Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78377
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志傑(Chih-Chieh Chen)
dc.contributor.authorChun-Ting Lien
dc.contributor.author李俊霆zh_TW
dc.date.accessioned2021-07-11T14:53:51Z-
dc.date.available2023-08-04
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-07-17
dc.identifier.citationAvci, A. and Karagoz, I. (2003). Effects of Flow and Geometrical Parameters on the Collection Efficiency in Cyclone Separators. Journal of Aerosol Science 34: 937-955.
Barnhart, J.S. and Laurendeau, N.M. (1982). Pulverized Coal Combustion and Gasification in a Cyclone Reactor. 1. Experiment. Industrial Engineering Chemistry Process Design and Development 21: 671-680.
Bell Michelle, L., Ebisu, K., Leaderer Brian, P., Gent Janneane, F., Lee Hyung, J., Koutrakis, P., Wang, Y., Dominici, F. and Peng Roger, D. (2014). Associations of Pm2.5 Constituents and Sources with Hospital Admissions: Analysis of Four Counties in Connecticut and Massachusetts (USA) for Persons ≥ 65 Years of Age. Environmental Health Perspectives 122: 138-144.
Bertram, M.H. (1967). Comment on' Viscosity of Air'. Journal of Spacecraft and Rockets 4: 287-287. Bohnet, M. (1995). Influence of the Gas Temperature on the Separation Efficiency of Aerocyclones.
Chemical Engineering and Processing: Process Intensification 34: 151-156.
Brook Robert, D., Rajagopalan, S., Pope, C.A., Brook Jeffrey, R., Bhatnagar, A., Diez-Roux Ana, V., Holguin, F., Hong, Y., Luepker Russell, V., Mittleman Murray, A., Peters, A., Siscovick, D.,
Smith Sidney, C., Whitsel, L. and Kaufman Joel, D. (2010). Particulate Matter Air Pollution and
Cardiovascular Disease. Circulation 121: 2331-2378.
Chen, C.C., Lai, C.Y., Shih, T.S. and Yeh, W.Y. (1998). Development of Respirable Aerosol Samplers
Using Porous Foams. American Industrial Hygiene Association Journal 59: 766-773.
Chen, J. and Shi, M. (2003). Analysis on Cyclone Collection Efficiencies at High Temperatures. China
Particuology 1: 20-26.
Edwards, R.S. and Callendar, H.L. (1928). The Effect of Temperature on the Viscosity of Neon.
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and
Physical Character 119: 578-590.
Edwards, R.S., Rankine, A.O. and Callendar, H.L. (1927). On the Effect of Temperature on the Viscosity
of Air. Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character 117: 245-257.
Funk, P. and Baker, K. (2013). Dust Cyclone Technology for Gins–a Literature Review. Journal of
Cotton Science 17: 40-51.
Gimbun, J., Chuah, T., Fakhru’l-Razi, A. and Choong, T.S. (2005). The Influence of Temperature and
Inlet Velocity on Cyclone Pressure Drop: A Cfd Study. Chemical Engineering and Processing:
Process Intensification 44: 7-12.
Green, N.W., Duraiswamy, K. and Lumpkin, R.E. (1978). Pyrolysis with Cyclone Burner, Google
Patents.
He, P.W., Luo, S.Y., Cheng, G., Xiao, B., Cai, L. and Wang, J.b. (2012). Gasification of Biomass Char
with Air-Steam in a Cyclone Furnace. Renewable Energy 37: 398-402.
23
Israel, R. and Rosner, D.E. (1982). Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles from a Compressible Gas Flow. Aerosol Science and Technology 2: 45-51.
Jacobson, L.d.S.V., Hacon, S.d.S., Castro, H.A.d., Ignotti, E., Artaxo, P. and Ponce de Leon, A.C.M. (2012). Association between Fine Particulate Matter and the Peak Expiratory Flow of Schoolchildren in the Brazilian Subequatorial Amazon: A Panel Study. Environmental Research 117: 27-35.
Jain, A., Mohanty, B., Pitchumani, B. and Rajan, K. (2006). Studies on Gas-Solid Heat Transfer in Cyclone Heat Exchanger.
Keyes, F. (1951). A Summary of Viscosity and Heat-Conduction Data for He, a, H2, O2, CO, CO2, H2O, and Air. Transactions of the ASME 73: 589-596.
Lee, K.W., Gieseke, J.A. and Piispanen, W.H. (1985). Evaluation of Cyclone Performance in Different Gases. Atmospheric Environment (1967) 19: 847-852.
Li, M. and Zhang, L. (2014). Haze in China: Current and Future Challenges. Environmental Pollution 189: 85-86.
Liu, C., Xu, X., Bai, Y., Wang, T.-Y., Rao, X., Wang, A., Sun, L., Ying, Z., Gushchina, L., Maiseyeu, A., Morishita, M., Sun, Q., Harkema Jack, R. and Rajagopalan, S. (2014). Air Pollution–Mediated Susceptibility to Inflammation and Insulin Resistance: Influence of Ccr2 Pathways in Mice. Environmental Health Perspectives 122: 17-26.
Muschelknautz, U. and Muschelknautz, E. (1999). Separation Efficiency of Recirculating Cyclones in Circulating Fluidized Bed Combustions. VGB PowerTech 4: 99.
Nachman, K.E. and Parker, J.D. (2012). Exposures to Fine Particulate Air Pollution and Respiratory Outcomes in Adults Using Two National Datasets: A Cross-Sectional Study. Environmental Health 11: 25.
Nakhaei, M., Lu, B., Tian, Y., Wang, W., Dam-Johansen, K. and Wu, H. (2020). Cfd Modeling of Gas– Solid Cyclone Separators at Ambient and Elevated Temperatures. Processes 8: 228.
Oberdörster, G., Oberdörster, E. and Oberdörster, J. (2005). Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental health perspectives 113: 823-839.
Oh, J., Choi, S. and Kim, J. (2015). Numerical Simulation of an Internal Flow Field in a Uniflow Cyclone Separator. Powder Technology 274: 135-145.
Patterson, P. and Munz, R. (1989). Cyclone Collection Efficiencies at Very High Temperatures. The Canadian Journal of Chemical Engineering 67: 321-328.
Pereira, G., Belanger, K., Ebisu, K. and Bell, M.L. (2013). Fine Particulate Matter and Risk of Preterm Birth in Connecticut in 2000–2006: A Longitudinal Study. American Journal of Epidemiology 179: 67-74.
Peters, T.M., Vanderpool, R.W. and Wiener, R.W. (2001). Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (Wins). Aerosol Science Technology 34: 389-397.
24
Reijnen, K. and Van Brakel, J. (1984). Gas Cleaning at High Temperatures and High Pressures: A Review. Powder Technology 40: 81-111.
Shin, M.-S., Kim, H.-S., Jang, D.-S., Chung, J.-D. and Bohnet, M. (2005). A Numerical and Experimental Study on a High Efficiency Cyclone Dust Separator for High Temperature and Pressurized Environments. Applied Thermal Engineering 25: 1821-1835.
Wang, G., Zhao, J., Jiang, R. and Song, W. (2015). Rat Lung Response to Ozone and Fine Particulate Matter (PM2.5) Exposures. Environmental Toxicology 30: 343-356.
Wasilewski, M. (2016). Analysis of the Effects of Temperature and the Share of Solid and Gas Phases on the Process of Separation in a Cyclone Suspension Preheater. Separation and Purification Technology 168: 114-123.
Williams, F.A. and Dixon, H.B. (1926). The Effect of Temperature on the Viscosity of Air. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 110: 141-167.
Woodruff Tracey, J., Parker Jennifer, D. and Schoendorf Kenneth, C. (2006). Fine Particulate Matter (PM2.5) Air Pollution and Selected Causes of Postneonatal Infant Mortality in California. Environmental Health Perspectives 114: 786-790.
Zhen, F. (1993). A Biomass Pyrolysis Gasifier Applicable to Rural China. Fuel Science and Technology International 11: 1025-1035.
Zhu, R., Zhang, Y., Yuan, Y. and Li, S. (2018). Deposition Loss of Particles in the Sampling Lines of Continuous Emission Monitoring System (CEMS) in Coal-Fired Power Plants. Aerosol and Air Quality Research 18: 1483-1492.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78377-
dc.description.abstract旋風器(cyclone)是在執行排放管道中細懸浮微粒(PM2.5)採樣時經常被使用的 前置分徑器。由於各排放管道的排氣溫度存在相當大的差異,因此,本研究透過 實驗的方法,探討入口氣流溫度對旋風器的分徑效率、空氣阻抗的影響。
研究中利用超音波霧化器產生微米多粒徑分布的 NaCl 微粒,並搭配氣動粒徑 分析儀(APS)即時監測微粒粒徑與數目濃度的變化。微粒經乾淨空氣的稀釋乾燥與 帶電中和之後,由 APS 與抽氣裝置之組合主動吸取一定流率的空氣樣本進入旋風 器。在旋風器入口前設有加熱裝置以調整氣體的溫度(25 ~ 200 °C );在出口端則 利用冰浴裝置先把氣體溫度降至常溫後再以 APS 進行採樣分析。旋風器的外層以 保溫棉包覆,並在入、出口端設置壓力測定孔。
結果顯示,當溫度由25 °C增加至200 °C時,需增加氣體的質量流率才能使旋 風器的初始分徑效率維持不變(從 10.4 sLPM 提升至 10.46 sLPM),此時由於氣體 速度(風速隨溫度而增加)與黏滯係數(黏滯度隨溫度而增加)的改變,使得旋風器的 空氣阻抗隨著溫度的提升而顯著增加(相同質量流率下,阻抗隨溫度增加而與溫度 的 0.26 次方呈現正相關)。史托克數會隨溫度升高而增加,透過增加史托克數的參 數來修正溫度的影響,將使史托克參數也能在不同溫度下使用。
美國環保署對於粒狀物的採樣規範中(Method 201A),關於 PM10 與 PM2.5 在 25 °C的標準採樣流量為為 10.7 sLPM,而當溫度升高至 200 °C時,美國環保署的採 樣流量( 11.65 sLPM)明顯高於實驗值,從實驗室中所得到的結果說明,當溫度增 加時(25~200 °C),體積採樣流率應該與溫度呈現正相關,並會因為溫度的增加而 增加些許標準採樣流量(200 °C時的標準採樣為 10.46 sLPM 比 25 °C增加 0.06 sLPM)。
zh_TW
dc.description.abstract
This study presented a numerical result of gas-particle flow in cyclone separators. The results evaluated the performance of separators at different temperature, and analyzed the application of Stokes number when elevated temperature.
In this study, micro NaCl particles would be generated by ultrasonic atomizer in multi-particle size distribution, and aerodynamic particulate sizer (APS) was used to monitor the changes in particle size and number concentration in real time. The freshly produced droplet particles were diluted, dried and neutralized by dilution air, and the certain flow rate of air sample was draw by APS and air extraction device into the cyclone. A heating device was installed in front of the cyclone inlet to adjust the temperature of the gas (25 ~ 200 °C). At the end of outlet, an ice bath device was used to cool down the gas to normal temperature before sampling from APS for sampling and analysis. The outer layer of the cyclone was covered with thermal insulation cotton, and pressure drop were measured from inlet and outlet of the cyclone.
The results show that when the temperature was increased from 25 to 200 °C, the mass flow rate of the gas needed to be slightly increased to maintain the initial separation efficiency of the cyclone. Due to changed in gas velocity and viscosity coefficient, the pressure drop of cyclones significantly increased with increasing temperature. The Stokes number that expressed the separation efficiency of the particle diameter increased with increasing temperature. Therefore, the Stokes number can also be used at different temperatures.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:53:51Z (GMT). No. of bitstreams: 1
U0001-1507202015325100.pdf: 5718582 bytes, checksum: b63a8e78daf3eda2a5b72b7f8441bf27 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents第一章、研究計畫之背景及目的 ............................................................................... 8
1.1 背景....................................................................................................................8
1.2 目的....................................................................................................................9
第二章、文獻探討 ....................................................................................................... 9
2.1 固定式污染源....................................................................................................9
2.2 抽取式顆粒物連續排放監測系統....................................................................9
2.3 微粒分徑器......................................................................................................10
2.3.1 雷諾數的變化與參數間的介紹...........................................................10
2.3.2 史托克數的變化與參數間的介紹.......................................................10
2.3.3 溫度對滑溜修正因子的變化與介紹...................................................11
2.3.4 慣性衝擊採樣器...................................................................................12
2.3.5 旋風式分徑採樣器...............................................................................12
2.4 溫度對分徑的影響..........................................................................................13
2.4.1 氣體密度、壓力的影響.......................................................................13
2.4.2 氣體黏滯度的影響...............................................................................14
第三章、研究方法 ..................................................................................................... 15
3.1 溫度對微粒分徑參式的影響..........................................................................15
3.1.1 溫度對雷諾數的影響............................................................................15
3.1.2 溫度對史托克數的影響.......................................................................15
3.1.3 溫度對滑溜修正因子的影響...............................................................16
3.2 實驗系統建立..................................................................................................16
3.2.1 標準微粒產生系統...............................................................................16
3.2.2 加熱控制設備.......................................................................................16
3.2.3 冰浴控制設備.......................................................................................17
3.2.4 微粒採樣...............................................................................................17
3.3 溫度對分徑器分徑效率與阻抗的影響..........................................................17
第四章、結果與討論 ................................................................................................. 17
4.1 溫度對微粒分徑參式的影響..........................................................................17
4.1.1 溫度對史托克數的影響.......................................................................17
4.1.2 溫度對雷諾數的影響...........................................................................19
4.1.3 溫度對滑溜修正係數的影響...............................................................19
4.2 溫度對分徑器採樣流率的影響......................................................................20
4.2.1 分徑效率影響.......................................................................................21
4.2.2 採樣流率的比較...................................................................................21
4.3 阻抗影響..........................................................................................................21
4.3.1 過濾品質...............................................................................................22 4
第五章、結論與建議 ................................................................................................. 22
第六章、參考文獻 ..................................................................................................... 23
dc.language.isozh-TW
dc.subject旋風式分徑器zh_TW
dc.subject負載效應zh_TW
dc.subject高溫採樣zh_TW
dc.subject再懸浮zh_TW
dc.subject分徑曲線zh_TW
dc.subjectLoading effecten
dc.subjectHigh temperature samplingen
dc.subjectCyclone separatorsen
dc.subjectResuspensionen
dc.subjectSeparation curveen
dc.title溫度對微粒分徑器截取粒徑的影響zh_TW
dc.titleTemperature effect on the cutoff size of aerosol separatoren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃盛修(Sheng-Hsiu Huang),林志威(Chih-Wei Lin),林文印(Wen-Yin Lin),蕭大智(Ta-Chih Hsiao)
dc.subject.keyword高溫採樣,旋風式分徑器,負載效應,再懸浮,分徑曲線,zh_TW
dc.subject.keywordHigh temperature sampling,Cyclone separators,Loading effect,Resuspension,Separation curve,en
dc.relation.page82
dc.identifier.doi10.6342/NTU202001545
dc.rights.note有償授權
dc.date.accepted2020-07-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
dc.date.embargo-lift2023-08-04-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1507202015325100.pdf
  未授權公開取用
5.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved