence of free-base LSD. FT-IR and DSC analysis illustrated the drug present as a free-base form in the MPs. Powder X-ray further indicated the reductive drug crystallinity after MPs preparation. Findings from in-vitro release study demonstrated that the release rate of drug was in order of LSD-PCL-MPs > LSD-ERS-MPs > LSD-HCL ~ LSD-PLGA-MPs. In 4-hour buoyancy study, the buoyancy of MPs was in order of LSD-ERS-MPs (73.6±5.9%) > LSD-PCL-MPs (67.3±1.9%) > LSD-PLGA-MPs (56.9±3.3%). In vivo pharmacokinetic study in male Wistar rats showed that MPs had higher Cmax and shorter t1/2 than LSD-HCl. It was presumed that the reductive crystallinity of drug enhanced the rate of solubility of dug, led to higher Cmax. Longer t1/2 resulted from sustain-released and gastroretentive properties. The bioavailability of LSD-PLGA-MPs, LSD-ERS-MPs, and LSD-PCL-MPs was significantly increased by 2.25±0.30, 2.40±0.16, 2.18±0.40 folds relative to LSD-HCl.
In the second part of study, LSD load PLGA, ERS, PCL NPs were formulated by o/w solvent evaporation method, too. The size and zeta potential of LSD-PLGA-NPs, LSD-ERS-NPs and LSD-PCL-NPs were 143.8±5.6, 139.4±14.4, 201.6±12.4 nm and -24.5±2.2, 33.7±1.3, -30.3±5.7 mV, respectively, and all of NPs had PDI < 0.3. These NPs exhibited good stability at 4℃ in ddH2O and after lyophilization for 28 days. The same as MPs, the results of FT-IR, DSC, and powder X-ray analysis illustrated the drug as free-base form in NPs and the crystallinity was reduced. The release of drug from NPs was higher than LSD-HCl because of the advantages of nano-size and, less crystallinity of drug. The cellular uptake of NPs in Caco-2 cell was higher than free coumarin-6. In cellular transport study, the apparent permeability coefficient (Papp) of drug was in order of LSD-ERS-NPs (6.76±0.66×10-6 cm/s) > LSD-PLGA-NPs (4.85±0.14×10-6 cm/s) > LSD-PCL-NPs (4.56±0.43×10-6 cm/s cm/s) > LSD-HCl (1.35±0.26×10-6 cm/s). It indicated that NPs can improve cellular transport of LSD. In vivo pharmacokinetic study in male Wistar rats demonstrated that NPs significantly increased Cmax and shortened t1/2 as compared to LSD-HCl. The reductive crystallinity of drug and enhanced cellular uptake as well as transport abilities of NPs resulted in this result. The Cmax of NPs was in order of LSD-ERS-NPs > LSD-PCL-NPs > LSD-PLGA-NPs which showed the same trend as Papp. It suggested that the cellular transport ability of NPs plays the important role in affecting drug absorption. The bioavailability of LSD-PLGA-NPs, LSD-ERS-MPs and LSD-PCL-NPs was 2.91±0.32, 3.30±0.48, 2.37±0.24 folds higher than LSD-HCl.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:56:20Z (GMT). No. of bitstreams: 1
ntu-109-R05423032-1.pdf: 7292316 bytes, checksum: f5d5e0aeb677b2abe438e3622dc96a4e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract VI
圖目錄 XIII
表目錄 XIX
第一章 緒論 1
一、 思覺失調症(schizophrenia) 1
(一) 流行病學 1
(二) 臨床症狀 1
(三) 致病機轉 2
(四) 治療方式 4
二、 鹽酸魯拉西酮(Lurasidone HCl) 6
(一) 基本介紹 6
(二) 藥效學 6
(三) 藥物動力學 7
(四) 安全性 8
(五) 近年發展 9
三、 微米顆粒遞輸系統Microparticle delivery system 9
(一) 腸道釋放 9
(二) 肺滯留 10
(三) 胃滯留 10
四、 奈米顆粒遞輸系統Nanoparticle delivery system 12
(一) 基本介紹 12
(二) 奈米顆粒遞輸系統於口服藥物的應用 14
五、 聚乳酸-甘醇酸(Poly(lactide-co-glycolide), PLGA) 18
六、 Eudragit○R 21
七、 聚己內酯(Poly(caprolactone), PCL) 24
第二章 實驗動機與目的 26
第三章 試劑、材料與儀器介紹 28
一、 藥品 28
二、 細胞實驗材料 30
三、 儀器與軟體 31
四、 耗材 34
五、 藥品溶液與緩衝溶液製備 34
第四章 實驗方法 36
一、 包覆魯拉西酮微球製備、性質檢測及體外試驗 40
(一) 空白微球製備 40
(二) 空白微球之性質檢測 41
(三) 包覆魯拉西酮微球製備 42
(四) 包覆魯拉西酮微球性質測定 45
(五) 體外藥物釋放試驗 49
(六) 未加入聚合物以微球製備方式製備的鹽酸魯拉西酮溶解度試驗 54
(七) 包覆魯拉西酮微球之細胞攝取試驗 55
(八) 包覆魯拉西酮微球之漂浮試驗 58
(九) 包覆魯拉西酮微球體內藥動試驗 59
二、 包覆魯拉西酮奈米顆粒製備、性質檢測及體外試驗 66
(一) 空白奈米顆粒製備 66
(二) 空白奈米顆粒性質測定 67
(三) 包覆魯拉西酮奈米顆粒製備 68
(四) 包覆魯拉西酮奈米顆粒性質測定 71
(五) 藥物體外釋放 75
(六) 包覆魯拉西酮奈米顆粒的細胞攝取試驗 79
(七) 包覆魯拉西酮奈米顆粒的細胞轉運試驗 85
(八) 包覆魯拉西酮奈米顆粒體內試驗 87
三、 統計分析 89
第五章 實驗結果 90
一、 包覆魯拉西酮微球製備、性質檢測、體外及體內試驗 90
(一) 空白微球性質 90
(二) 包覆魯拉西酮微球性質測定 92
(三) 體外釋放實驗 120
(四) 未加入聚合物以微球製備方式製備的鹽酸魯拉西酮溶解度試驗 136
(五) 包覆魯拉西酮微球之細胞攝取試驗 137
(六) 包覆魯拉西酮微球之漂浮試驗 140
(七) 包覆魯拉西酮微球之體內藥動試驗 142
二、 魯拉西酮奈米顆粒製備、性質檢測、體外及體內學試驗 150
(一) 空白奈米顆粒性質 150
(二) 包覆魯拉西酮奈米顆粒性質測定 152
(三) 包覆魯拉西酮奈米顆粒體外釋放實驗 169
(四) 未加入聚合物以奈米顆粒製備方式製備的鹽酸魯拉西酮 172
(五) 奈米顆粒的細胞攝取試驗 173
(六) 包覆魯拉西酮奈米顆粒的細胞轉運試驗 180
(七) 包覆魯拉西酮奈米顆粒之體內藥動試驗 183
第六章 討論 188
一、 包覆魯拉西酮微球製備、性質檢測及體外試驗 188
(一) 微球之粒徑、包覆率與聚合物在有機相的濃度關係 188
(二) 聚合物在有機相的濃度對微球表面之影響 191
(三) 藥物型態及結晶性 192
(四) 包覆魯拉西酮微球之體外釋放 195
(五) 未加入聚合物以微球製備方式製備的鹽酸魯拉西酮溶解度試驗 197
(六) Caco-2細胞攝取試驗 198
(七) 漂浮率試驗 198
(八) 藥物動力學試驗 199
二、 包覆魯拉西酮奈米顆粒製備、性質檢測及體外試驗 200
(一) 奈米顆粒粒徑、表面電位、包覆率與聚合物的關聯 200
(二) 藥物型態及結晶 200
(三) 體外釋放 201
(四) 未加入聚合物以奈米顆粒製備方式製備的鹽酸魯拉西酮 201
(五) Caco-2細胞攝取試驗 202
(六) Caco-2細胞轉運試驗 203
(七) 藥物動力學試驗 203
三、 包覆魯拉西酮微球及奈米顆粒比較 205
(一) 體外釋放 205
(二) 溶解度試驗 205
(三) Caco-2細胞攝取試驗 206
(四) 藥物動力學試驗 207
第七章 結論 208
第八章 參考資料 209
dc.language.isozh-TW
dc.subject聚乳酸-甘醇酸zh_TW
dc.subject奈米顆粒zh_TW
dc.subject微球zh_TW
dc.subject聚丙烯酸樹脂zh_TW
dc.subject聚己內酯zh_TW
dc.subject鹽酸魯拉西酮zh_TW
dc.subjectLurasidone HClen
dc.subjectpoly(lactic-co-glycolic acid)en
dc.subjectEudragit RS100en
dc.subjectpoly(caprolactone)en
dc.subjectmicroparticleen
dc.subjectnanoparticleen
dc.title以微球及奈米劑型遞送鲁拉西酮之研究zh_TW
dc.titleDevelopment of Microparticle and Nanoparticle Delivery System for Lurasidoneen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee邱士娟(Shih-Jiuan Chiu),方嘉佑(Jia-You Fang)
dc.subject.keyword聚乳酸-甘醇酸,聚己內酯,聚丙烯酸樹脂,鹽酸魯拉西酮,奈米顆粒,微球,zh_TW
dc.subject.keywordLurasidone HCl,poly(lactic-co-glycolic acid),Eudragit RS100,poly(caprolactone),microparticle,nanoparticle,en
dc.relation.page223
dc.identifier.doi10.6342/NTU202000536
dc.rights.note有償授權
dc.date.accepted2020-02-21
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2025-03-13-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-109-R05423032-1.pdf
  未授權公開取用
7.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved