Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊爵因(Jiue-In Yang)
dc.contributor.authorWan-Chun Leeen
dc.contributor.author李婉均zh_TW
dc.date.accessioned2021-07-11T14:55:26Z-
dc.date.available2022-06-15
dc.date.copyright2020-06-18
dc.date.issued2020
dc.date.submitted2020-06-10
dc.identifier.citationAbad, P., Gouzy, J., Aury, J.-M., Castagnone-Sereno, P., Danchin, E. G. J., Deleury, E., Perfus-Barbeoch, L., Anthouard, V., Artiguenave, F., Blok, V. C., Caillaud, M.-C., Coutinho, P. M., Dasilva, C., De Luca, F., Deau, F., Esquibet, M., Flutre, T., Goldstone, J. V., Hamamouch, N., Hewezi, T., Jaillon, O., Jubin, C., Leonetti, P., Magliano, M., Maier, T. R., Markov, G. V., McVeigh, P., Pesole, G., Poulain, J., Robinson-Rechavi, M., Sallet, E., Ségurens, B., Steinbach, D., Tytgat, T., Ugarte, E., van Ghelder, C., Veronico, P., Baum, T. J., Blaxter, M., Bleve-Zacheo, T., Davis, E. L., Ewbank, J. J., Favery, B., Grenier, E., Henrissat, B., Jones, J. T., Laudet, V., Maule, A. G., Quesneville, H., Rosso, M.-N., Schiex, T., Smant, G., Weissenbach, J., and Wincker, P. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26(8):909-915 doi:10.1038/nbt.1482.
Adams, S., Pathak, P., Shao, H., Lok, J. B., and Pires-daSilva, A. 2019. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Scientific reports 9(1):483-483 doi:10.1038/s41598-018-37036-1.
Antonova, Y., Arik, A. J., Moore, W., Riehle, M. A., and Brown, M. R. 2012. 2 - Insulin-Like Peptides: Structure, Signaling, and Function. Pages 63-92. in: Insect Endocrinology L. I. Gilbert, ed. Academic Press, San Diego.
Babu, R. S., Sankaranarayanan, C., and Jothi, G. 1998. Management of Pratylenchus zeae on maize by biofertilizers and VAM. Indian Journal of Nematology 28(1):77-80.
Bae, Y. K., and Barr, M. M. 2008. Sensory roles of neuronal cilia: Cilia development, morphogenesis, and function in C. elegans. Frontiers in bioscience: a journal and virtual library 13:5959.
Bakhetia, M., Urwin, P., and Atkinson, H. J. 2007. qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Molecular Plant-Microbe Interactions 20(3):306-312.
Banakar, P., Sharma, A., Lilley, C. J., Gantasala, N. P., Kumar, M., and Rao, U. 2015. Combinatorial in vitro RNAi of two neuropeptide genes and a pharyngeal gland gene on Meloidogyne incognita. Nematology 17(2):155-167.
Bany, I. A., Dong, M.-Q., and Koelle, M. R. 2003. Genetic and Cellular Basis for Acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. The Journal of Neuroscience 23(22):8060 doi:10.1523/jneurosci.23-22-08060.2003.
Bertrand, B., Etienne, H., and Eskes, A. 2001. Growth, production, and bean quality of Coffea arabica as affected by interspecific grafting: consequences for rootstock breeding. HortScience 36(2):269-273.
Boguski, M. S., Lowe, T. M. J., and Tolstoshev, C. M. 1993. dbEST — database for “expressed sequence tags”. Nature Genetics 4(4):332-333 doi:10.1038/ng0893-332.
Brodie, B., and Murphy, W. 1975. Population dynamics of plant nematodes as affected by combinations of fallow and cropping sequence. Journal of Nematology 7(1):91.
Bybd, D. W., Kirkpatrick, T., and Barker, K. R. 1983. An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology 15(1):142-143.
Cadet, P., and Floret, C. 1999. Effect of plant parasitic nematodes on the sustainability of a natural fallow cultural system in the Sudano-Sahelian area in Senegal. European Journal of Soil Biology 35(2):91-97.
Castillo, P., and Vovlas, N. 2007. Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management. Brill.
Chang, Y.-J., Burton, T., Ha, L., Huang, Z., Olajubelo, A., and Li, C. 2015. Modulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans. PLOS ONE 10(9):e0135164 doi:10.1371/journal.pone.0135164.
Chen, P., and Tsay, T. T. 2006. Effect of Crop Rotation on Meloidogyne spp. and Pratylenchus spp. Populations in Strawberry Fields in Taiwan. Journal of Nematology 38(3):339-344.
Chiang, J.-T. A., Steciuk, M., Shtonda, B., and Avery, L. 2006. Evolution of pharyngeal behaviors and neuronal functions in free-living soil nematodes. Journal of Experimental Biology 209(10):1859 doi:10.1242/jeb.02165.
Chitambar, J. J., and Raski, D. J. 1985. Life History of Pratylenchus vulnus on Carrot discs. Journal of Nematology 17(2):235-236.
Chitwood, D. J. 2003. Research on plant‐parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Management Science: Formerly Pesticide Science 59(6‐7):748-753.
Cook, R. J., and Baker, K. F. 1983. The nature and practice of biological control of plant pathogens. American Phytopathological Society.
Dalzell, J. J., McMaster, S., Fleming, C. C., and Maule, A. G. 2010. Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. International Journal for Parasitology 40(1):91-100 doi:https://doi.org/10.1016/j.ijpara.2009.07.003.
Davis, E., and MacGuidwin, A. 2000. Lesion nematode disease. The Plant Health Instructor. DOI: 10.1094. PHI-I-2000-1030-02.
De Goede, R., and Bongers, T. 1998. Nematode communities of northern temperate grassland ecosystems.
Di Vito, M., Greco, N., and Saxena, M. 1991. Effectiveness of soil solarization for control of Heterodera ciceri and Pratylenchus thornei on chickpea in Syria.
Dong, L., Xu, J., Chen, S., Li, X., and Zuo, Y. 2016. Mi-flp-18 and Mi-mpk-1 genes are potential targets for Meloidogyne incognita control. Journal of Parasitology 102(2):208-214.
Doucet, M., Lax, P., Di Rienzo, J., and Pinochet, J. 1997. Comparacion entre poblaciones y aislados de Pratylenchus vulnus Allen ET Jensen, 1951 (NEMATODA: TYLENCHIDA) en base al analisis de caracteres morfomrtricos.
Dutta, T. K., Banakar, P., and Rao, U. 2015. The status of RNAi-based transgenic research in plant nematology. Frontiers in Microbiology 5(760) doi:10.3389/fmicb.2014.00760.
Fernández, C., Pinochet, J., and Dolcet, R. 1992. Host-parasite relationship of Pratylenchus vulnus on apple and pear rootstocks.
Ferraz, L. 1995. Patogenicidade de Pratylenchus brachyurus a três cultivares de soja. Nematologia Brasileira 19(1):2-8.
FORTER, I., and Merriman, P. 1985. Evaluation of soil solarization for control of root diseases of row crops in Victoria. Plant Pathology 34(1):108-118.
Frooninckx, L., Van Rompay, L., Temmerman, L., Van Sinay, E., Beets, I., Janssen, T., Husson, S. J., and Schoofs, L. 2012. Neuropeptide GPCRs in C. elegans. Frontiers in Endocrinology 3:167-167 doi:10.3389/fendo.2012.00167.
Goodey, J. B., Franklin, M. T., and Hooper, D. J. 1965. T. Goodey's' The nematode parasites of plants catalogued under their hosts'.
Grubisic, D., Ostrec, L., and Dusak, I. 2003. Biological control of slugs in vegetable crops in Croatia. Pages 115-120. in: BCPC Symposium Proceedings. British Crop Protection Council.
Han, Z., Boas, S., and Schroeder, N. E. 2016. Unexpected variation in neuroanatomy among diverse nematode species. Frontiers in Neuroanatomy 9(162) doi:10.3389/fnana.2015.00162.
Hobert, O. 2005. Specification of the nervous system. WormBook : the online review of C. elegans Biology:1-19 doi:10.1895/wormbook.1.12.1.
Hollaway, G. J., Taylor, S. P., Eastwood, R. F., and Hunt, C. H. 2000. Effect of field crops on density of Pratylenchus in SouthEastern Australia; Part 2: P. thornei. Journal of Nematology 32(4S):600-608.
Hong, R. L., Riebesell, M., Bumbarger, D. J., Cook, S. J., Carstensen, H. R., Sarpolaki, T., Cochella, L., Castrejon, J., Moreno, E., and Sieriebriennikov, B. 2019. Evolution of neuronal anatomy and circuitry in two highly divergent nematode species. BioRxiv:595025.
Janssen, T., Lindemans, M., Meelkop, E., Temmerman, L., and Schoofs, L. 2010. Coevolution of neuropeptidergic signaling systems: from worm to man. Annals of the New York Academy of Sciences 1200:1-14 doi:10.1111/j.1749-6632.2010.05506.x.
Johnson, A., Dowler, C., and Hauser, E. 1975. Crop rotation and herbicide effects on population densities of plant-parasitic nematodes. Journal of Nematology 7(2):158.
Johnston, M., McVeigh, P., McMaster, S., Fleming, C., and Maule, A. 2010. FMRFamide-like peptides in root knot nematodes and their potential role in nematode physiology. Journal of Helminthology 84(3):253-265.
Joseph, S., Gheysen, G., and Subramaniam, K. 2012. RNA interference in Pratylenchus coffeae: Knock down of Pc-pat-10 and Pc-unc-87 impedes migration. Molecular and Biochemical Parasitology 186(1):51-59 doi:https://doi.org/10.1016/j.molbiopara.2012.09.009.
Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G., and Ahringer, J. 2001. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology 2(1):RESEARCH0002-RESEARCH0002 doi:10.1186/gb-2000-2-1-research0002.
Kevin, G. K. 2013. Invertebrate FMRFamide Related Peptides. Protein Peptide Letters 20(6):647-670 doi:http://dx.doi.org/10.2174/0929866511320060005.
Kim, K., Li, C. (2004). Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. The Journal of Comparative Neurology, 475(4), 540–550. https://doi.org/10.1002/cne.20189
Kimber, M. J., Fleming, C. C., Prior, A., Jones, J. T., Halton, D. W., and Maule, A. G. 2002. Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation. International Journal for Parasitology 32(9):1095-1105.
Kimber, M. J., McKinney, S., McMaster, S., Day, T. A., Fleming, C. C., and Maule, A. G. 2007. flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. The FASEB Journal 21(4):1233-1243.
Kimpinski, J., and Dunn, R. 1985. Effect of low temperatures in the field and laboratory on survival of Pratylenchus penetrans. Plant Disease 69(6):526-527.
Kubo, R., Silva, R., Tomazini, M., Oliveira, C., Mazzafera, P., and Inomoto, M. 2002. Pathogenic of Pratylenchus coffeae on seedlings of coffee cv. Mundo Novo. in: INTERNATIONAL Congress of Nematology, 4. Tenerife (España), Junio 8-13, 2002. Programme and Abstracts..
Kumari, C., Dutta, T. K., Chaudhary, S., Banakar, P., Papolu, P. K., and Rao, U. 2017. Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity. Gene 619:50-60 doi:https://doi.org/10.1016/j.gene.2017.03.042.
LaMondia, J. 1999. Influence of rotation crops on the strawberry pathogens Pratylenchus penetrans, Meloidogyne hapla, and Rhizoctonia fragariae. Journal of Nematology 31(4S):650.
Li, C., and Kim, K. 2014. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Frontiers in Endocrinology 5:150-150 doi:10.3389/fendo.2014.00150.
Lilley, C., Davies, L., and Urwin, P. 2012. RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139(5):630-640.
Lilley, C. J., Bakhetia, M., Charlton, W. L., and Urwin, P. E. 2007. Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology 8(5):701-711 doi:10.1111/j.1364-3703.2007.00422.x.
Lin, Y.-p. L., Wan-chun; Chung, Pei-che; Yang, Jiue-in 2019. The morphological characteristics and phylogenetic analysis of Pratylenchus vulnus Taiwan strawberry isolate. Journal of Nematology 51.
Marques de Carvalho, L., Benda, N. D., Vaughan, M. M., Cabrera, A. R., Hung, K., Cox, T., Abdo, Z., Allen, L. H., and Teal, P. E. A. 2015. Mi-1-Mediated Nematode Resistance in Tomatoes is Broken by Short-Term Heat Stress but Recovers Over Time. Journal of Nematology 47(2):133-140.
Marull, J., and Pinochet, J. 1991. Host suitability of Prunus rootstocks to four Meloidogyne species and Pratylenchus vulnus in Spain.
McEwan, Deborah L., Weisman, Alexandra S., and Hunter, Craig P. 2012. Uptake of Extracellular Double-Stranded RNA by SID-2. Molecular Cell 47(5):746-754 doi:10.1016/j.molcel.2012.07.014.
McVeigh, P., Geary, T. G., Marks, N. J., and Maule, A. G. 2006. The FLP-side of nematodes. Trends in Parasitology 22(8):385-396 doi:https://doi.org/10.1016/j.pt.2006.06.010.
McVeigh, P., Leech, S., Mair, G. R., Marks, N. J., Geary, T. G., and Maule, A. G. 2005. Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. International Journal for Parasitology 35(10):1043-1060doi:10.1016/j.ijpara.2005.05.010.
Minagawa, N., and Maeso, T. D. 1990. Plant-parasitic nematodes of Uruguay: a preliminary report. Japanese Journal of Nematology 20:44-50.
Mountain, W. 1954. Studies of nematodes in relation to brown root rot of tobacco in Ontario. Canadian Journal of Botany 32(6):737-759.
Nathoo, A. N., Moeller, R. A., Westlund, B. A., and Hart, A. C. 2001. Identification of Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proceedings of the National Academy of Sciences 98(24):14000 doi:10.1073/pnas.241231298.
Nombela, G., Navas, A., and Bello, A. 1993. Spatial and temporal variation of the nematofauna in representative soils of the central region of the Iberian peninsula. Nematologica 39(1-4):81-91.
Nyczepir, A. P., and Becker, J. O. 1998. Fruit and citrus trees. Plant and Nematode Interactions 36:637-684.
Oka, Y. 2014. Nematicidal activity of fluensulfone against some migratory nematodes under laboratory conditions. Pest management science 70(12):1850-1858.
Oliveira, D. S., Oliveira, R. D. A. L., Silva, D. G., and Silva, R. V. 2011. Characterization of Meloidogyne incognita populations from São Paulo and Minas Gerais state and their pathogenicity on coffee plants. Tropical Plant Pathology 36:190-194.
Ortiz-Monasterio, I., and Nicol, J. 2004. Effects of the root-lesion nematode, Pratylenchus thornei, on wheat yields in Mexico. Nematology 6(4):485-493.
Pablo, C., and Nicola, V. 2007. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, Pathogenicity and Management. Brill, Leiden, The Netherlands.
Papolu, P. K., Gantasala, N. P., Kamaraju, D., Banakar, P., Sreevathsa, R., and Rao, U. 2013. Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode, Meloidogyne incognita. PLoS One 8(11).
Peymen, K., Watteyne, J., Frooninckx, L., Schoofs, L., and Beets, I. 2014. The FMRFamide-Like Peptide Family in Nematodes. Frontiers in Endocrinology 5(90) doi:10.3389/fendo.2014.00090.
Pinochet, J., Raski, D., and Goheen, A. 1976. Effects of Pratylenchus vulnus and Xiphinema index singly and combined on vine growth of Vitis vinifera. Journal of Nematology 8(4):330.
Rogers, C., Reale, V., Kim, K., Chatwin, H., Li, C., Evans, P., and de Bono, M. 2003. Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nature neuroscience 6(11):1178.
Roman, J., and Triantaphyllou, A. C. 1969. Gametogenesis and reproduction of seven species of pratylenchus. Journal of Nematology 1(4):357-362.
Rosso, M.-N., Dubrana, M. P., Cimbolini, N., Jaubert, S., and Abad, P. 2005. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Molecular Plant-Microbe Interactions® 18(7):615-620 doi:10.1094/mpmi-18-0615.
Sayre, R., Patrick, Z., and Thorpe, H. 1964. Substances toxic to plant-parasitic nematodes in decomposing plant residue. Phytopathology 54(8).
Sijmons, P., Atkinson, H., and Wyss, U. 1994. Parasitic strategies of root nematodes and associated host cell responses. Annual Review of Phytopathology 32(1):235-259.
Silva, G., Ferraz, S., and Santos, J. d. 1989. Resistance of Crotalaria species to Pratylenchus brachyurus and P. zeae. Nematologica Brasileira 13:81-86.
Smiley, R. W. 2009. Root-lesion nematodes reduce yield of intolerant wheat and barley. Agronomy Journal 101(6):1322-1335.
Stephen, R. K., Angela, R. D., Wenge, L., and Amnon, L. 2008. Grafting for Disease Resistance. HortScience horts 43(6):1673-1676 doi:10.21273/HORTSCI.43.6.1673.
Thompson, J., Mackenzie, J., and Sheedy, G. 2012. Root-lesion nematode (Pratylenchus thornei) reduces nutrient response, biomass and yield of wheat in sorghum–fallow–wheat cropping systems in a subtropical environment. Field Crops Research 137:126-140.
Tiyagi, S. A., and Ajaz, S. 2004. Biological control of plant parasitic nematodes associated with chickpea using oil cakes and Paecilomyces lilacinus. Indian Journal of Nematology 34(1):44-48.
Townshend, J. 1984. Anhydrobiosis in Pratylenchus penetrans. Journal of Nematology 16(3):282.
Townshend, J., Stobbs, L., and Carter, R. 1989. Ultrastructural pathology of cells affected by Pratylenchus penetrans in alfalfa roots. Journal of Nematology 21(4):530.
Towson, A. J., and Lear, B. 1982. Effect of Temperature on Reproduction and Motility of Pratylenchus vulnus. Journal of Nematology 14(4):602-603.
Trudgill, D. 1991. Resistance to and tolerance of plant parasitic nematodes in plants. Annual Review of Phytopathology 29(1):167-192.
Tsai, B.-Y., and Yeh, H.-L. 1995. Effect of Steinernema carpocapsae Weiser on the infectivity of Pratylenchus coffeae (Zimmermann) Filipjev Schuurmans Stekhoven and Meloidogyne javanica (Treub) Chitwood. Plant Pathology Bulletin 4(3):106-110. ( in Chinese)
Turner, D. R., and Chapman, R. A. 1972. Infection of Seedlings of Alfalfa and Red Clover by Concomitant Populations of Meloidogyne incognita and Pratylenchus penetrans. Journal of Nematology 4(4):280-286.
Urwin, P. E., Lilley, C. J., and Atkinson, H. J. 2002. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions 15(8):747-752.
Van Gundy, S. D. 1965. Factors in survival of nematodes. Annual Review of Phytopathology 3(1):43-68.
Villain, L., Molina, A., Sierra, S., Decazy, B., and Sarah, J. L. 2000. Effect of grafting and nematicide treatments on damage by the root-lesion nematode Pratylenchus spp. on Coffea arabica L. in Guatemala. Nematropica 30(1):87-100.
Walthall, W., and Chalfie, M. 1988. Cell-cell interactions in the guidance of late-developing neurons in Caenorhabditis elegans. Science 239(4840):643-645.
Warnock, N. D., Wilson, L., Patten, C., Fleming, C. C., Maule, A. G., and Dalzell, J. J. 2017. Nematode neuropeptides as transgenic nematicides. PLoS pathogens 13(2):e1006237.
Whish, J., Thompson, J., Clewett, T., Lawrence, J., and Wood, J. 2014. Pratylenchus thornei populations reduce water uptake in intolerant wheat cultivars. Field Crops Research 161:1-10.
White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1-340.
Williamson, V. M. 1998. Root-knot nematode resistance genes in tomato and their potential for future use. Annual Review of Phytopathology 36(1):277-293.
Williamson, V. M. 1999. Plant nematode resistance genes. Current Opinion in Plant Biology 2(4):327-331.
Williamson, V. M., and Gleason, C. A. 2003. Plant–nematode interactions. Current Opinion in Plant Biology 6(4):327-333 doi:https://doi.org/10.1016/S1369-5266(03)00059-1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78408-
dc.description.abstract根腐線蟲屬(Pratylenchus spp.)為內寄生濳移型的植食性線蟲,除了卵及未出卵的一齡幼蟲之外,所有齡期皆可侵入並取食寄主植物根部,廣泛分佈於全球,造成農業經濟危害。嚴重的田間線蟲問題使耕種者對廣泛性殺線蟲劑高度依賴,卻也同時危害人類健康。FMRFamide-like peptides (FLPs) 是一種廣泛存在線蟲門(Nematoda)動物神經系統內的神經肽,有潛力成為專一性殺線蟲劑的標的,然而 FLPs 於濳移型植食性線蟲行為調控所扮演的角色有待釐清。本研究希望瞭解草莓根腐線蟲 (Pratylenchus vulnus)之神經系統以及flp 基因於草莓根腐線蟲的功能為何,故透過DiI 染色法得到感覺神經元的表現圖譜,成功染出一對 amphid neurons 及 phasmid neurons。研究透過 3’快速擴增 cDNA 末端聚合酶連鎖反應及基因克隆定序,成功增幅了一個未曾被報導過的 pv-flp18 基因並獲取其序列,且同時確認了 pv-flp16 基因的存在。隨後,以 dsRNA 浸泡法建立 flp16 及 flp18 突變株、調查 flp16 及 flp18於草莓根腐線蟲於移動、侵染等致病力相關之行為所扮演的角色。最後,本研究透過原位雜合技術取得 flp16 及 flp18 轉錄體表現位置,與 C. elegans 神經元圖譜比照後,找出相對應的神經元並比較其功能。自移動行為實驗中,無論是在沙或沙壤土的環境下,pv-flp16 及 pv-flp18 突變株的移動能力都下降了 25%。而在 24 小時侵染行為實驗中,pv-flp18 突變株的侵染能力上升 73.5%,pv-flp16 突變株則是和兩個控制組都沒有顯著差異。最後,以 DIG-標定的 pv-flp 轉錄體圖譜也和行為實驗的結果相符。pv-flp16 和 pv-flp18 轉錄體圖譜於雌蟲中呈現相似的結果,表現在VC4, VC5, HSN 運動神經元中及 uv1 子宮細胞。而在幼蟲中,pv-flp16 轉錄體表現在 AVE 及 BDU 中間神經元,pv-flp18 轉錄體則是在 M2 食道運動神經元及腹部神經索的運動神經元。此論文為第一篇於濳移型植物寄生性線蟲的FLPs研究報告。此研究開啟了草莓根腐線蟲於神經解剖學的探索,不僅揭示了 flp16 及 flp18 於草莓根腐線蟲移動及侵染行為的重要性,且發現同源的 flp 基因於不同植食性線蟲會有不一樣的功能。於應用面上,此研究能作為未來應用 FLPs 為標的開發根腐線蟲屬防治藥劑的基礎。於研究面上,此研究增進了對於草莓根腐線蟲神經系統的瞭解,有助於對其行為的瞭解。zh_TW
dc.description.abstractPratylenchus spp. are migratory plant endoparasitic nematodes which can invade and feed on host roots. They distribute globally and represent a major threat to agriculture. The infective stages of Pratylenchus spp. almost include all life stages excluding egg and J1 stage. This severe nematode problem let growers rely heavily on broad spectrum nematicides for management, but often lead to human health concerns. FMRFamide-like peptides (FLPs) are neuropeptides widely expressed in nematode nervous system that could therefore serve as new specific nematicide targets, whereas the function and regulation mechanism of FLPs in migratory plant parasitic nematodes remains unknown. In this study, we aim to catch up the nervous system and identify the functions of flp neuropeptide genes in strawberry root lesion nematode P. vulnus. Through DiI staining method, one pair of amphid neurons and phasmid neurons were identified in P. vulnus. Through 3’ Rapid Amplification cDNA Ends PCR (3’ RACE PCR), cloning and sequencing, a novel pv-flp18 gene was identified. Besides, the existence of pv-flp16 was confirmed. The roles of pv-flp16 and pv-flp18 in pathogenic-related behaviors were investigated using the flp-knockdowned mutants obtained by dsRNA soaking method. Finally, compare the corresponding neuron functions in C. elegans through acquiring flp16 and flp18 transcript localization patterns with in situ hybridization. As results, the migration rate of pv-flp16 and pv-flp18 mutants were significantly decreased by 25% no matter in sands or sandy loam test column. The invasion rate of pv-flp18 mutants was significantly increased by 73.5% in 24 hr assay, while pv-flp16 mutants showed no difference to controls. Microscopic imaging of DIG-labelled pv-flp transcript patterns from in situ hybridization were consistent with behavioral assay results. Both pv-flp16 and pv-flp18 transcripts revealed similar patterns in female, with expressions in VC4, VC5, HSN motor neurons, and uv1 cells. In juveniles, pv-flp16 transcripts were found in AVE and BDU interneurons while pv-flp18 transcripts are in M2 pharyngeal motor neuron and ventral nerve cord motor neurons. This is the first FLPs research on migratory plant parasitic nematodes. and neuroanatomy study of P. vulnus starts off. To conclude, this study reveals the importance of flp16 and flp18 in migration and invasion behaviors of P. vulnus. Also, flp homologus genes among different PPNs would have different functions. For future application, this study sheds a light on using FLPs as a potential target for new Pratylenchus spp. control strategy development. For research fields, this study improves the knowledge of nervous system and nematode behaviors in P. vulnus.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:55:26Z (GMT). No. of bitstreams: 1
ntu-109-R06633006-1.pdf: 12563791 bytes, checksum: 3b4482c8f2e5a26a9b265f72cbbdc350 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 p.i
致謝 p.ii
摘要 p.iii
Abstract p.v
Contents p.viii
List of Tables p.xiii
List of Figures p.xiv
Introduction p.1
1.1 Plant parasitic nematodes (PPNs) p.1
1.2 Pratylenchus spp. p.2
1.3 Pratylenchus vulnus p.7
1.4 Current nematode control strategies for Pratylenchus species p.8
1.4.1 Cultural practices p.9
1.4.1.1 Crop rotation p.9
1.4.1.2 Fallow p.10
1.4.1.3 Grafting p.11
1.4.2 Physical control p.11
1.4.3 Resistant hosts cropping p.13
1.4.4 Biological control p.14
1.4.5 Chemical control p.15
1.5 Nematode nervous system and neuropeptides p.16
1.6 FMRFamide-Like Peptides (FLPs) p.18
1.6.1 FLP structure and naming system p.18
1.6.2 FLP functional research p.20
1.6.2.1 Tools:RNA interference (RNAi) and in situ hybridization (ISH)p.20
1.6.2.1.1 Molecular mechanisms of RNAi in C. elegans p.20 1.6.2.1.2 In vitro and in planta RNAi p.21
1.6.2.1.3 In situ hybridization (ISH)p.23
1.6.2.2 FLP research in C. elegans p.24
1.6.2.3 FLP research in PPNs p.24
1.7 Aim, objectives and significance of this study p.26
2. Materials and Methods p.29
2.1 Nematode culture p.29
2.1.1 Nematode resource p.29
2.1.2 Carrot callus preparation p.29
2.1.3 Pratylenchus vulnus surface sterilization and inoculation p.30
2.1.4 Nematode collection p.30
2.2 Localization of sensory neurons p.31
2.2.1 DiI staining p.31
2.2.2 Image analysis p.33
2.3 Functional study of FLP genes p.33
2.3.1 Acquiring sequences of pv-flp16 and pv-flp18 p.33
2.3.1.1 Nematode RNA extraction and cDNA synthesis p.34
2.3.1.2 PCR p.35
2.3.1.3 Target gene cloning p.37
2.3.1.3.1 DNA recovery and ligation p.38
2.3.1.3.2 Transformation and preparation for sequencing p.38
2.3.1.3.3 Sequencing and sequence analysis p.39
2.3.2 Localization of flp16 and flp18 p.41
2.3.2.1 In situ hybridization (ISH) p.41
2.3.2.1.1 DIG-labelled DNA probes synthesis p.41
2.3.2.1.2 Fixation p.42
2.3.2.1.3Permeabilization p.43
2.3.2.1.4 Antibody visualization of Digoxygenin (DIG) p.44
2.3.2.1.5 ISH pattern analysis p.46
2.3.3 Nematode RNA interference (RNAi) p.46
2.3.3.1 dsRNA synthesis p.46
2.3.3.1.1 Transcription template generation p.46
2.3.3.1.2 dsRNA synthesis p.48
2.3.3.2 In vitro RNAi by soaking p.49
2.3.4 Confirmation of RNAi effect of mutant nematodes p.50
2.3.4.1 Quantitative Reverse Transcription PCR (qRT-PCR)p.50
2.3.4.2 Data analysis p.51
2.3.5 Nematode pathogenicity tests p.51
2.3.5.1 Controls and mutants p.52
2.3.5.2 Chemotaxis assay p.52
2.3.5.3 Migration assay p.53
2.3.5.4 Host invasion assay p.53
2.3.5.5 Reproduction assay p.55
2.3.5.6 Data analysis p.55
3. Results p.56
3.1 One pair of amphid neurons and 3 phasmid neurons were identified through DiI staining p.56
3.2 FLP propeptide sequences were more conserved than flp nucleotide sequences p.56
3.3 The similarity of FLP mature peptides was more correlated to nematode feeding types p.58
3.4 Localization of flp16 and flp18 transcripts provided hints for flp genes participating in regulation of pathogenic-related behaviors p.58
3.5 Confirmation of flp16 and flp18 nematode mutants through dsRNA soaking method p.60
3.6 Unstable chemotactic response under identical chemotaxis assay condition p.61
3.7 The migratory ability of flp16 and flp18 nematode mutants were decreased p.61
3.8 The invasion ability of flp18 nematode mutant was increased p.62
3.9 No significant differences of reproductive ability existed among negative controls and flp nematode mutants p.63
4. Discussion p.64
5. References p.73
Supplementary information p.107
List of Tables
Table 1. Primers used in this study p.83
List of Figures
Figure 1. P. vulnus collection devices p.84
Figure 2. Illustration of flp18 amplification through 3’ Rapid Amplification of cDNA Ends (3’ RACE) PCR p.85
Figure 3. Conserved primers (degenerate primers) designed for 3’ RACE PCR through alignment of other 4 available plant parasitic nematodes flp-18 cDNA sequences in EST database p.86
Figure 4. Gel electrophoresis of DIG-labeled DNA probes of flp16, flp18 and luciferase for in situ hybridization (ISH) p.87
Figure 5. Schematic diagram of devices used in the permeabilization process of in situ hybridization (ISH) p.88
Figure 6. Gel electrophoresis of dsRNA for nematode RNAi p.89
Figure 7. Partial flp16 sequences p.90
Figure 8. Partial flp18 sequences p.91
Figure 9. Schematic diagram of behavior assays p.92
Figure 10. Confocal microscopy of P. vulnus sensory neuron DiI-staining result p.93
Figure 11. Nematode flp16 nucleotide and propeptide sequence alignment and phylogenic tree among plant-parasitic (Globodera rostochiensis, Heterodera glycines, P. vulnus, P. penetrans, Radopholus similis), animal-parasitic (Ascaris suum) and free-living (Caenorhabditis elegans) nematodes p.95
Figure 12. Nematode flp18 nucleotide and propeptide sequence alignment and phylogenic tree among plant-parasitic (Meloidogyne chitwoodi, M. hapla, M. incognita, P. vulnus), animal-parasitic (Ascaris suum) and free-living (Caenorhabditis elegans)nematodes p.97
Figure 13. Individual functional peptide sequences of propeptides p.98
Figure14. Localization of gene expression by in situ hybridization using DIG-labeled DNA probes p.99
Figure 15. Quantitative analysis by qRT-PCR of mRNA level of flp16 and flp18 in P. vulnus p.100
Figure 16. Blank tests of chemotaxis assay indicated P. vulnus were not randomly distributed in pluronic gel plates p.101
Figure 17. Effect of gene silencing on the migration rate of 100 P. vulnus adults through 3-cm-acrylic column with 2 different substrates p.102
Figure 18. Effect of gene silencing on the invasion rate of 100 P. vulnus adults to 7-day- old alfalfa in pluronic gel assays p.103
Figure 19. P. vulnus staining in alfalfa roots p.104
Figure 20. In vitro invasion assay showed that P. vulnus could exist in leaves and stems of alfalfa p.105
Figure 21. Effect of gene silencing on the reproduction ability of 20 gravid females of P.vulnus on carrot callus after 30 days p.106
dc.language.isoen
dc.subject3’快速擴增 cDNA 末端聚合?連鎖反應zh_TW
dc.subject神經元圖譜zh_TW
dc.subject致病力相關行為zh_TW
dc.subject?移型植食性線蟲zh_TW
dc.subjectFMRFamide-like peptides (FLPs)zh_TW
dc.subjectNeural patternen
dc.subjectPathogenic-related behaviorsen
dc.subjectFMRFamide-like peptides (FLPs)en
dc.subject3’ Rapid Amplification of cDNA Ends (RACE) PCRen
dc.subjectMigratoty PPNsen
dc.title神經肽基因flp16及flp18於草莓根腐線蟲致病力所扮演之角色zh_TW
dc.titleThe roles of neuropeptide genes flp16 and flp18 in strawberry root lesion nematode pathogenicityen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張雅君,楊恩誠,潘俊良,林詩舜
dc.subject.keyword?移型植食性線蟲,3’快速擴增 cDNA 末端聚合?連鎖反應,FMRFamide-like peptides (FLPs),致病力相關行為,神經元圖譜,zh_TW
dc.subject.keywordMigratoty PPNs,3’ Rapid Amplification of cDNA Ends (RACE) PCR,FMRFamide-like peptides (FLPs),Pathogenic-related behaviors,Neural pattern,en
dc.relation.page113
dc.identifier.doi10.6342/NTU202000966
dc.rights.note有償授權
dc.date.accepted2020-06-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-109-R06633006-1.pdf
  未授權公開取用
12.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved