Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃倬英(Cho-ying Huang)
dc.contributor.authorHsin-Ju Lien
dc.contributor.author李欣儒zh_TW
dc.date.accessioned2021-07-11T14:54:19Z-
dc.date.available2021-07-09
dc.date.copyright2020-08-11
dc.date.issued2020
dc.date.submitted2020-07-13
dc.identifier.citationAldrich, M., Billington, C., Edwards, M., and Laidlaw, R. (1997) Tropical montane cloud forests: An urgent priority for conservation. WCMC Biodiversity Bulletin, 2.
Andrews, H.I., and Bright, J.M. (2018). Evaluating fog detection using himawari-8 satellite imagery and bispectral image processing. Paper presented at the Asia-Pacific Solar Research Conference (APSRC), Sydney, Australia.
Barenbrug, A.W.T. (1965) Psychrometry and psychrometric charts (2 ed.), South Africa: Transvaal and Orange Free State Chamber of Mines of South Africa.
Bassiouni, M., Scholl, M.A., Torres-Sanchez, A.J., and Murphy, S.F. (2017) A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography. Agricultural and Forest Meteorology, 243: 100-112.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., and Ohno, T. (2016) An introduction to himawari-8/9—japan’s new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan. Ser. II, 94(2): 151-183.
Bruijnzeel. (2001) Hydrology of tropical montane cloud forests: A reassessment. Land Use and Water Resources Research, 1(1732-2016-140258): 1.1-1.18.
Bruijnzeel, Kappelle, M., Mulligan, M., and Scatena, F. (2010) Tropical montane cloud forests: State of knowledge and sustainability perspectives in a changing world, Cambridge: Cambridge University Press.
Bruijnzeel, Kappelle, M., Mulligan, M., and Scatena, F. (2011) Tropical montane cloud forests: State of knowledge and sustainability perspectives in a changing world, in F. N. Scatena, L. A. Bruijnzeel, L. S. Hamilton (eds.), Tropical montane cloud forests: Science for conservation and management, Cambridge: Cambridge University Press, 691-740.
Bubb, P., May, I.A., Miles, L., and Sayer, J. (2004) Cloud forest agenda: UNEP-WCMC.
Burgess, S., and Dawson, T. (2004) The contribution of fog to the water relations of sequoia sempervirens (d. Don): Foliar uptake and prevention of dehydration. Plant, Cell Environment, 27(8): 1023-1034.
Cano, D., Monget, J.-M., Albuisson, M., Guillard, H., Regas, N., and Wald, L. (1986) A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy, 37(1): 31-39.
Chang, S.C., Lai, I.L., and Wu, J.T. (2002) Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern taiwan. Atmospheric Research, 64(1): 159-167.
Chang, S.C., Yeh, C.F., Wu, M.J., Hsia, Y.J., and Wu, J.T. (2006) Quantifying fog water deposition by in situ exposure experiments in a mountainous coniferous forest in taiwan. Forest Ecology and Management, 224(1): 11-18.
Egli, S., Thies, B., and Bendix, J. (2018) A hybrid approach for fog retrieval based on a combination of satellite and ground truth data. Remote Sensing, 10(4): 628.
Evans, S.E., Dueker, M.E., Logan, J.R., and Weathers, K.C. (2019) The biology of fog: Results from coastal maine and namib desert reveal common drivers of fog microbial composition. Science of the Total Environment, 647: 1547-1556.
Foster. (2001) The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1-2): 73-106.
Foster. (2010) Changes in mist immersion, in Tropical montane cloud forests: Science for conservation and management, Cambridge: Cambridge University Press, 57-66.
Frouin, R., and Murakami, H. (2007) Estimating photosynthetically available radiation at the ocean surface from adeos-ii global imager data. Journal of Oceanography, 63(3): 493-503.
Goldsmith, G.R., Matzke, N.J., and Dawson, T.E. (2013) The incidence and implications of clouds for cloud forest plant water relations. Ecology Letters, 16(3): 307-314.
Gottlieb, T.R., Eckardt, F.D., Venter, Z.S., and Cramer, M.D. (2019) The contribution of fog to water and nutrient supply to arthraerua leubnitziae in the central namib desert, namibia. Journal of Arid Environments, 161: 35-46.
Gu, L., Fuentes, J.D., Shugart, H.H., Staebler, R.M., and Black, T.A. (1999) Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two north american deciduous forests. Journal of Geophysical Research: Atmospheres, 104(D24): 31421-31434.
Helmer, E., Gerson, E., Baggett, L.S., Bird, B.J., Ruzycki, T.S., and Voggesser, S.M. (2019) Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PloS One, 14(4): e0213155.
Hiatt, C., Fernandez, D., and Potter, C. (2012) Measurements of fog water deposition on the california central coast. Atmospheric and Climate Sciences, 2(04): 525.
Hou, N., Zhang, X., Zhang, W., Wei, Y., Jia, K., Yao, Y., Jiang, B., and Cheng, J. (2020) Estimation of surface downward shortwave radiation over china from himawari-8 ahi data based on random forest. Remote Sensing, 12(1): 181.
Hutley, L.B., Doley, D., Yates, D.J., and Boonsaner, A. (1997) Water balance of an australian subtropical rainforest at altitude: The ecological and physiological significance of intercepted cloud and fog. Australian Journal of Botany, 45(2): 311-329.
Izett, J.G., van de Wiel, B.J., Baas, P., and Bosveld, F.C. (2018) Understanding and reducing false alarms in observational fog prediction. Boundary-Layer Meteorology, 169(2): 347-372.
Johnson, D.M., and Smith, W.K. (2008) Cloud immersion alters microclimate, photosynthesis and water relations in rhododendron catawbiense and abies fraseri seedlings in the southern appalachian mountains, USA. Tree Physiology, 28(3): 385-392.
Klemm, O., Chang, S.-C., and Hsia, Y.-J. (2006) Energy fluxes at a subtropical mountain cloud forest. Forest Ecology and Management, 224(1-2): 5-10.
Kubat, M., and Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. Paper presented at the Icml.
Letts, M.G., and Mulligan, M. (2005) The impact of light quality and leaf wetness on photosynthesis in north-west andean tropical montane cloud forest. Journal of Tropical Ecology, 21(5): 549-557.
Mason Earles, J., Sperling, O., Silva, L.C., McElrone, A.J., Brodersen, C.R., North, M.P., and Zwieniecki, M.A. (2016) Bark water uptake promotes localized hydraulic recovery in coastal redwood crown. Plant, Cell Environment, 39(2): 320-328.
Mulligan, M., and Burke, S. (2005). Dfid frp project zf0216 global cloud forests and environmental change in a hydrological context. Retrieved from King’s College London: http://www.ambiotek.com/cloudforests/cloudforest_finalrep.pdf
NOAA. (2005) Federal meteorological handbook no.1 surface weather observations and reports. US Department of Commerce/National Oceanic and Atmospheric Administration, Tech. Rep. FCM-H1-2005.
Obregon, A., Gehrig-Downie, C., Gradstein, S.R., and Bendix, J. (2014) The potential distribution of tropical lowland cloud forest as revealed by a novel modis-based fog/low stratus night-time detection scheme. Remote Sensing of Environment, 155: 312-324.
Oliveira, R.S., Eller, C.B., Bittencourt, P.R., and Mulligan, M. (2014) The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany, 113(6): 909-920.
Pinker, R., and Ewing, J. (1985) Modeling surface solar radiation: Model formulation and validation. Journal of Climate and Applied Meteorology, 24(5): 389-401.
Ponce-Reyes, R., Reynoso-Rosales, V.-H., Watson, J.E., VanDerWal, J., Fuller, R.A., Pressey, R.L., and Possingham, H.P. (2012) Vulnerability of cloud forest reserves in mexico to climate change. Nature Climate Change, 2(6): 448-452.
Pounds, J.A., Fogden, M.P., and Campbell, J.H. (1999) Biological response to climate change on a tropical mountain. Nature, 398(6728): 611-615.
Schulz, H.M., Li, C.-F., Thies, B., Chang, S.-C., and Bendix, J. (2017) Mapping the montane cloud forest of taiwan using 12 year modis-derived ground fog frequency data. PloS One, 12(2).
Stadtmüller, T. (1987) Cloud forests in the humid tropics: A bibliographic review, Japan: United Nations University Press.
Still, C.J., Foster, P.N., and Schneider, S.H. (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature, 398(6728): 608-610.
Takenaka, H., Nakajima, T.Y., Higurashi, A., Higuchi, A., Takamura, T., Pinker, R.T., and Nakajima, T. (2011) Estimation of solar radiation using a neural network based on radiative transfer. Journal of Geophysical Research: Atmospheres, 116(D8).
Thies, B., Groos, A., Schulz, M., Li, C.-F., Chang, S.-C., and Bendix, J. (2015) Frequency of low clouds in taiwan retrieved from modis data and its relation to cloud forest occurrence. Remote Sensing, 7(10): 12986-13004.
Veljović, K., Vujović, D., Lazić, L., and Vučković, V. (2015) An analysis of fog events at belgrade international airport. Theoretical and Applied Climatology, 119(1-2): 13-24.
Weathers, K.C., Likens, G.E., Bormann, F.H., Eaton, J.S., Bowden, W.B., Andersen, J.L., Cass, D.A., Galloway, J.N., Keene, W.C., and Kimball, K.D. (1986) A regional acidic cloud/fog water event in the eastern united states. Nature, 319(6055): 657-658.
Weathers, K.C., Ponette-González, A.G., and Dawson, T.E. (2020) Medium, vector, and connector: Fog and the maintenance of ecosystems. Ecosystems, 23(1): 217-229.
Wilson, A.M., and Jetz, W. (2016) Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biology, 14(3): e1002415.
Wrzesinsky, T., and Klemm, O. (2000) Summertime fog chemistry at a mountainous site in central europe. Atmospheric Environment, 34(9): 1487-1496.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78386-
dc.description.abstract在全球陸域生態系中,14.2 %的熱帶雨林屬於熱帶山地霧林生態系,山地霧林為林分生長易受環境霧水影響的森林,霧林內霧水長期籠罩,其高濕度環境為許多特有種生物的棲息地,林分攔截之霧水也提供下游地區非常重要的水分來源。近年來,暖化造成溫度上升會改變霧林帶中的霧水時空分布,進而威脅到熱帶山地霧林的生長,因此,量化霧水有助於理解霧林在暖化的時空背景下如何產生變化機制。本研究目的為量化臺灣棲蘭山地區16,775公頃之山地霧林帶,每日的日間霧水停滯時間,本研究利用海拔1151–1810公尺之間的四個空曠地氣象站資料以及高時空解析度向日葵8號衛星圖做為分析資料,其中包含10分鐘解析度的地表與天空中之太陽輻射值比值,以及由現地收集之溫度、相對濕度運算露點溫度差值,作為霧水事件模型(the Fog Event Index)的指標,並使用現地收集之縮時攝影影像作為驗證資料,最終驗證本研究提出之霧水模型可達87%估測正確率。透過此模型可得棲蘭山地區核心的霧林帶很狹窄,主要分布於中海拔地區大約1514–1670公尺,而此主要核心霧林帶內之霧水停滯兩年總時數為其他霧林帶的3.9倍,霧水在秋冬之停滯時間多於春夏,其停滯模式多數為短時間(約1–2小時)停滯,在主要核心霧林帶內較常發生長時間(8小時以上)霧水停滯事件,本研究提出之霧水事件模型有助於估測高空間變異山區霧林之起霧情況。zh_TW
dc.description.abstractTropical montane cloud forests (TMCFs) are some of the most unique ecosystems in the terrestrial environments occupying about 14.2% of all tropical forests. Due to their frequent immersion of low altitude cloud (also known as fog) with high humidity, these zones are the major water sources for lowland environments and habitats for many species. Recent studies suggested that elevated temperatures may alter the spatiotemporal dynamics of fog, and cause cascading impacts on TMCFs. Therefore, quantify the occurrence of fog is necessary but rather challenging. This study aims to assess the daytime duration of fog in 16,775 ha TMCFs situated in Chilan Mountain in northeast Taiwan. We installed four open-sky meteorological stations along an elevation gradient of 1151–1810 m a.s.l. We developed a new metric, namely the Fog Event Index (FEI), which integrated the components of solar radiation and dew-point depression. Concurrent photosynthetically active radiation records from a field quantum sensor and Himawari-8 satellite data were required to derive the solar radiation component; in-situ air temperature and relative humidity data were utilized to calculated dew-point depression. The performance of the FEI was satisfactory (87% of accuracy) by comparing with ground truth data recorded by a time-lapse video.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:54:19Z (GMT). No. of bitstreams: 1
U0001-0807202016514900.pdf: 3986445 bytes, checksum: ba9efd727c524a86491d8dcfc2907457 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Table of Contents v
List of Figures vii
List of Tables ix
1. Introduction 1
1.1. Research objectives 3
2. Literature Reviews 5
2.1. The roles of fog in ecosystems 5
2.2. Fog quantification approaches 7
2.3. Summary 8
3. Materials and Methods 9
3.1. Study area 9
3.2. Meteorological data 11
3.2.1. Meteorological stations 11
3.2.2. Meteorological data gap filling 12
3.3. Himawari-8 satellite data 12
3.3.1. Himawari-8 data download and retrieved 12
3.3.2. Daytime period setup and Himawari-8 PAR performance 13
3.4. Validation data 15
3.5. The FEI development 15
3.5.1. The FEI model 16
3.5.2. Two indicators validation and assessment of the FEI performance 20
3.6. Application of the FEI 22
4. Results 23
4.1. Meteorological data 23
4.2. Himawari-8 satellite data 23
4.2.1. Daytime period setup and Himawari-8 PAR performance 23
4.3. Validation data 26
4.4. The FEI development 27
4.4.1. Two indicators validation and assessment of the FEI performance 27
4.5. Application of the FEI 39
5. Discussion 46
5.1. The FEI performance and its application 46
5.1.1. The causes of uncertainties 46
5.1.2. Contribution of two indicators 47
5.1.3. Applicability of the FEI 47
5.2. Fog characteristic in Chilan Mountain 48
5.2.1. Aspects and altitudes 48
5.2.2. Fog duration pattern 48
5.2.3. Seasonality of fog 49
6. Conclusions 50
References 51
dc.language.isoen
dc.title臺灣東北部山地霧林每日霧水停滯時間之時空變異分析zh_TW
dc.titleAssessment of spatiotemporal dynamics of fog daily duration in montane cloud forests of northeast Taiwanen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊振義(Jehn-Yih Juang),羅敏輝(Min-Hui Lo)
dc.subject.keyword棲蘭山,露點溫度差,海拔梯度,向日葵8號,相對濕度,太陽輻射,氣溫,縮時攝影,zh_TW
dc.subject.keywordChilan Mountain,dew point depression,elevation gradient,Himawari-8,relative humidity,solar radiation,temperature,time-lapse video,en
dc.relation.page56
dc.identifier.doi10.6342/NTU202001389
dc.rights.note有償授權
dc.date.accepted2020-07-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
U0001-0807202016514900.pdf
  目前未授權公開取用
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved