Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳銘憲(Ming-Syan Chen)
dc.contributor.authorWei-Pin Wangen
dc.contributor.author王威斌zh_TW
dc.date.accessioned2021-07-11T14:54:10Z-
dc.date.available2025-09-01
dc.date.copyright2020-08-20
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationN. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform. IEEE transactions on Computers, 100(1):90–93, 1974.
M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.
G. Awad, A. Butt, J. Fiscus, D. Joy, A. Delgado, W. Mcclinton, M. Michel,A. Smeaton, Y. Graham, W. Kraaij, et al. Trecvid 2017: evaluating ad-hoc andinstance video search, events detection, video captioning, and hyperlinking. 2017.
S. Baluja. Hiding images in plain sight: Deep steganography. In Advances in Neural Information Processing Systems, pages 2069–2079, 2017.
B. Boehm. Stegexpose a tool for detecting lsb steganography. arXiv preprint arXiv:1410.6656, 2014.
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3d u-net:learning dense volumetric segmentation from sparse annotation. In International conference on medical image computing and computer-assisted intervention, pages424–432. Springer, 2016.
C. Cortes and V. Vapnik. Support-vector networks.Machine learning, 20(3):273–297, 1995.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.
X. Duan, K. Jia, B. Li, D. Guo, E. Zhang, and C. Qin. Reversible image steganography scheme based on a u-net structure. IEEE Access, 7:9314–9323, 2019.
X. Duan, H. Song, C. Qin, and M. K. Khan. Coverless steganography for digital images based on a generative model. Computers, Materials Continua, 55(3):483–493, 2018.
S. Dumitrescu, X. Wu, and N. Memon. On steganalysis of random lsb embedding in continuoustone images. In Proceedings. International Conference on Image Processing, volume 3, pages 641–644. IEEE, 2002.
S. Dumitrescu, X. Wu, and Z. Wang. Detection of lsb steganography via sample pairanalysis. In International workshop on information hiding, pages 355–372. Springer, 2002.
M. E. Eltahir, L. M. Kiah, B. B. Zaidan, and A. A. Zaidan. High rate video streaming steganography. In 2009 International Conference on Information Management and Engineering, pages 550–553. IEEE, 2009.
T. Fang, M. Jaggi, and K. Argyraki. Generating steganographic text with lstms. In Proceedings of ACL 2017, Student Research Workshop, pages 100–106, 2017.
T. Filler and J. Fridrich. Design of adaptive steganographic schemes for digital images. In Media Watermarking, Security, and Forensics III, volume 7880, page 78800F. International Society for Optics and Photonics, 2011.
T. Filler, J. Judas, and J. Fridrich. Minimizing additive distortion in steganography using syndrome-trellis codes.IEEE Transactions on Information Forensics and Security, 6(3):920–935, 2011.
J. Fridrich and M. Goljan. Practical steganalysis of digital images: state of the art. InSecurity and Watermarking of Multimedia Contents IV, volume 4675, pages 1–13.International Society for Optics and Photonics, 2002.
J. Fridrich, M. Goljan, and R. Du. Detecting lsb steganography in color, and grayscale images. IEEE multimedia, 8(4):22–28, 2001.
J. Fridrich, M. Goljan, and R. Du. Reliable detection of lsb steganography in color and grayscale images. In Proceedings of the 2001 workshop on Multimedia and security: new challenges, pages 27–30, 2001.
L. Guo, J. Ni, and Y. Q. Shi. An efficient jpeg steganographic scheme using uniform embedding. In 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pages 169–174. IEEE, 2012.
J. Hayes and G. Danezis. Generating steganographic images via adversarial training. In Advances in Neural Information Processing Systems, pages 1954–1963, 2017.
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data withneural networks. science, 313(5786):504–507, 2006.
V. Holub and J. Fridrich. Designing steganographic distortion using directional filters. In 2012 IEEE International workshop on information forensics and security (WIFS), pages 234–239. IEEE, 2012.
V. Holub, J. Fridrich, and T. Denemark. Universal distortion function for steganography in an arbitrary domain. EURASIP Journal on Information Security, 2014(1):1, 2014.
D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li. A novel image steganography methodvia deep convolutional generative adversarial networks. IEEE Access, 6:38303–38314, 2018.
X. Hu, C.-W. Fu, L. Zhu, and P.-A. Heng. Depth-attentional features for single-image rain removal. In Proceedings of the IEEE Conference on Computer Visionand Pattern Recognition, pages 8022–8031, 2019.
G. Hudson, A. Léger, B. Niss, I. Sebestyén, and J. Vaaben. Jpeg-1 standard 25 years: past, present, and future reasons for a success. Journal of Electronic Imaging, 27(4):040901, 2018.
K. Karampidis, E. Kavallieratou, and G. Papadourakis. A review of image steganalysis techniques for digital forensics. Journal of information security and applications, 40:217–235, 2018.
G. C. Kessler. An overview of steganography for the computer forensics examiner. Forensic science communications, 6(3):1–27, 2004.
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
W. Luo, G. L. Heileman, and C. E. Pizano. Fast and robust watermarking of jpeg files. In Proceedings Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, pages 158–162. IEEE, 2002.
R. Meng, Z. Zhou, Q. Cui, X. Sun, and C. Yuan. A novel steganography schemecombining coverless information hiding and steganography. J. Inf. Hiding Privarcy Protection, 1(1):43–48, 2019.
A. Mishra, S. Kumar, A. Nigam, and S. Islam. Vstegnet: Video steganography network using spatio-temporal features and micro-bottleneck. In BMVC, page 274,2019.
B. Mishra and R. Kashyap. A review paper on digital watermarking techniques its applications. International Journal of Science and Research (IJSR), 5(6), 2016.
A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. InEuropean conference on computer vision, pages 483–499. Springer,2016.
H. Ozer, I. Avcibas, B. Sankur, and N. D. Memon. Steganalysis of audio basedon audio quality metrics. In Security and Watermarking of Multimedia Contents V, volume 5020, pages 55–66. International Society for Optics and Photonics, 2003.
T. Pevny, P. Bas, and J. Fridrich. Steganalysis by subtractive pixel adjacency matrix. IEEE Transactions on information Forensics and Security, 5(2):215–224, 2010.
T. Pevnỳ, T. Filler, and P. Bas. Using high-dimensional image models to performhighly undetectable steganography. In International Workshop on Information Hiding, pages 161–177. Springer, 2010.
L. Pibre, P. Jérôme, D. Ienco, and M. Chaumont. Deep learning for steganalysis is better than a rich model with an ensemble classifier, and is natively robust to the cover source-mismatch. arXiv preprint arXiv:1511.04855, 2015.
Y. Qian, J. Dong, W. Wang, and T. Tan. Deep learning for steganalysis via convolutional neural networks. In Media Watermarking, Security, and Forensics 2015, volume 9409, page 94090J. International Society for Optics and Photonics, 2015.
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. InInternational Conference on Medical image computingand computer-assisted intervention, pages 234–241. Springer, 2015.
J. Schlemper, O. Oktay, M. Schaap, M. Heinrich, B. Kainz, B. Glocker, and D. Rueckert. Attention gated networks: Learning to leverage salient regions in medical images. Medical image analysis, 53:197–207, 2019.
H. R. Sheikh and A. C. Bovik. Image information and visual quality.IEEE Transactions on image processing, 15(2):430–444, 2006.
H. Shi, J. Dong, W. Wang, Y. Qian, and X. Zhang. Ssgan: secure steganography based on generative adversarial networks. In Pacific Rim Conferenceon Multimedia, pages 534–544. Springer, 2017.
K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actionsclasses from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.
W. Tang, B. Li, S. Tan, M. Barni, and J. Huang. Cnn-based adversarial embedding for image steganography. IEEE Transactionson Information Forensics and Security, 14(8):2074–2087, 2019.
J. Tao, S. Li, X. Zhang, and Z. Wang. Towards robust image steganography. IEEE Transactions on Circuits and Systems for Video Technology, 29(2):594–600, 2018.
D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. C3d: generic featuresfor video analysis. CoRR, abs/1412.0767, 2(7):8, 2014.
G. K. Wallace. The jpeg still picture compression standard. IEEE transactions on consumer electronics, 38(1):xviii–xxxiv, 1992.
X. Weng, Y. Li, L. Chi, and Y. Mu. High-capacity convolutional video steganography with temporal residual modeling. In Proceedings of the 2019 on International Conference on Multimedia Retrieval, pages 87–95, 2019.
E. Wengrowski and K. Dana. Light field messaging with deep photographics teganography. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1515–1524, 2019.
A. Westfeld and A. Pfitzmann. Attacks on steganographic systems. In International workshop on information hiding, pages 61–76. Springer, 1999.
R. B. Wolfgang and E. J. Delp. A watermark for digital images. In Proceedings of 3rd IEEE International Conference on Image Processing, volume 3, pages 219–222. IEEE, 1996.
P. Wu, Y. Yang, and X. Li. Stegnet: Mega image steganography capacity with deepconvolutional network. Future Internet, 10(6):54, 2018.
Z. Xia, X. Wang, X. Sun, Q. Liu, and N. Xiong. Steganalysis of lsb matching using differences between nonadjacent pixels. Multimedia Tools and Applications, 75(4):1947–1962, 2016.
Z. Xia, X. Wang, X. Sun, and B. Wang. Steganalysis of least significant bit matchingusing multi-order differences. Security and Communication Networks, 7(8):1283–1291, 2014.
J. Ye, J. Ni, and Y. Yi. Deep learning hierarchical representations for image steganalysis. IEEE Transactions on Information Forensics and Security, 12(11):2545–2557,2017.
Y. Ye, J. Shan, L. Bruzzone, and L. Shen. Robust registration of multimodal remotesensing images based on structural similarity.IEEE Transactions on Geoscience and Remote Sensing, 55(5):2941–2958, 2017.
Z. Zeng, W. Xie, Y. Zhang, and Y. Lu. Ric-unet: An improved neural network based on unet for nuclei segmentation in histology images. Ieee Access, 7:21420–21428,2019.
Y. Zhang, Q. Duan, Y. Liao, J. Liu, R. Wu, and B. Xie. Research on speech enhancement algorithm based on sa-unet. In 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pages 818–8183. IEEE, 2019.
Y. Zhang, X. Luo, C. Yang, D. Ye, and F. Liu. A framework of adaptive steganography resisting jpeg compression and detection.Security and Communication Networks, 9(15):2957–2971, 2016.
J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. Hidden: Hiding data with deep networks. In Proceedings of the European Conference on Computer Vision (ECCV), pages 657–672, 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78383-
dc.description.abstract圖片隱寫術是一種將機密資訊轉為微小波動再嵌入圖片的技術,傳統作法只能將極為少量的資訊藏於一張圖片上,近期使用深度學習的方式能將隱藏量提升10到100倍,使彩色圖片中的一個像素能藏入24位元的資料,但這種方式對於圖片的變動非常敏感,特別是JPEG壓縮的損壞會使藏入的資訊無法還原。而在影片隱寫術方面,一般是把影片中每一幀當作獨立的圖來套用圖片隱寫術,但這並沒有善用到每幀的時序特性,在本研究中,我們提出了兩種深度學習模型分別用於圖片和影片隱寫術,我們設計了端對端抗JPEG具注意力機制的模型(JASN),它可以把一張機密圖像藏入另一張同等大小的圖片,即使該圖被JPEG壓縮過,我們仍然可以還原機密圖片。至於影片部分,我們設計一種高效的模型(FVSN),在執行速度、模型大小和影片品質上,它的表現都比現存最好的模型還要好。zh_TW
dc.description.abstractImage steganography is a technique to hide secret information into an ordinary image by adding visually indistinguishable perturbations. Traditional methods can only embed a small amount of data into the carrier image. The latest deep learning-based methods have achieved 24 bits payloads per pixel which is 10 to 100 times larger than typical methods. However, existing methods are sensitive to image distortion, especially the JPEG lossy compression, which makes models fail to reconstruct the secret. In video steganography, people usually extract the frames from videos and consider them as the image steganography task, but underutilize the temporal features. In this study, we proposed two deep networks for image and video steganography individually. We designed an end-to-end JPEG-resistant attention model, called JASN, which can robustly embed a secret image to a same-size cover image, and successfully reveal the secret image after processed by JPEG algorithms. We also designed an efficient video model, called FVSN, which outperforms the state-of-the-art model on speed, model size, and video quality.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:54:10Z (GMT). No. of bitstreams: 1
U0001-1007202021582200.pdf: 14950521 bytes, checksum: 9810f70ea0542f89d7c4552d0b79ab4a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
ListofFigures ix
ListofTables x
1 Introduction 1
2 RelatedWork 5
2.1 U-net 5
2.2 Steganography 6
2.3 Robust SteganographyandWatermarking 7
2.4 VideoSteganography 7
3 JASNFramework 8
3.1 AttentionHidingNetwork 8
3.1.1 FeatureExtractor 9
3.1.2 JPEG-guidedAttentionMachine 9
3.1.3 SecretEncoder 10
3.1.4 Secret∗Decoder 11
3.2 JPEGSimulator 11
3.3 RevealingModel 12
3.4 LossFunction 13
3.5 ScoreFunctions 15
4 Experiments onImageSteganography 17
4.1 Dataset andImplementationDetails 17
4.2 ResultsandPerformance 19
4.3 AblationStudy 20
4.4 HidingPlace 22
4.5 DifferentJPEGCompression 23
4.6 Multiple TimesJPEGCompression 25
4.7 Hyperparameters 27
5 FVSNFramework 28
5.1 FVSNStructures 28
5.2 LossFunction 30
5.3 ScoreFunctions 31
6 Experiments onVideoSteganography 32
6.1 Datasets andImplementationDetails 32
6.2 ResultsandPerformance 33
6.3 Non-ContinuousFrames 36
6.4 ModelsAnalysis 37
6.4.1 ModelSize 37
6.4.2 ExecutionTime 39
6.5 Steganalysis 40
6.5.1 UnsupervisedSteganalysis 40
6.5.2 SupervisedSteganalysis 41
6.6 Hyperparameters 43
7 Conclusion 44
References 45
dc.language.isoen
dc.subject深度學習zh_TW
dc.subject影片隱寫術zh_TW
dc.subject穩健資訊隱藏zh_TW
dc.subjectJPEG強健性zh_TW
dc.subject高容量zh_TW
dc.subject影像隱寫術zh_TW
dc.subject高效模型zh_TW
dc.subject注意力機制zh_TW
dc.subjectAttention mechanismen
dc.subjectEfficient modelen
dc.subjectImage steganographyen
dc.subjectHigh capacityen
dc.subjectJPEG robustnessen
dc.subjectRobust information hidingen
dc.subjectVideo steganographyen
dc.subjectDeep learningen
dc.title高容量與穩健資訊隱藏技術:圖片及影片隱寫術zh_TW
dc.titleHigh Capacity and Robust Information HidingTechnology: Steganography on Image and Videoen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王鈺強(Yu-Chiang Wang),陳怡伶(Yi-Ling Chen),楊得年(De-Nian Yang),賴冠廷(Kuan-Ting Lai)
dc.subject.keyword注意力機制,深度學習,高效模型,影像隱寫術,高容量,JPEG強健性,穩健資訊隱藏,影片隱寫術,zh_TW
dc.subject.keywordAttention mechanism,Deep learning,Efficient model,Image steganography,High capacity,JPEG robustness,Robust information hiding,Video steganography,en
dc.relation.page53
dc.identifier.doi10.6342/NTU202001435
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
dc.date.embargo-lift2025-09-01-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-1007202021582200.pdf
  未授權公開取用
14.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved