請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78378
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳沛隆(Pei-Lung Chen) | |
dc.contributor.author | Yao-Yu Chang | en |
dc.contributor.author | 張堯喻 | zh_TW |
dc.date.accessioned | 2021-07-11T14:53:54Z | - |
dc.date.available | 2022-08-21 | |
dc.date.copyright | 2020-09-10 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-16 | |
dc.identifier.citation | [1] O. Sancak et al., 'Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex,' European Journal of Human Genetics, vol. 13, no. 6, pp. 731-741, 2005. [2] C. H. Hong, H. P. Tu, J. R. Lin, and C. H. Lee, 'An estimation of the incidence of tuberous sclerosis complex in a nationwide retrospective cohort study (1997–2010),' British Journal of Dermatology, vol. 174, no. 6, pp. 1282-1289, 2016. [3] C.-H. Hong, T. N. Darling, and C.-H. Lee, 'Prevalence of tuberous sclerosis complex in Taiwan: a national population-based study,' Neuroepidemiology, vol. 33, no. 4, pp. 335-341, 2009. [4] M. Van Slegtenhorst et al., 'Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products,' Human molecular genetics, vol. 7, no. 6, pp. 1053-1057, 1998. [5] K. Budde and J. Gaedeke, 'Tuberous sclerosis complex–associated angiomyolipomas: focus on mTOR inhibition,' American journal of kidney diseases, vol. 59, no. 2, pp. 276-283, 2012. [6] F. o’Callaghan, 'Tuberous sclerosis complex,' Paediatrics and Child Health, vol. 18, no. 1, pp. 30-36, 2008. [7] P. Curatolo, Tuberous sclerosis complex: from basic science to clinical phenotypes. Cambridge University Press, 2003. [8] S. K. McMurdo Jr et al., 'MR imaging of intracranial tuberous sclerosis,' American Journal of Roentgenology, vol. 148, no. 4, pp. 791-796, 1987. [9] A. Fryer et al., 'Evidence that the gene for tuberous sclerosis is on chromosome 9,' The lancet, vol. 329, no. 8534, pp. 659-661, 1987. [10] R. Kandt et al., 'Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease,' Nature genetics, vol. 2, no. 1, pp. 37-41, 1992. [11] E. C. T. S. Consortium, 'Identification and characterization of the tuberous sclerosis gene on chromosome 16,' Cell, vol. 75, no. 7, pp. 1305-1315, 1993. [12] M. van Slegtenhorst et al., 'Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34,' Science, vol. 277, no. 5327, pp. 805-808, 1997. [13] E. Roach, M. R. Gomez, and H. Northrup, 'Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria,' Journal of child neurology, vol. 13, no. 12, pp. 624-628, 1998. [14] S. L. Dabora et al., 'Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs,' The American Journal of Human Genetics, vol. 68, no. 1, pp. 64-80, 2001. [15] A. R. Tee, D. C. Fingar, B. D. Manning, D. J. Kwiatkowski, L. C. Cantley, and J. Blenis, 'Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling,' Proceedings of the National Academy of Sciences, vol. 99, no. 21, pp. 13571-13576, 2002. [16] H. L. Kenerson, L. D. Aicher, L. D. True, and R. S. Yeung, 'Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors,' Cancer research, vol. 62, no. 20, pp. 5645-5650, 2002. [17] D. J. Kwiatkowski et al., 'A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells,' Human molecular genetics, vol. 11, no. 5, pp. 525-534, 2002. [18] F. X. McCormack et al., 'Multicenter international lymphangioleiomyomatosis efficacy and safety of sirolimus (MILES) trial,' in C91. LATE BREAKING CLINICAL TRIALS SYMPOSIUM, 2011: American Thoracic Society, pp. A6417-A6417. [19] S. Józwiak, K. Stein, and K. Kotulska, 'Everolimus (RAD001): first systemic treatment for subependymal giant cell astrocytoma associated with tuberous sclerosis complex,' Future oncology, vol. 8, no. 12, pp. 1515-1523, 2012. [20] D. A. Krueger et al., 'Tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference,' Pediatric neurology, vol. 49, no. 4, pp. 255-265, 2013. [21] H. Northrup et al., 'Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference,' Pediatric neurology, vol. 49, no. 4, pp. 243-254, 2013. [22] H. Northrup and D. Krueger, 'TSC diagnostic criteria update: recommendations of the 2012 international Tuberous Sclerosis Complex Consensus conference,' Pediatr Neurol, vol. 49, pp. 243-254, 2013. [23] S. Richards et al., 'Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology,' Genetics in medicine, vol. 17, no. 5, pp. 405-423, 2015. [24] R. Resta et al., 'A new definition of genetic counseling: National Society of Genetic Counselors’ task force report,' Journal of genetic counseling, vol. 15, no. 2, pp. 77-83, 2006. [25] C. Gimpel et al., 'Imaging of kidney cysts and cystic kidney diseases in children: An international working group consensus statement,' Radiology, vol. 290, no. 3, pp. 769-782, 2019. [26] P. Preece, B. Mees, B. Norris, M. Christie, T. Wagner, and P. Dundee, 'Surgical management of haemorrhaging renal angiomyolipoma in pregnancy,' International journal of surgery case reports, vol. 7, pp. 89-92, 2015. [27] S. A. Boorjian, Y. Sheinin, P. L. Crispen, C. M. Lohse, E. D. Kwon, and B. C. Leibovich, 'Hormone receptor expression in renal angiomyolipoma: clinicopathologic correlation,' Urology, vol. 72, no. 4, pp. 927-932, 2008. [28] M. J. Eijkemans et al., 'Long-term follow-up assessing renal angiomyolipoma treatment patterns, morbidity, and mortality: an observational study in tuberous sclerosis complex patients in the Netherlands,' American Journal of Kidney Diseases, vol. 66, no. 4, pp. 638-645, 2015. [29] L. Pallwein-Prettner et al., 'Assessment and characterisation of common renal masses with CT and MRI,' Insights into imaging, vol. 2, no. 5, pp. 543-556, 2011. [30] M. Jinzaki, S. G. Silverman, H. Akita, Y. Nagashima, S. Mikami, and M. Oya, 'Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management,' Abdominal imaging, vol. 39, no. 3, pp. 588-604, 2014. [31] M. Jinzaki, S. G. Silverman, H. Akita, S. Mikami, and M. Oya, 'Diagnosis of renal angiomyolipomas: classic, fat-poor, and epithelioid types,' in Seminars in Ultrasound, CT and MRI, 2017, vol. 38, no. 1: Elsevier, pp. 37-46. [32] N. A. Hammond et al., 'Imaging of adrenal and renal hemorrhage,' Abdominal imaging, vol. 40, no. 7, pp. 2747-2760, 2015. [33] L.-H. Zeng, N. R. Rensing, B. Zhang, D. H. Gutmann, M. J. Gambello, and M. Wong, 'Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex,' Human molecular genetics, vol. 20, no. 3, pp. 445-454, 2011. [34] C. Rosset, C. B. O. Netto, and P. Ashton-Prolla, 'TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review,' Genetics and molecular biology, vol. 40, no. 1, pp. 69-79, 2017. [35] K. Sharma et al., 'Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease,' Scientific reports, vol. 7, no. 1, pp. 1-10, 2017. [36] J. C. Kingswood et al., 'Review of the tuberous sclerosis renal guidelines from the 2012 consensus conference: Current data and future study,' Nephron, vol. 134, no. 2, pp. 51-58, 2016. [37] A. Kapoor et al., 'Evolving strategies in the treatment of tuberous sclerosis complex-associated angiomyolipomas (TSC-AML),' Urology, vol. 89, pp. 19-26, 2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78378 | - |
dc.description.abstract | 腎血管肌脂肪瘤(angiomyolipoma)是大多數結節性硬化症患者終身伴隨的腎臟腫瘤,由於發病年齡早,腫瘤會漸進性的成長,等到患者開始感受到腰圍腫脹、腰痛,甚至到無法平躺、腹痛、血尿等情況時,往往腫瘤已經長到一定大小,且侵犯了腎臟實質,造成腎臟不可逆的傷害,因此醫學影像的追蹤對結節硬化症患者來說是非常重要的。 臺大醫院「結節硬化症整合型門診」特別針對結節硬化症患者所成立的門診,幾乎收集了台灣各地區患者數據,由於腎血管肌脂肪瘤對患者的重要性,且具有潛在出血的風險性,所以本研究用回朔性方式,收集個案臨床數據及影像資料,統計出和腎血管肌脂肪瘤分期和腫瘤出血都和患者年齡、基因、aneurysm、TAE有統計上顯著的相關性,回歸係數結果顯示在腫瘤出血事件情況下,年齡26 ~ 50歲是年齡0 ~ 25歲的3.443倍(p: 0.271),而年齡51 ~ 75歲是年齡0 ~ 25歲的19.526倍(p: 0.014);同理,在出血事件下對renal angiomyolipoma stage 4 ~ 6是stage 0 ~ 3的24.137倍(p: 0.005),而對有伴隨intra-lesion aneurysm是沒有aneurysm的2.094倍(p: 0.316)。另外Youden index計算出腫瘤大小4.47公分(sensitivity:92.3%,spicificity:67.1%)為best cut off point,發現stage 3~4以上是腫瘤出血風險關鍵,TSC1基因變異患者集中在腫瘤分期stage 0~3,而TSC2基因變異患者則各個腫瘤分期都有分佈。 由於腎血管肌脂肪瘤組織多變化的特性,相對應有多樣化的醫學影像呈現,再加上臨床上要對腫瘤分期定義以及腫瘤體積的測量等,整個影像的判讀過程很複雜且冗長的,需要專業且有經驗的醫師來評估。 在有限人力資源下,面對大量累積的醫學影像,本研究希望可以運用人工智慧的技術,深度學習(deep learning)醫學影像的影像辨識(image recognition)、物件偵測(object detection)及分割(segmentation)技術,讓電腦可以有效的協助醫師,在判讀的過程有第二診斷。 第一階段訓練104張MRI影像,使用3D-ResNet18神經網路,測試結果腫瘤分期整體accuracy 60%,kappa 0.49,AUC值介於0.67~0.99;aneurysm判斷整體accuracy 85%,precision 80%,sensitivity 66.67%,specificity 92.86%,kappa值0.625,AUC值0.77。第二階段訓練102張標記MRI影像,使用3D-ResNet18+ASPP演算法,測試結果全腎臟分割平均Dice score 0.856 / IOU 75.57%。第三階段訓練65張標記MRI影像,使用2D-samiseResNet40+CC-attention 演算法,測試結果腎血管肌脂肪瘤分割表現,ground truth平均Dice score 0.771 / IOU 64.98% ; inference平均Dice score 0.580 / IOU 44.01%。 本研究整理過去在台灣結節硬化症患者累積的數據,透過收集、整理及統計分析,確實分析出一些和腫瘤分期、腫瘤出血有相關性的結果,而AI醫療影像辨識的應用在台灣已經逐漸發展,也希望這樣的進步可以提供醫生第二意見,協助醫生在影像的判讀,提升的效率,而對於醫療資源不足的地區,病患能夠一樣享有同品質的影像診斷,這對於罕見疾病的患者而言會是非常有利的協助。 | zh_TW |
dc.description.abstract | The renal angiomyolipoma is a type of benign hamartoma that may occur sporadically or be associated with tuberous sclerosis complex (TSC). They are likely to be early onset, multiple, large, and bilateral, and are prone to grow and be more aggressive. It causes irreversible damage to the kidneys, so the tracking of medical images is very important for patients with tuberous sclerosis. The tuberous sclerosis complex integrated outpatient clinic of National Taiwan University Hospital collected patient data from almost all regions of Taiwan. Because of the importance of renal angiomyolipoma for patients and the potential risk of bleeding, this study used a retrospective method to collect clinical data and imaging data of cases. It is statistically correlated with the age, gene, aneurysm and TAE of patients with renal angiomylipoma stage and tumor bleeding. Regression coefficient results show that in case of tumor bleeding, The odds of age in 25 ~ 50 y is 3.443 times than age 0 ~ 25 y ( p:0.271 ), the odds of age in 51 ~75 y is 19.526 times than age 0 ~ 25 y ( p:0.014 ), and the odds of renal angiomyolipoma stage 4 ~ 6 is 24.137 times as stage 0 ~ 3 ( p:0.005 ). The best cut off point of angiomyolipoma size is 4.47cm (sensitivity: 92.3%;specificity: 67.1%). Above renal angiomyolipoma stage 3 ~ 4 is the key to the risk of tumor hemorrhage. Patients with TSC1 gene mutation are concentrated in stage 0 ~ 3, while patients with TSC2 gene mutation are distributed in each tumor stage. Renal angiomyolipomas are typically composed of smooth muscle, blood vessels, and adipose tissue. The changing characteristics of renal angiomyolipoma, there should be a variety of medical images, in addition to the clinical definition of tumor stage and the measurement of tumor volume, the interpretation process of the entire image is complicated, and requires professional and experienced physicians to evaluate. The renal angiomyolipoma is a type of benign hamartoma that may occur sporadically or be associated with tuberous sclerosis complex (TSC). They are likely to be early onset, multiple, large, and bilateral, and are prone to grow and be more aggressive. It causes irreversible damage to the kidneys, so the tracking of medical images is very important for patients with tuberous sclerosis. The tuberous sclerosis complex integrated outpatient clinic of National Taiwan University Hospital collected patient data from almost all regions of Taiwan. Because of the importance of renal angiomyolipoma for patients and the potential risk of bleeding, this study used a retrospective method to collect clinical data and imaging data of cases. It is statistically correlated with the age, gene, aneurysm and TAE of patients with renal angiomylipoma stage and tumor bleeding. Regression coefficient results show that in case of tumor bleeding, The odds of age in 25 ~ 50 y is 3.443 times than age 0 ~ 25 y ( p:0.271 ), the odds of age in 51 ~75 y is 19.526 times than age 0 ~ 25 y ( p:0.014 ), and the odds of renal angiomyolipoma stage 4 ~ 6 is 24.137 times as stage 0 ~ 3 ( p:0.005 ). The best cut off point of angiomyolipoma size is 4.47cm (sensitivity: 92.3%;specificity: 67.1%). Above renal angiomyolipoma stage 3 ~ 4 is the key to the risk of tumor hemorrhage. Patients with TSC1 gene mutation are concentrated in stage 0 ~ 3, while patients with TSC2 gene mutation are distributed in each tumor stage. Renal angiomyolipomas are typically composed of smooth muscle, blood vessels, and adipose tissue. The changing characteristics of renal angiomyolipoma, there should be a variety of medical images, in addition to the clinical definition of tumor stage and the measurement of tumor volume, the interpretation process of the entire image is complicated, and requires professional and experienced physicians to evaluate. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:53:54Z (GMT). No. of bitstreams: 1 U0001-1407202022104800.pdf: 3082968 bytes, checksum: b135f5730e30ec34ed9051e051f71d72 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 中文摘要 iii 英文摘要 v 第一章 研究背景與動機 1 1.1. 結節性硬化症之疾病介紹 1 1.2. 結節性硬化症之歷史演進 1 1.3. 結節性硬化症之臨床表徵 3 1.3.1. 皮膚表徵 3 1.3.2. 神經表徵 4 1.3.3. 心臟表徵 4 1.3.4. 肺臟表徵 5 1.3.5. 腎臟表徵 5 1.3.6. 眼部表徵 5 1.3.7. 口腔表徵 5 1.3.8. 其他器官 5 1.4. 結節性硬化症之臨床診斷及檢查 6 1.4.1. 基因診斷標準 6 1.4.2. 臨床診斷標準 7 1.5. 結節性硬化症之治療現況 9 1.6. 遺傳諮詢 9 1.7. 研究動機 10 1.7.1. 腎血管肌脂肪瘤特性 10 1.7.2. 影像呈現上多變性 11 1.7.3. Renal angiomyolipoma staging判讀規則 12 1.7.4. Renal angiomyolipoma用藥規定 13 第二章 研究方法 15 2.1. 研究對象來源條件 15 2.2. 臨床資料收集 15 2.2.1. 臨床資料及影像特徵 15 2.2.2. Renal angiomyolipoma staging判讀 15 2.3. 臨床資料數據分析 16 2.4. 影像來源與取得 16 2.4.1. 影像來源 16 2.4.2. 影像條件 16 2.4.3. 影像取得及去個資 17 2.5. 影像標記 17 2.5.1. 影像標記設備 17 2.5.2. 影像標記軟體 17 2.5.3. 影像標記目標 17 2.5.4. 影像標記流程 18 2.6. 影像訓練、測試及學習架構 19 2.6.1. 人工智慧及深度學習 19 2.6.2. CNN 19 2.6.3. ResNet 20 2.6.4. 訓練資料及架構流程 20 第三章 研究結果 24 3.1. 人口統計與臨床表徵 24 3.2. Renal angiomyolipoma stage相關性因子 24 3.2.1. 年齡 25 3.2.2. 基因 26 3.2.3. Aneurysm及TAE 27 3.3. Renal hemorrhage之個案基本資料 28 3.3.1. 最佳切值(best cut off point) 29 3.3.2. Renal hemorrhage event相關性因子 30 3.4. 深度學習結果 32 3.4.1. Kidney staging aneurysm classification 32 3.4.2. Total kidney segmentation及renal angiomyolipoma segmentation 35 3.5. 遺傳諮詢案例 37 3.4.3. 案例一 37 3.4.4. 案例二 38 3.4.5. 案例三 39 第四章 討論 41 第五章 結論 49 參考文獻 50 | |
dc.language.iso | zh-TW | |
dc.title | 結節性硬化症之腎血管肌脂肪瘤的影像判讀及人工智慧應用 | zh_TW |
dc.title | The image evaluation and artificial intelligence system in tuberous sclerosis complex renal angiomyolipoma. | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊偉勛(Wei-Shiung Yang),吳志宏(Chih-Horng Wu) | |
dc.subject.keyword | 結節硬化症,腎血管肌脂肪瘤,腫瘤分期,深度學習, | zh_TW |
dc.subject.keyword | Tuberous sclerosis complex,renal angiomyolipoma,deep learning,dice score / IOU, | en |
dc.relation.page | 54 | |
dc.identifier.doi | 10.6342/NTU202001521 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-17 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1407202022104800.pdf 目前未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。