請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78398完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖(Tzong-Lin Wu) | |
| dc.contributor.author | Jui-Yu Huang | en |
| dc.contributor.author | 黃璿諭 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:54:56Z | - |
| dc.date.available | 2025-07-01 | |
| dc.date.copyright | 2020-08-11 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-06-29 | |
| dc.identifier.citation | S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices, 1st ed. Wiley-IEEE Press, Aug. 2000. D. Kim, J. Byun, S. Lee, S. Oh, K. Kang, and H. Lee, “Signal integrity improvements of a MEMS probe card using back-drilling and equalizing techniques,” IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 3, pp. 872–879, Mar. 2011. S. H. Hall and H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs, 1st ed. Wiley-IEEE Press, Mar. 2009. S. Deng, J. Mao, T. H. Hubing, J. L. Drewniak, J. Fan, J. L. Knighten, N. W. Smith, and R. Alexander, “Effects of open stubs associated with plated through-hole vias in backpanel designs,” in 2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559), vol. 3, Aug. 2004, 1017–1022 vol.3. R. W. Y. Chang, K. Y. See, and E. K. Chua, “Comprehensive analysis of the impact of via design on high-speed signal integrity,” in 2007 9th Electronics Packaging Technology Conference, Dec. 2007, pp. 262–266. Du Meizhu, Li Shufang, and Qiu Xiaofeng, “Via design in multilayer pcb,” in Asia-Pacific Conference on Environmental Electromagnetics, 2003. CEEM 2003. Proceedings., Nov. 2003, pp. 94–98. X. Qiu, Y. Wu, S. Li, C. Ying, and Y. Gao, “Simulation and analysis of via effects on high speed signal transmission on pcb,” in 2004 Asia-Pacific Radio Science Conference, 2004. Proceedings., Aug. 2004, pp. 283–286. J. Shin and T. Michalka, “Comprehensive design guidance for pth via stub in board-level high speed differential interconnects,” in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Jun. 2010, pp. 1912–1919. A. Hardock, Y. H. Kwark, R. Rimolo-Donadio, H. Brüns, and C. Schuster, “Using via stubs in periodic structures for microwave filter design,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 7, pp. 1212–1221, Jul. 2014. M. Cariou, B. Potelon, C. Quendo, S. Cadiou, E. Schlaffer, W. Pessl, and A. Le Fevre, “Compact X-band filter based on substrate integrated coaxial line stubs using advanced multilayer pcb technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 2, pp. 496–503, Feb. 2017. G. Antonini, M. Lai, A. Orlandi, and V. Ricchiuti, “Characterization of via holes on printed circuit boards,” in Proceedings. 8th IEEE Workshop on Signal Propagation on Interconnects, May 2004, pp. 211–214. S.H. Joo, D.Y. Kim, S.H. Lee, S.J. Oh, K.S. Kang, and H.Y. Lee, “Resistively-terminated via-stubs for signal integrity improvement in the semiconductor test board,” in 2007 Korea-Japan Microwave Conference, Nov. 2007, pp. 121–124. C.L. Yeh, Y.C. Tsai, C.M. Hsu, L.S. Liu, S.H. Tsai, Y. H. Kao, and G.H. Shiue, “Influence of via stubs with different terminations on time-domain transmission waveform and eye diagram in multilayer pcbs,” in 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Dec. 2012, pp. 149–152. Y.S. Cheng, H.H. Lu, M. Chang, S. Chang, B. Liu, and R.B. Wu, “SI-aware layout and equalizer design to enhance performance of high-speed links in blade servers,” in 2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems, Oct. 2011, pp. 199–202. T. Wig and T. Liang, “Apparatus and method for improving printed circuit board signal layer transitions,” US7501586B2, 2006. I. Park, P. Amleshi, P. Xie, D. Brunker, J. Natarajan, I. Park, and P. Amleshi, “A methodology to minimize power via resonance modes for 25gbps+ high speed signal applications,” in 2017 IEEE International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI), Aug. 2017, pp. 181–186. M. A. Popovic, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express, vol. 14, no. 3, pp. 1208–1222, Feb. 2006. J. Wang, J. Lu, X. Chu, Y. Liu, X. Lai, and Y. Li, “Influence and mitigation of long differential via stub on signal integrity,” Electronics Letters, vol. 51, no. 13, pp. 975–977, Jun. 2015. W.D. Guo, F.N. Tsai, G.H. Shiue, and R.B. Wu, “Reflection enhanced compensation of lossy traces for best eye-diagram improvement using high-impedance mismatch,” IEEE Transactions on Advanced Packaging, vol. 31, no. 3, pp. 619–626, Aug. 2008. G.H. Shiue, C.L. Yeh, L.S. Liu, H. Wei, and W.C. Ku, “Influence and mitigation of longest differential via stubs on transmission waveform and eye diagram in a thick multilayered pcb,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 10, pp. 1657–1670, Oct. 2014. S. Pan and J. Fan, “Equivalent mixed-mode characteristic impedances for differential-signal vias,” in 2009 IEEE International Symposium on Electromagnetic Compatibility, Aug. 2009, pp. 74–79. L. Simonovich, E. Bogatin, and Y. Cao, “Differential via modeling methodology,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 5, pp. 722–730, May 2011. S. Pan and J. Fan, “Characterization of via structures in multilayer printed circuit boards with an equivalent transmission-line model,” IEEE Transactions on Electromagnetic Compatibility, vol. 54, no. 5, pp. 1077–1086, Oct. 2012. S. Huang, K. Xiao, B. Lee, and X. Ye, “Stub effect mitigations using absorbing materials,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 6, no. 8, pp. 1233–1244, Aug. 2016. K. Scharff, T. Reuschel, X. Duan, H.D. Briins, and C. Schuster, “Exploration of differential via stub effect mitigation by using PAM4 and PAM8 line coding,” in 2017 IEEE 21st Workshop on Signal and Power Integrity (SPI), May 2017, pp. 1–4. Y. Hur, M. Maeng, C. Chun, F. Bien, H. Kim, S. Chandramouli, E. Gebara, and J. Laskar, “Equalization and near-end crosstalk (NEXT) noise cancellation for 20Gb/s 4-PAM backplane serial I/O interconnections,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 246–255, Jan. 2005. J. Van Kerrebrouck, T. De Keulenaer, R. Pierco, J. De Geest, J. H. Sinsky, B. ozicki, X. Yin, G. Torfs, and J. Bauwelinck, “NRZ, duobinary, or PAM4?: Choosing among high-speed electrical interconnects,” IEEE Microwave Magazine, vol. 20, no. 7, pp. 24–35, Jul. 2019. J. H. Sinsky, A. Gnauck, B. Kozicki, S. Sercu, A. Konczykowska, A. Adamiecki, and M. Kossey, “42.8 Gbit/s PAM-4 data transmission over low-loss electrical backplane,” Electronics Letters, vol. 48, no. 19, pp. 1206–1208, Sep. 2012. J. Lee, M.S. Chen, and H.D. Wang, “Design and comparison of three 20Gb/s backplane transceivers for duobinary, PAM4, and NRZ data,” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp. 2120–2133, Sep. 2008. Y.C. Huang, “Common mode filters design based on all pass filters,” Ph.D. dissertation, Grad. Inst. Comm. Eng., EECS, NTU, Taipei, Taiwan, Jun. 2019. T.S. Horng, J.M. Wu, L.Q. Yang, and S.T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” in IEEE MTT-S International Microwave Symposium Digest, vol. 2, Jun. 2003, pp. 1015–1018. P. Keerthan, R. Kumar, and K. J. Vinoy, “A novel all-pass network implementation for improved group delay performance,” IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 804–806, Oct. 2016. P. Keerthan, A. Kumar, and K. J. Vinoy, “Real-time frequency discriminator using two stage all-pass network,” in 2014 IEEE International Microwave and RF Conference (IMaRC), Dec. 2014, pp. 65–68. S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a CRLH-based dispersive delay line for analog signal processing,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 11, pp. 2617–2626, Nov. 2009. R. Kumar and K. J. Vinoy, “Design and implementation of high frequency and large group delay bridged-T all pass network,” in 2019 49th European Microwave Conference (EuMC), Oct. 2019, pp. 376–379. C. K. Alexander and M. N. O. Sadiku, Fundamentals of Electric Circuits, 6th ed. McGraw-Hill Education, Jan. 2016. T. Kushta, K. Narita, T. Kaneko, T. Saeki, and H. Tohya, “Resonance stub effect in a transition from a through via hole to a stripline in multilayer pcbs,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 5, pp. 169–171, May 2003. J. Fan, A. Hardock, R. RimoloDonadio, S. Müller, Y. H. Kwark, and C. Schuster, “Signal integrity: Efficient, physics-based via modeling: Return path, impedance, and stub effect control,” IEEE Electromagnetic Compatibility Magazine, vol. 3, no. 1, pp. 76–84, Apr. 2014. D. M. Pozar, Microwave engineering, 4th ed. Wiley, 2011. R. B. Marks and D. F. Williams, “A general waveguide circuit theory,” Journal of research of the National Institute of Standards and Technology, vol. 97, pp. 533–562, 5 1992. D. Williams, “Traveling waves and power waves: Building a solid foundation for microwave circuit theory,” IEEE Microwave Magazine, vol. 14, no. 7, pp. 38–45, Nov. 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78398 | - |
| dc.description.abstract | 在高速實體電路互連中,多層印刷電路板因其靈活且多功能的電路布局特性被廣為使用,然而,如何實作垂直連通與傳輸速度上限息息相關,其中一種熱門的實現方式是導通孔,因為該製程技術成熟且成本低廉。儘管如此,它們的簡單結構卻也是嚴重的缺點,例如當信號線做一三層垂直連通時,在其他層的部分便形成一開路殘段,因此限制信號的傳輸速率上限,所以如何改善其高頻響應是重要的研究課題。本論文旨在將此不理想的共振經過適當的電路設計移至更高的頻率,以使此具成本競爭力的垂直連通技術能用使用在更高速率的信號傳輸。本研究以橋式電路為基礎,本研究以橋式電路為基礎,整合導通孔等效電路,於第一個共振點形成全通電路;另外,考量高頻模擬的複雜寄生效應,本研究另提出基於多重共振腔的橋式電路模型。本研究的兩重點特性為面積小和與跨層信號布局整合,所以能避免使用額外的鑽孔補償或另外銲被動元件。最高至20 GHz的量測與模擬皆顯示頻域和時域上良好的改善,其中,頻域量測結果指出,單導通孔約於8 GHz發生共振,而單導通孔加上本論文提出的電路布局則可將共振往高頻移至16 GHz。此外,時域量測亦指出,對信號速率高於8 Gb/s的數位信號,其眼圖有明顯改善。 | zh_TW |
| dc.description.abstract | Multilayer printed circuit boards (PCBs) prevail in high-speed interconnect because of high routing functionality and flexibility as well as small size. However, the implementation of vertical transition could constrain the speed. Through-hole vias serve as the most popular way on account of the mature process and low cost. Despite the strong preference, their simplicity may also be an Achilles heel since their unused portion widely interpreted as an open stub can impose serious functional constraint on the transmission bandwidth. Accordingly, there is an urgent need for research in ameliorating the high-frequency response. This thesis aims at shifting this undesirable resonance to a higher frequency, enabling the economic technique in high-speed signaling. The research adopts the basic bridged-T network topology to address the issue. Two prominent characteristics of the PCB design are the small area and the integration with the cross-layer signal transition. This design requires neither back-drilling nor additional passive lumped elements. Measurement and simulation up to 20 GHz show significant performance improvement in frequency and time domain. Specifically, the measurement results indicate that the long-stub transition causes resonance at 8 GHz, while the proposed design resonates at 16 GHz. Plus, the measured eye diagrams demonstrate obvious enhancement of eye opening for data rate above 8 Gb/s. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:54:56Z (GMT). No. of bitstreams: 1 U0001-2206202010012700.pdf: 24078183 bytes, checksum: 1d75a1f4ab88fb3496c8beb54e822450 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書iii 誌謝v Acknowledgements vii 摘要xi Abstract xiii Table of Contents xvii List of Figures xxiv List of Tables xxv Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Theory and Design of Bridged-T Circuits 17 2.1 Evaluation of An All-pass Filter by Its Group Delay . . . . . . . . . . . . 17 2.1.1 Group and Phase Delay of A Second-order Circuit . . . . . . . . 17 2.1.2 The Effect of Group Delay Variation on Time Domain Response . 20 2.1.2.1 Eye Parameters Discussion . . . . . . . . . . . . . . . 27 2.2 Bridged-T Circuit for All-pass Filtering . . . . . . . . . . . . . . . . . . 30 2.2.1 Conventional Type . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.2 Design of a Bridged-T Circuit Based on the Conventional Type . 31 2.2.3 Complex Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2.3.1 Resonator-based All-pass Bridged-T network . . . . . 41 2.2.3.2 Inclusion of Mutual Inductance . . . . . . . . . . . . . 45 2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Chapter 3 Mitigation of Stub Effect by Bridged-T Circuits 51 3.1 Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Characterization of Stub Effect . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Discussion on the Layout of the Design Lumped Elements in the Bridged-T Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Interconnect design of the Bridged-T Compensation Network . . . . . . . 61 3.4.1 Minimal Etched Ground . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 Floating Ground Islands . . . . . . . . . . . . . . . . . . . . . . 65 3.5 Evaluation of Eye Parameters . . . . . . . . . . . . . . . . . . . . . . . . 69 Chapter 4 Implementation of Bridged-T Circuits on Multilayer Printed Circuit Boards 95 4.1 Board Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.1.1 Single-ended Network . . . . . . . . . . . . . . . . . . . . . . . 96 4.1.2 Differential-ended Network . . . . . . . . . . . . . . . . . . . . 98 4.1.3 PCB Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 Validation of Adaptation to Differential Pair . . . . . . . . . . . . . . . . 102 4.3 Setup of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Singled-ended Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4.1 Scattering Parameters . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4.2 Eye Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4.2.1 Traditional Acquisition . . . . . . . . . . . . . . . . . 112 4.4.2.2 Acquisition by Built-in CDR . . . . . . . . . . . . . . 122 4.4.2.3 Eye Parameters Extraction . . . . . . . . . . . . . . . 130 4.5 Differential-ended Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5.1 Scattering Parameters . . . . . . . . . . . . . . . . . . . . . . . . 136 Chapter 5 Conclusion 137 References 139 Appendix A Matlab Codes 145 A.1 Generation of Input Pseudo-Random Bit Stream . . . . . . . . . . . . . . 145 Appendix B Analysis of Symmetrical Circuits 147 Appendix C Mixed-mode Scattering Parameters 151 | |
| dc.language.iso | en | |
| dc.subject | 橋式電路 | zh_TW |
| dc.subject | 信號完整度 | zh_TW |
| dc.subject | 互連 | zh_TW |
| dc.subject | 高速數位信號 | zh_TW |
| dc.subject | 導通孔共振 | zh_TW |
| dc.subject | bridged-T circuit | en |
| dc.subject | high-speed digital signaling | en |
| dc.subject | interconnects | en |
| dc.subject | via stub resonance | en |
| dc.subject | signal integrity | en |
| dc.title | 使用橋式 T 形電路改善導通孔共振 | zh_TW |
| dc.title | Mitigation of Via Stub Resonance Using Bridged-T Circuit | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱奕鵬(Yih-Peng Chiou),邱政男(Cheng-Nan Chiou),黃揚智(Yang-Chih Huang) | |
| dc.subject.keyword | 信號完整度,導通孔共振,高速數位信號,互連,橋式電路, | zh_TW |
| dc.subject.keyword | signal integrity,via stub resonance,high-speed digital signaling,interconnects,bridged-T circuit, | en |
| dc.relation.page | 162 | |
| dc.identifier.doi | 10.6342/NTU202001090 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-06-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-01 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2206202010012700.pdf 未授權公開取用 | 23.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
