Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78382
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor顧記華(Jih-Hwa Guh)
dc.contributor.authorChi-Min Duen
dc.contributor.author杜啟敏zh_TW
dc.date.accessioned2021-07-11T14:54:07Z-
dc.date.available2025-07-22
dc.date.copyright2020-09-04
dc.date.issued2020
dc.date.submitted2020-07-22
dc.identifier.citation1. Cancer., American Cancer Society: Key Statistics for Lung. https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
2. Health Promotion Administration, Ministry of Health and Welfare. https://dep.mohw.gov.tw/DOS/cp-1735-3242-113.html
3. NIH National Cancer Institute: Surveillance, Epidemiology, and End Results Program. https://seer.cancer.gov/statfacts/html/lungb.html
4. Cancer?, American Cancer Society: What Is Lung. https://www.cancer.org/cancer/lung-cancer/about/what-is.html
5. Types and Staging of Lung Cancer. https://www.lungcancer.org/find_information/publications/163-lung_cancer_101/268-types_and_staging
6. Cancer., American Cancer Society: Signs and Symptoms of Lung. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/signs-symptoms.html
7. Factor., American Cancer Society: Lung Cancer Risk. https://www.cancer.org/cancer/lung-cancer/causes-risks-prevention/risk-factors.html
8. Carper, M. B., Claudio, P. P. (2015). Clinical potential of gene mutations in lung cancer. Clin Transl Med, 4(1), 33.
9. NIH National Cancer Institute: Lung Cancer Prevention (PDQ®)–Patient Version, Lung prevention. https://www.cancer.gov/types/lung/patient/lung-prevention-pdq
10. Aberle, D. R., Adams, A. M., Berg, C. D., Black, W. C., Clapp, J. D., Fagerstrom, R. M., Gareen, I. F., Gatsonis, C., Marcus, P. M., Sicks, J. D. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 365(5), 395-409.
11. NIH National Cancer Institute: Lung Cancer Screening (PDQ®)–Patient Version, Lung screening. https://www.cancer.gov/types/lung/patient/lung-screening-pdq
12. Cancer., American Cancer Society: Tests for Lung. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/how-diagnosed.html
13. Niho, S., Shinkai, T. (2001). [Tumor markers in lung cancer]. Gan To Kagaku Ryoho, 28(13), 2089-2093.
14. Stages., Non-Small Cell Lung Cancer. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/staging-nsclc.html
15. Rates., Lung Cancer Survival. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/survival-rates.html
16. Cancer., Treating Non-Small Cell Lung. https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell.html
17. Voelker, Rebecca. (2020). New Drug Is a Triple Threat Against RET-Altered Cancer. JAMA, 323(23), 2364-2364.
18. Collection, American Type Culture. https://www.atcc.org/en/Products/Cells_and_Microorganisms/Cell_Lines.aspx
19. Blanco, R., Iwakawa, R., Tang, M., Kohno, T., Angulo, B., Pio, R., Montuenga, L. M., Minna, J. D., Yokota, J., Sanchez-Cespedes, M. (2009). A gene-alteration profile of human lung cancer cell lines. Hum Mutat, 30(8), 1199-1206.
20. Botelho, A. F. M., Pierezan, F., Soto-Blanco, B., Melo, M. M. (2019). A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon, 158, 63-68.
21. Greeff, K., Fox, A. A. (1984). Cardiac glycosides and sodium/potassium-ATPase. Basic Res Cardiol, 79 Suppl, 16-20.
22. Schneider, N. F. Z., Cerella, C., Simões, C. M. O., Diederich, M. (2017). Anticancer and Immunogenic Properties of Cardiac Glycosides. Molecules, 22(11).
23. Winnicka, K., Bielawski, K., Bielawska, A. (2006). Cardiac glycosides in cancer research and cancer therapy. Acta Pol Pharm, 63(2), 109-115.
24. Chan, S. H., Leu, W. J., Hsu, L. C., Chang, H. S., Hwang, T. L., Chen, I. S., Chen, C. S., Guh, J. H. (2013). Reevesioside F induces potent and efficient anti-proliferative and apoptotic activities through Na⁺/K⁺-ATPase α3 subunit-involved mitochondrial stress and amplification of caspase cascades. Biochem Pharmacol, 86(11), 1564-1575.
25. Chang, H. S., Chiang, M. Y., Hsu, H. Y., Yang, C. W., Lin, C. H., Lee, S. J., Chen, I. S. (2013). Cytotoxic cardenolide glycosides from the root of Reevesia formosana. Phytochemistry, 87, 86-95.
26. Hsu, J. L., Liu, F. L., Hsu, L. C., Chang, H. S., Leu, W. J., Yu, C. C., Chang, W. L., Chen, I. S., Kung, F. L., Guh, J. H. (2015). Epi-reevesioside F inhibits Na+/K+-ATPase, causing cytosolic acidification, Bak activation and apoptosis in glioblastoma. Oncotarget, 6(27), 24032-24046.
27. Leu, W. J., Chang, H. S., Chan, S. H., Hsu, J. L., Yu, C. C., Hsu, L. C., Chen, I. S., Guh, J. H. (2014). Reevesioside A, a cardenolide glycoside, induces anticancer activity against human hormone-refractory prostate cancers through suppression of c-myc expression and induction of G1 arrest of the cell cycle. PLoS One, 9(1), e87323.
28. Baselga, J., Averbuch, S. D. (2000). ZD1839 ('Iressa') as an anticancer agent. Drugs, 60 Suppl 1, 33-40; discussion 41-32.
29. Reck, M., Gatzemeier, U. (2005). Gefitinib ('Iressa'): a new therapy for advanced non-small-cell lung cancer. Respir Med, 99(3), 298-307.
30. Lingrel, J. B., Kuntzweiler, T. (1994). Na+,K(+)-ATPase. J Biol Chem, 269(31), 19659-19662.
31. Kaplan, J. H. (2002). Biochemistry of Na,K-ATPase. Annu Rev Biochem, 71, 511-535.
32. Shattock, M. J., Ottolia, M., Bers, D. M., Blaustein, M. P., Boguslavskyi, A., Bossuyt, J., Bridge, J. H., Chen-Izu, Y., Clancy, C. E., Edwards, A., Goldhaber, J., Kaplan, J., Lingrel, J. B., Pavlovic, D., Philipson, K., Sipido, K. R., Xie, Z. J. (2015). Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol, 593(6), 1361-1382.
33. Alevizopoulos, K., Calogeropoulou, T., Lang, F., Stournaras, C. (2014). Na+/K+ ATPase inhibitors in cancer. Curr Drug Targets, 15(10), 988-1000.
34. Mijatovic, T., Dufrasne, F., Kiss, R. (2012). Na+/K+-ATPase and cancer. Pharm Pat Anal, 1(1), 91-106.
35. Arce, C. A., Casale, C. H., Barra, H. S. (2008). Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. Febs j, 275(19), 4664-4674.
36. D'Arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int, 43(6), 582-592.
37. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4), 495-516.
38. Czabotar, P. E., Lessene, G., Strasser, A., Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol, 15(1), 49-63.
39. Delbridge, A. R., Grabow, S., Strasser, A., Vaux, D. L. (2016). Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer, 16(2), 99-109.
40. Marzo, I., Naval, J. (2008). Bcl-2 family members as molecular targets in cancer therapy. Biochem Pharmacol, 76(8), 939-946.
41. Boward, B., Wu, T., Dalton, S. (2016). Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks. Stem Cells, 34(6), 1427-1436.
42. Sherr, C. J., Roberts, J. M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 18(22), 2699-2711.
43. Seville, L. L., Shah, N., Westwell, A. D., Chan, W. C. (2005). Modulation of pRB/E2F functions in the regulation of cell cycle and in cancer. Curr Cancer Drug Targets, 5(3), 159-170.
44. Porta, C., Paglino, C., Mosca, A. (2014). Targeting PI3K/Akt/mTOR Signaling in Cancer. Front Oncol, 4, 64.
45. Tzivion, G., Dobson, M., Ramakrishnan, G. (2011). FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta, 1813(11), 1938-1945.
46. Zhang, M., Zhang, X. (2019). The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res, 311(2), 83-91.
47. Memmott, R. M., Dennis, P. A. (2009). Akt-dependent and -independent mechanisms of mTOR regulation in cancer. Cell Signal, 21(5), 656-664.
48. Guo, Y. J., Pan, W. W., Liu, S. B., Shen, Z. F., Xu, Y., Hu, L. L. (2020). ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med, 19(3), 1997-2007.
49. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 22(2), 153-183.
50. Chuang, Show-Mei, Wang, I-Ching, Yang, Jia-Ling. (2000). Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis, 21(7), 1423-1432.
51. Lim, S., Kaldis, P. (2013). Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 140(15), 3079-3093.
52. Schafer, K. A. (1998). The cell cycle: a review. Vet Pathol, 35(6), 461-478.
53. Ediriweera, M. K., Tennekoon, K. H., Samarakoon, S. R. (2019). Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol, 59, 147-160.
54. Mabuchi, S., Kuroda, H., Takahashi, R., Sasano, T. (2015). The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol, 137(1), 173-179.
55. Xue, J. F., Shi, Z. M., Zou, J., Li, X. L. (2017). Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother, 89, 1252-1261.
56. Ligresti, G., Militello, L., Steelman, L. S., Cavallaro, A., Basile, F., Nicoletti, F., Stivala, F., McCubrey, J. A., Libra, M. (2009). PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Cell Cycle, 8(9), 1352-1358.
57. Vasudevan, K. M., Barbie, D. A., Davies, M. A., Rabinovsky, R., McNear, C. J., Kim, J. J., Hennessy, B. T., Tseng, H., Pochanard, P., Kim, S. Y., Dunn, I. F., Schinzel, A. C., Sandy, P., Hoersch, S., Sheng, Q., Gupta, P. B., Boehm, J. S., Reiling, J. H., Silver, S., Lu, Y., Stemke-Hale, K., Dutta, B., Joy, C., Sahin, A. A., Gonzalez-Angulo, A. M., Lluch, A., Rameh, L. E., Jacks, T., Root, D. E., Lander, E. S., Mills, G. B., Hahn, W. C., Sellers, W. R., Garraway, L. A. (2009). AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell, 16(1), 21-32.
58. Meric-Bernstam, F., Akcakanat, A., Chen, H., Do, K. A., Sangai, T., Adkins, F., Gonzalez-Angulo, A. M., Rashid, A., Crosby, K., Dong, M., Phan, A. T., Wolff, R. A., Gupta, S., Mills, G. B., Yao, J. (2012). PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res, 18(6), 1777-1789.
59. Chen, Y., Liu, X., Wang, H., Liu, S., Hu, N., Li, X. (2019). Akt Regulated Phosphorylation of GSK-3β/Cyclin D1, p21 and p27 Contributes to Cell Proliferation Through Cell Cycle Progression From G1 to S/G2M Phase in Low-Dose Arsenite Exposed HaCat Cells. Front Pharmacol, 10, 1176.
60. Furic, L., Rong, L., Larsson, O., Koumakpayi, I. H., Yoshida, K., Brueschke, A., Petroulakis, E., Robichaud, N., Pollak, M., Gaboury, L. A., Pandolfi, P. P., Saad, F., Sonenberg, N. (2010). eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A, 107(32), 14134-14139.
61. Piserà, A., Campo, A., Campo, S. (2018). Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics, 45(1), 13-24.
62. Cope, C. L., Gilley, R., Balmanno, K., Sale, M. J., Howarth, K. D., Hampson, M., Smith, P. D., Guichard, S. M., Cook, S. J. (2014). Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J Cell Sci, 127(Pt 4), 788-800.
63. Walsh, D., Meleady, P., Power, B., Morley, S. J., Clynes, M. (2003). Increased levels of the translation initiation factor eIF4E in differentiating epithelial lung tumor cell lines. Differentiation, 71(2), 126-134.
64. La Monica, S., Madeddu, D., Tiseo, M., Vivo, V., Galetti, M., Cretella, D., Bonelli, M., Fumarola, C., Cavazzoni, A., Falco, A., Gervasi, A., Lagrasta, C. A., Naldi, N., Barocelli, E., Ardizzoni, A., Quaini, F., Petronini, P. G., Alfieri, R. (2016). Combination of Gefitinib and Pemetrexed Prevents the Acquisition of TKI Resistance in NSCLC Cell Lines Carrying EGFR-Activating Mutation. J Thorac Oncol, 11(7), 1051-1063.
65. Sim, E. H., Yang, I. A., Wood-Baker, R., Bowman, R. V., Fong, K. M. (2018). Gefitinib for advanced non-small cell lung cancer. Cochrane Database Syst Rev, 1(1), Cd006847.
66. Hartmann, J. T., Haap, M., Kopp, H. G., Lipp, H. P. (2009). Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr Drug Metab, 10(5), 470-481.
67. Chang, C. Y., Shen, C. C., Su, H. L., Chen, C. J. (2011). Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation. J Neurooncol, 105(3), 507-522.
68. Chen, L., Meng, Y., Guo, X., Sheng, X., Tai, G., Zhang, F., Cheng, H., Zhou, Y. (2016). Gefitinib enhances human colon cancer cells to TRAIL-induced apoptosis of via autophagy- and JNK-mediated death receptors upregulation. Apoptosis, 21(11), 1291-1301.
69. Deng, M., Wang, J., Chen, Y., Zhang, L., Liu, D. (2015). Combination of SF1126 and gefitinib induces apoptosis of triple-negative breast cancer cells through the PI3K/AKT-mTOR pathway. Anticancer Drugs, 26(4), 422-427.
70. Jin, H., Jiang, A. Y., Wang, H., Cao, Y., Wu, Y., Jiang, X. F. (2017). Dihydroartemisinin and gefitinib synergistically inhibit NSCLC cell growth and promote apoptosis via the Akt/mTOR/STAT3 pathway. Mol Med Rep, 16(3), 3475-3481.
71. Xia, X., Liu, Y., Liao, Y., Guo, Z., Huang, C., Zhang, F., Jiang, L., Wang, X., Liu, J., Huang, H. (2019). Synergistic effects of gefitinib and thalidomide treatment on EGFR-TKI-sensitive and -resistant NSCLC. Eur J Pharmacol, 856, 172409.
72. Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 70(2), 440-446.
73. Anastasiadi, M., Polizzi, K., Lambert, R. J. W. (2018). An improved model for the analysis of combined antimicrobials: a replacement for the Chou-Talalay combination index method. J Appl Microbiol, 124(1), 97-107.
74. Li, H., Zhu, H., Xu, C. J., Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94(4), 491-501.
75. Ouyang, W., Yang, C., Zhang, S., Liu, Y., Yang, B., Zhang, J., Zhou, F., Zhou, Y., Xie, C. (2013). Absence of death receptor translocation into lipid rafts in acquired TRAIL-resistant NSCLC cells. Int J Oncol, 42(2), 699-711.
76. Wassenaar, T. A., Quax, W. J., Mark, A. E. (2008). The conformation of the extracellular binding domain of Death Receptor 5 in the presence and absence of the activating ligand TRAIL: a molecular dynamics study. Proteins, 70(2), 333-343.
77. Dhanasekaran, D. N., Reddy, E. P. (2008). JNK signaling in apoptosis. Oncogene, 27(48), 6245-6251.
78. Chang, F., Steelman, L. S., Lee, J. T., Shelton, J. G., Navolanic, P. M., Blalock, W. L., Franklin, R. A., McCubrey, J. A. (2003). Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia, 17(7), 1263-1293.
79. Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y., Tsujimoto, Y. (2001). Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol, 152(2), 237-250.
80. Tsujimoto, Y., Shimizu, S. (2000). VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ, 7(12), 1174-1181.
81. Sorimachi, H., Ishiura, S., Suzuki, K. (1997). Structure and physiological function of calpains. Biochem J, 328 ( Pt 3)(Pt 3), 721-732.
82. El Mchichi, B., Hadji, A., Vazquez, A., Leca, G. (2007). p38 MAPK and MSK1 mediate caspase-8 activation in manganese-induced mitochondria-dependent cell death. Cell Death Differ, 14(10), 1826-1836.
83. Nakagami, H., Morishita, R., Yamamoto, K., Yoshimura, S. I., Taniyama, Y., Aoki, M., Matsubara, H., Kim, S., Kaneda, Y., Ogihara, T. (2001). Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes, 50(6), 1472-1481.
84. Chen, H., Libertini, S. J., Wang, Y., Kung, H. J., Ghosh, P., Mudryj, M. (2010). ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J Biol Chem, 285(4), 2368-2374.
85. Veeranna, Kaji, T., Boland, B., Odrljin, T., Mohan, P., Basavarajappa, B. S., Peterhoff, C., Cataldo, A., Rudnicki, A., Amin, N., Li, B. S., Pant, H. C., Hungund, B. L., Arancio, O., Nixon, R. A. (2004). Calpain mediates calcium-induced activation of the erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer's disease. Am J Pathol, 165(3), 795-805.
86. van der Horst, A., Burgering, B. M. (2007). Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol, 8(6), 440-450.
87. Beretta, G. L., Corno, C., Zaffaroni, N., Perego, P. (2019). Role of FoxO Proteins in Cellular Response to Antitumor Agents. Cancers (Basel), 11(1).
88. Xing, Y. Q., Li, A., Yang, Y., Li, X. X., Zhang, L. N., Guo, H. C. (2018). The regulation of FOXO1 and its role in disease progression. Life Sci, 193, 124-131.
89. Cui, X., Xie, Z. (2017). Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules, 22(6).
90. Carneiro, B. A., El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol, 17(7), 395-417.
91. Singh, R., Letai, A., Sarosiek, K. (2019). Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol, 20(3), 175-193.
92. Otto, T., Sicinski, P. (2017). Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer, 17(2), 93-115.
93. Pritchard, A. L., Hayward, N. K. (2013). Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin Cancer Res, 19(9), 2301-2309.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78382-
dc.description.abstract癌症問題長時間困擾全球人類,成為世界三大死因之一。而其中,肺癌更是造成癌症死亡率居高不下的主因之一。大多數的肺癌可被歸類為非小細胞肺癌(non-small cell lung cancer),因此,開發出有效的治療策略來對付非小細胞肺癌極為急迫且重要。標靶治療是現今主流的癌症治療策略之一,更是可以用來對付晚期非小細胞肺癌的方法,即便如此,晚期非小細胞肺癌的存活率仍只有6%。此外,標靶藥物依然存在毒性、副作用及潛在抗藥性的問題。因此,合併使用其他藥物或可成為降低使用劑量以降低藥物毒性及副作用的治療策略之一。我們的合作團隊從臺灣梭羅木中萃取出一系列的化合物,進行篩選後,發現Epi-Reevesioside F 對於細胞生長的抑制效果最好。Epi-Reevesioside F可透過抑制鈉鉀幫浦的活性、增加細胞內鈉離子含量、抑制細胞週期、mTOR及其下游的蛋白,來達到抑制癌細胞生長的效果。而後再使用該化合物合併現有臨床藥物進行篩選以選出最佳的合併治療組合。使用流式細胞儀分析PI染色結果後發現,將Epi-Reevesioside F合併使用Gefitinib可以有效地增強Gefitinib所造成的細胞凋亡效果,造成Sub G1的比例顯著增加。相比之下,在單獨使用Epi-Reevesioside F的實驗結果中無法看到細胞凋亡的現象。除此之外,我們也透過西方墨點法來確認合併療法處理過的細胞的蛋白表現,發現Epi-Reevesioside F 確實以透過增強細胞凋亡相關蛋白的表現來增進Gefitinib誘導的細胞凋亡現象,包含caspase級聯反應及Bcl-2家族蛋白的表現。此外,我們也發現合併療法可以透過影響細胞週期來抑制癌細胞的生長。依據caspase 級聯反應及Bcl-2家族蛋白的實驗結果,特定死亡受器DR4及DR5在NCI-H460 細胞株的表現,及鈣離子含量在A549細胞株的表現皆被偵測且表現量明顯上升。與此同時,透過西方墨點法也證實Epi-Reevesioside F可以增強Gefitinib誘導的MAPK訊息傳遞路徑及影響FoxO家族的出核現象。總結來說,透過實驗證實合併療法可以活化caspase聯級反應、Bcl-2蛋白家族、細胞週期蛋白的表現、MAPK訊息傳遞路徑及影響FoxO家族的出核現象。不僅如此,DR4/DR5在NCI-H460 細胞株及鈣離子含量在A549細胞株的增加也已被證實。相較於單獨使用Gefitinib,合併使用Epi-Reevesioside F確實可以增強癌細胞的凋亡現象,證實合併療法的潛力。zh_TW
dc.description.abstractCancer persecutes human for a long time and becomes one of the top three mortalities worldwide. In all types of cancers, lung cancer is one of the main reasons for persistently high lethal rate. Most lung cancers are categorized into non-small cell lung cancer (NSCLC). Thus, developing an effective strategy to treat NSCLC is important and urgent. Targeted therapy is one of the major modalities of cancer treatment, and is also an effective strategy to treat advanced NSCLC. Even so, the survival rate of advanced NSCLC remains 6%. Besides, targeted therapy still exists some problems, including tolerability, adverse effects, and probable resistance. Therefore, the major specific aim of the thesis was doing a combination therapy study in which the therapeutic targeted drug and a potential research compound were combined to lower the given dose of the targeted drug to reduce the side effects. Epi-Reevesioside F, purified and provided by our colleagues, showed the highest efficacy on cell growth inhibition. It inhibited the cancer cell growth via suppressing the activity of Na+/K+-ATPase, increasing the intracellular Na+ concentration, inhibiting the cell cycle, and mTOR and its downstream proteins. Subsequently, Epi-Reevesioside F was used in this study for the combination treatment. The data of flow cytometry with PI staining showed that Epi-Reevesioside F synergistically increased Gefitinib-induced apoptosis identified by an increased Sub-G1 population of the cell cycle. Notably, Epi-Reevesioside F, by itself, did not increase the Sub-G1 population. Furthermore, the examination of protein expression levels of apoptosis-related proteins by Western blot analysis demonstrated that combinatory treatment increased the expression of catalytically active (cleaved) caspases and Bcl-2 family proteins. Combinatory treatment also inhibited cell growth by regulating the cell cycle progression. Besides, the expression of DR4 and DR5 in NCI-H460 cells, and calcium concentration in A549 cells were also detected. Further, Epi-Reevesioside F synergistically potentiated Gefitinib-induced mitogen-activated protein kinase (MAPK) pathway and modified the expression levels of FoxO family proteins. In conclusion, our data suggest that Epi-Reevesioside F synergistically potentiates apoptosis induced by Gefitinib in NSCLC cell lines NCI-H460 and A549. The sensitization effects are evidenced by increased caspase activation, expression of Bcl-2 family members, cell cycle-related proteins, MAPK pathway, and altered FoxO expression. Increased DR4/DR5 expressions in NCI-H460 cells and intracellular concentrations Ca2+ in A549 cells were apparent in the combinatory treatment. Collectively, in contrast to Gefitinib alone, Epi-Reevesioside F could synergistically potentiate Gefitinib-induced anti-NSCLC effects.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:54:07Z (GMT). No. of bitstreams: 1
U0001-1307202014462000.pdf: 6195711 bytes, checksum: f401fe345abf4a8c3c0bf7a8decd2df2 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract ii
List of Abbreviations iv
Contents vi
List of Figures ix
List of Tables xi
Aim of the study 1
Chapter 1: Introduction 2
1.1 Lung cancer 2
1.2 Non-small cell lung cancer (NSCLC) 2
1.3 Cardiac glycosides (CGs) 7
1.4 Epi-Reevesioside F 8
1.5 Gefitinib 9
1.6 Na+/K+-ATPase 9
1.7 Apoptosis 11
1.8 Bcl-2 family of proteins 12
1.9 Cell cycle 13
1.10 PI3K/AKT/mTOR/FOXO pathway 14
1.11 MAPK pathway 15
Chapter 2: Materials and Methods 17
2.1 Materials 17
2.2 Methods 20
Chapter 3: Results 27
3.1 Effect of several Reevesioside compounds on cell growth in NCI-H460, A549, and H9c2 cells. 27
3.2 Effect of Epi-Reevesioside F on cell cycle progression in NCI-H460 cells. 28
3.3 Effect of Epi-Reevesioside F on cell cycle-related proteins in NCI-H460 cells. 28
3.4 Effect of Epi-Reevesioside F on PI3K/AKT/mTOR pathway in NCI-H460 cells. 28
3.5 Effect of Epi-Reevesioside F on the level of intracellular Na+ in NCI-H460 cells. 29
3.6 Effect of Epi-Reevesioside F on the level of intracellular Ca2+ in NCI-H460 cells. 29
3.7 Effect of Epi-Reevesioside F on tubulin acetylation in NCI-H460 cells. 30
3.8 Effect of Epi-Reevesioside F on Na+/K+ ATPase expression in NCI-H460 cells. 30
3.9 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on cell growth in NCI-H460 and A549 cells. 30
3.10 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on cell cycle distribution in NCI-H460 and A549 cells. 31
3.11 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on cell cycle-related protein in NCI-H460 and A549 cells. 32
3.12 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on apoptosis-related proteins in NCI-H460 and A549 cells. 33
3.13 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on Bcl-2 family proteins in NCI-H460 and A549 cells. 33
3.14 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on DR4/DR5 expression level in NCI-H460 cells. 34
3.15 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on intracellular Ca2+ level in A549 cells. 34
3.16 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib on MAPK pathway. 35
3.17 Effect of combinatory treatment of Epi-Reevesioside F and Gefitinib PI3K/AKT/FOXO pathway. 36
Chapter 4: Discussion 37
Chapter 5: Conclusion 45
Appendices 46
Figures 56
References 82
dc.language.isozh-TW
dc.subject細胞凋亡zh_TW
dc.subjectGefitinibzh_TW
dc.subjectMAPK pathwayzh_TW
dc.subject細胞週期zh_TW
dc.subject非小細胞肺癌zh_TW
dc.subjectnon-small cell lung canceren
dc.subjectcell cycleen
dc.subjectMAPK pathwayen
dc.subjectapoptosisen
dc.subjectGefitiniben
dc.titleEpi-Reevesioside F 及其合併Gefitinib 在人類非小細胞肺癌的抗癌機轉研究zh_TW
dc.titleAnticancer mechanism of Epi-Reevesioside F and its combinatory treatment with Gefitinib against human non-small cell lung cancer
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃聰龍(Tsong-Long Hwang),蕭哲志(George Hsiao),許麗卿(Lih-Ching Hsu),楊家榮(Chia-Ron Yang)
dc.subject.keywordGefitinib,非小細胞肺癌,細胞凋亡,細胞週期,MAPK pathway,zh_TW
dc.subject.keywordGefitinib,non-small cell lung cancer,apoptosis,cell cycle,MAPK pathway,en
dc.relation.page93
dc.identifier.doi10.6342/NTU202001471
dc.rights.note有償授權
dc.date.accepted2020-07-22
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2025-07-22-
Appears in Collections:藥學系

Files in This Item:
File SizeFormat 
U0001-1307202014462000.pdf
  Restricted Access
6.05 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved