請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱雅萍(Ya-Ping Chiu) | |
| dc.contributor.author | Chun-Chih Hsu | en |
| dc.contributor.author | 許鈞智 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:53:36Z | - |
| dc.date.available | 2025-07-20 | |
| dc.date.copyright | 2020-07-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-20 | |
| dc.identifier.citation | Kamerlingh-Onnes, H. Tuyn, W. (1911). Meissner, W. Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften 21, 787-788 (1933). Bardeen, J., Cooper, L. N. Schrieffer, J. R. Theory of superconductivity. Physical review 108, 1175 (1957). Giaever, I. Energy gap in superconductors measured by electron tunneling. Physical Review Letters 5, 147 (1960). Bednorz, J. G. Müller, K. A. Possible highT c superconductivity in the Ba− La− Cu− O system. Zeitschrift für Physik B Condensed Matter 64, 189-193 (1986). Wu, M.-K. et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical review letters 58, 908 (1987). Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179-186 (2015). Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nature Physics 10, 483-495 (2014). Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Phys. 8, 871-876 (2012). Hücker, M. et al. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy. Phys. Rev. B 90, 054514 (2014). Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ. Science 295, 466-469 (2002). Howald, C., Eisaki, H., Kaneko, N., Greven, M. Kapitulnik, A. Periodic density-of-states modulations in superconducting Bi2Sr2CaCu2O8+δ. Phys. Rev. B 67, 014533 (2003). Hamidian, M. H. et al. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state. Nature Physics 12, 150-156 (2015). Robertson, J. A., Kivelson, S. A., Fradkin, E., Fang, A. C. Kapitulnik, A. Distinguishing patterns of charge order: Stripes or checkerboards. Phys. Rev. B 74, 134507 (2006). Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge density wave correlations in YBa₂Cu₃O₆₊ₓ. Phys. Rev. B 90, 054513 (2014). Tabis, W. et al. Synchrotron x-ray scattering study of charge-density-wave order in HgBa 2 CuO 4+ δ. Physical Review B 96, 134510 (2017). Maharaj, A. V., Hosur, P. Raghu, S. Crisscrossed stripe order from interlayer tunneling in hole-doped cuprates. Phys. Rev. B 90, 125108 (2014). Fradkin, E., Kivelson, S. A. Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457-482 (2015). Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007). Barišić, N. et al. Universal quantum oscillations in the underdoped cuprate superconductors. Nature Phys. 9, 761–764 (2013). Doiron-Leyraud, N. et al. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy. Nat. Commun. 6, 6034 (2015). Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr₂₋ₓLaxCuO6+δ. Science 343, 390-392 (2014). Da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393-396 (2014). Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O₆₊ₓ. Science 337, 821-825 (2012). Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012). Blackburn, E. et al. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field}. Phys. Rev. Lett. 110, 137004 (2013). Bluschke, M. et al. Stabilization of three-dimensional charge order in YBa2Cu3O₆₊ₓ via epitaxial growth. Nature communications 9, 2978 (2018). Edwards, H. L., Markert, J. T. de Lozanne, A. L. Energy gap and surface structure of YBa2Cu3O₇₋ₓ probed by scanning tunneling microscopy. Phys. Rev. Lett. 69, 2967–2970 (1992). Derro, D. J. et al. Nanoscale one-dimensional scattering resonances in the CuO chains of YBa2Cu3O₆₊ₓ. Phys. Rev. Lett. 88, 097002 (2002). Wei, J. Y. T., Yeh, N. C., Garrigus, D. F. Strasik, M. Directional tunneling and Andreev reflection on YBa₂Cu₃O7-δ single crystals: Predominance of d-wave pairing symmetry verified with the generalized Blonder, Tinkham, and Klapwijk Theory. Phys. Rev. Lett. 81, 2542–2545 (1998). Yeh, N. C. et al. Evidence of doping-dependent pairing symmetry in cuprate superconductors. Phys. Rev. Lett. 87, 087003 (2001). Chen, C. J., Tsuei, C. C., Watson, T. J. Heights, Y. Topography and local conductance images of YBa2Cu3O7 crystals fractured in ultra high vacuum. Solid State Commun. 71, 33 (1989). Ren M-Q, Y. Y. J. Z. T. Feng, D. L. Possible nodeless superconducting gaps in Bi2Sr2CaCu2O8+δ and YBa2Cu3O₇₋ₓ revealed by cross-sectional scanning tunneling spectroscopy. Chin. Phys. Lett. 33, 127402 (2016). Liang, R., Bonn, D. A. Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O₆₊ₓ single crystals. Phys. Rev. B 73, 180505 (2006). Andersen, N. H. et al. Superstructure formation and the structural phase diagram of YBa2Cu3O₆₊ₓ. Physica C 317, 259-269 (1999). Forgan, E. M. et al. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction. Nat. Commun. 6, 10064 (2015). Comin, R. et al. Broken translational and rotational symmetry via charge stripe order in underdoped YBa2Cu3O6+y. Science 347, 1335–1339 (2015). Wu, T. et al. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy. Nat. Commun. 6, 6438 (2015). Binnig, G., Rohrer, H., Gerber, C. Weibel, E. Surface studies by scanning tunneling microscopy. Physical review letters 49, 57 (1982). Feenstra, R. M., Stroscio, J. A. Fein, A. P. Tunneling spectroscopy of the Si(111)2 × 1 surface. Surface Science 181, 295-306 (1987). Schwingenschlögl, U. Schuster, C. First-principles calculations of electronic states and self-doping effects at a 45° grain boundary in the high temperature YBa2Cu3O7 superconductor. Phys. Rev. Lett. 102, 227002 (2009). Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347 (2010). Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380-1385 (2007). Le Tacon, M. et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nature Phys. 10, 52 (2013). Campi, G. et al. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor. Nature 525, 359 (2015). Maki, M. Layered charge-density waves with nanoscale coherence in YBa2Cu3O7-δ. Phys. Rev. B 72, 024536 (2005). Sefrioui, Z. et al. Crossover from a three-dimensional to purely two-dimensional vortex-glass transition in deoxygenated YBa2Cu3O7-δthin films. Phys. Rev. B 60, 15423–15429 (1999). Choubey, P., Tu, W.-L., Lee, T.-K. Hirschfeld, P. J. Incommensurate charge ordered states in the t– t′– J model. New J. Phys. 19, 013028 (2017). Hartman, S. T. et al. Direct observation of apical oxygen vacancies in the high-temperature superconductor YBa2Cu3O7−x. Physical Review Materials 3, 114806 (2019). McMahon, C. et al. Orbital symmetries of charge density wave order in YBa2Cu3O₆₊ₓ. (2019). Briffa, A. K. R. et al. Fermi surface reconstruction and quantum oscillations in underdoped YBa2Cu3O7-x modeled in a single bilayer with mirror symmetry broken by charge density waves. Phys. Rev. B 93, 094502 (2016). Maharaj, A. V., Zhang, Y., Ramshaw, B. J. Kivelson, S. A. Quantum oscillations in a bilayer with broken mirror symmetry: A minimal model for YBa2Cu3O6+δ. Phys. Rev. B 93, 094503 (2016). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78372 | - |
| dc.description.abstract | 高溫超導已經被發現超過三十年並至今吸引了相當多的研究興趣。然而,由於其本身的不均勻性及複雜的相態,這些材料仍有相當大的研究空間。而要更進一步理解銅氧超導的機制,實空間且高能量解析度的研究是不可或缺的。在近期的研究中,銅氧超導中的電荷有序態(charge order)被認為是主要與超導競爭的重要因子。釔鋇銅氧(YBa2Cu3O6+x),作為高溫超導的里程碑,由於缺乏實空間直接量測電荷有序態的技術,仍有許多不了解之處。 在本研究工作中,藉由剖面式掃描穿隧電子顯微鏡,我們量測到釔鋇銅氧的銅氧面與銅氧鏈的原子解析的電子結構。並且,我們在銅氧的原子面上觀察到不相稱的電荷有序態。我們也同時觀察到電荷有序態區域與超導區域在b-c面上分別共存的現象。除此之外,我們直接觀察到沿c軸的電荷密度波,指出穩定的電子有序態存在於銅氧面與銅氧鍊,並在這兩層有一致的振幅、波長,及能態密度。同時,我們的觀察指出,電子在相鄰層的躍遷過程不只侷限在兩個銅氧面之間,並且也存在於銅氧面與銅氧鏈之間。我們的研究方法提供了探索電荷有序態與超導機制的關聯性的一個新方向。 | zh_TW |
| dc.description.abstract | High-temperature superconductors have been discovered for over 30 years and have drawn considerable research interest. However, due to their intrinsic inhomogeneity and the complex phase diagram, the widely accepted microscopic theory remains a mystery. To fully understand the cuprate superconductors, real-space studies with high energy resolution is strongly required. Recently, charge-ordering (CO) was identified as a key factor in competition with superconductivity in cuprate superconductors. YBa2Cu3O6+x, as a benchmark high-temperature superconductor, remains poorly understood due to the lack of the spatially-resolved technique probing the CO regime. In this thesis, we correlate the atomically-resolved electronic structure of CuO chains and CuO2 planes by using cross-sectional scanning tunneling microscopy. In addition, we observed the incommensurate CO on the Cu-O terminated surface. The separate coexistence of the CO domain and superconducting phase on the b-c plane in YBCO is mapped. Furthermore, our direct observation of CO states along the c direction indicates the formation of CO involves both chain and plane layers with comparable wave amplitude, wavelength, and local density of states. Meanwhile, our observation highlights the hopping process of electrons into the neighboring layers is not only through CuO2 bilayers, but also CuO chain layers. This approach potentially leads a new direction to explore CO correlations in the fundamental mechanism of superconductivity. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:53:36Z (GMT). No. of bitstreams: 1 U0001-2007202011144900.pdf: 7094329 bytes, checksum: cee1323a4c90b8b9756ac5da51ddb255 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 1 誌謝 2 中文摘要 3 ABSTRACT 4 CONTENTS 5 LIST OF FIGURES 7 Chapter 1 Introduction 9 1.1 Superconductivity 9 1.2 High-Temperature Superconductors 10 1.2.1 Basic Properties 11 1.2.2 Charge Density Wave 12 1.3 Background 13 Chapter 2 Materials and Techniques 16 2.1 YBa2Cu3O6+x 16 2.2 Scanning Tunneling Microscopy (STM) 18 2.2.1 Quantum Tunneling Effect 18 2.2.2 Scanning tunneling microscopy and spectroscopy (STM/S) 19 2.2.3 Types of measurements 22 Chapter 3 Experimental Method 24 3.1 Cross-sectional STM 24 3.2 Sample preparation 25 Chapter 4 Experimental Results 27 4.1 Ba-O and Cu-O terminated surface 27 4.2 CDW Region 30 4.3 Energy dependent CDW pattern 35 4.4 Wavelength Distribution 36 4.5 Angular Distribution 38 4.6 CO boundary 39 Chapter 5 Discussion 41 5.1 Interlayer CO correlation 42 5.2 Connection to other experiments 42 Chapter 6 Conclusion 44 Reference 45 | |
| dc.language.iso | en | |
| dc.subject | 銅氧鏈與銅氧面 | zh_TW |
| dc.subject | 超導 | zh_TW |
| dc.subject | 原子解析電子結構 | zh_TW |
| dc.subject | 電荷有序態 | zh_TW |
| dc.subject | 剖面式掃描穿隧電子顯微鏡 | zh_TW |
| dc.subject | Cross-sectional scanning tunneling microscopy | en |
| dc.subject | Charge ordering | en |
| dc.subject | Superconductivity | en |
| dc.subject | Atomically-resolved electronic structure | en |
| dc.subject | Copper-oxide chains and planes | en |
| dc.title | 利用剖面式掃描穿隧電子顯微鏡量測原子解析的不相稱電荷有序態 | zh_TW |
| dc.title | Atomically Resolved Incommensurate Charge Order State Probed by Cross-Sectional Scanning Tunneling Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-1161-0774 | |
| dc.contributor.oralexamcommittee | 李定國(Ting-Kuo Lee),張嘉升(Chia-Seng Chang) | |
| dc.subject.keyword | 電荷有序態,超導,原子解析電子結構,銅氧鏈與銅氧面,剖面式掃描穿隧電子顯微鏡, | zh_TW |
| dc.subject.keyword | Charge ordering,Superconductivity,Atomically-resolved electronic structure,Copper-oxide chains and planes,Cross-sectional scanning tunneling microscopy, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU202001636 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-20 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202011144900.pdf 未授權公開取用 | 6.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
