Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7836
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 朱家瑩(Chia-Ying Chu) | |
dc.contributor.author | Jo-Hsi Huang | en |
dc.contributor.author | 黃若晞 | zh_TW |
dc.date.accessioned | 2021-05-19T17:55:24Z | - |
dc.date.available | 2026-07-14 | |
dc.date.available | 2021-05-19T17:55:24Z | - |
dc.date.copyright | 2016-08-25 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-22 | |
dc.identifier.citation | Chapter 1
Akao, Y., Marukawa, O., Morikawa, H., Nakao, K., Kamei, M., Hachiya, T., and Tsujimoto, Y. (1995). The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res. 55, 3444-3449. Akao, Y., and Nakagawa, Y. (2006). Expression of the DEAD-box/RNA helicase rck/p54 in mouse tissues: implications for heterogeneous protein expression. J. Histochem. Cytochem. 54, 955-960. Akao, Y., Seto, M., Yamamoto, K., Iida, S., Nakazawa, S., Inazawa, J., Abe, T., Takahashi, T., and Ueda, R. (1992). The RCK gene associated with t(11;14) translocation is distinct from the MLL/ALL-1 gene with t(4;11) and t(11;19) translocations. Cancer Res. 52, 6083-6087. Alves-Rodrigues, I., Mas, A., and Diez, J. (2007). Xenopus Xp54 and human RCK/p54 helicases functionally replace yeast Dhh1p in brome mosaic virus RNA replication. J. Virol. 81, 4378-4380. Ament, S.A., Corona, M., Pollock, H.S., and Robinson, G.E. (2008). Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105, 4226-4231. Ament, S.A., Wang, Y., Chen, C.C., Blatti, C.A., Hong, F., Liang, Z.S., Negre, N., White, K.P., Rodriguez-Zas, S.L., Mizzen, C.A., et al. (2012). The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression. PLoS Genet. 8, e1002596. Arribere, J.A., Doudna, J.A., and Gilbert, W.V. (2011). Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol. Cell 44, 745-758. Audhya, A., Hyndman, F., McLeod, I.X., Maddox, A.S., Yates, J.R., 3rd, Desai, A., and Oegema, K. (2005). A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J. Cell Biol. 171, 267-279. Ayache, J., Benard, M., Ernoult-Lange, M., Minshall, N., Standart, N., Kress, M., and Weil, D. (2015). P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol. Biol. Cell 26, 2579-2595. Barbee, S.A., Estes, P.S., Cziko, A.M., Hillebrand, J., Luedeman, R.A., Coller, J.M., Johnson, N., Howlett, I.C., Geng, C., Ueda, R., et al. (2006). Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron 52, 997-1009. Baskin, R., Woods, N.T., Mendoza-Fandino, G., Forsyth, P., Egan, K.M., and Monteiro, A.N. (2015). Functional analysis of the 11q23.3 glioma susceptibility locus implicates PHLDB1 and DDX6 in glioma susceptibility. Sci. Rep. 5, 17367. Beelman, C.A., and Parker, R. (1995). Degradation of mRNA in eukaryotes. Cell 81, 179-183. Bergkessel, M., and Reese, J.C. (2004). An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167, 21-33. Bhandari, D., Raisch, T., Weichenrieder, O., Jonas, S., and Izaurralde, E. (2014). Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev. 28, 888-901. Bilanchone, V., Clemens, K., Kaake, R., Dawson, A.R., Matheos, D., Nagashima, K., Sitlani, P., Patterson, K., Chang, I., Huang, L., et al. (2015). Ty3 Retrotransposon Hijacks Mating Yeast RNA Processing Bodies to Infect New Genomes. PLoS Genet. 11, e1005528. Boag, P.R., Atalay, A., Robida, S., Reinke, V., and Blackwell, T.K. (2008). Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. J. Cell Biol. 182, 543-557. Bono, F., Ebert, J., Lorentzen, E., and Conti, E. (2006). The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713-725. Bowers, H.A., Maroney, P.A., Fairman, M.E., Kastner, B., Luhrmann, R., Nilsen, T.W., and Jankowsky, E. (2006). Discriminatory RNP remodeling by the DEAD-box protein DED1. RNA 12, 903-912. Braun, J.E., Huntzinger, E., Fauser, M., and Izaurralde, E. (2011). GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120-133. Brengues, M., Teixeira, D., and Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-489. Carroll, J.S., Munchel, S.E., and Weis, K. (2011). The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J. Cell Biol. 194, 527-537. Chable-Bessia, C., Meziane, O., Latreille, D., Triboulet, R., Zamborlini, A., Wagschal, A., Jacquet, J.M., Reynes, J., Levy, Y., Saib, A., et al. (2009). Suppression of HIV-1 replication by microRNA effectors. Retrovirology 6, 26. Chahar, H.S., Chen, S., and Manjunath, N. (2013). P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are recruited to WNV replication sites and positively regulate viral replication. Virology 436, 1-7. Chang, H.H., Hemberg, M., Barahona, M., Ingber, D.E., and Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453, 544-547. Chang, L.C., and Lee, F.J. (2012). The RNA helicase Dhh1p cooperates with Rbp1p to promote porin mRNA decay via its non-conserved C-terminal domain. Nucleic Acids Res. 40, 1331-1344. Chatel-Chaix, L., Germain, M.A., Motorina, A., Bonneil, E., Thibault, P., Baril, M., and Lamarre, D. (2013). A host YB-1 ribonucleoprotein complex is hijacked by hepatitis C virus for the control of NS3-dependent particle production. J. Virol. 87, 11704-11720. Checkley, M.A., Nagashima, K., Lockett, S.J., Nyswaner, K.M., and Garfinkel, D.J. (2010). P-body components are required for Ty1 retrotransposition during assembly of retrotransposition-competent virus-like particles. Mol. Cell. Biol. 30, 382-398. Chekulaeva, M., Mathys, H., Zipprich, J.T., Attig, J., Colic, M., Parker, R., and Filipowicz, W. (2011). miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218-1226. Chen, J., Chiang, Y.C., and Denis, C.L. (2002). CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414-1426. Chen, Y., Boland, A., Kuzuoglu-Ozturk, D., Bawankar, P., Loh, B., Chang, C.T., Weichenrieder, O., and Izaurralde, E. (2014). A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 54, 737-750. Cheng, Z., Coller, J., Parker, R., and Song, H. (2005). Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 11, 1258-1270. Cho, Y.J., Kang, W., Kim, S.H., Sa, J.K., Kim, N., Paddison, P.J., Kim, M., Joo, K.M., Hwang, Y.I., and Nam, D.H. (2016). Involvement of DDX6 gene in radio- and chemoresistance in glioblastoma. Int. J. Oncol. 48, 1053-1062. Chu, C.Y., and Rana, T.M. (2006). Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210. Cifuentes-Rojas, C., Hernandez, A.J., Sarma, K., and Lee, J.T. (2014). Regulatory interactions between RNA and polycomb repressive complex 2. Mol. Cell 55, 171-185. Collart, M.A., and Struhl, K. (1994). NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev. 8, 525-537. Coller, J., and Parker, R. (2005). General translational repression by activators of mRNA decapping. Cell 122, 875-886. Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A., and Parker, R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717-1727. Cougot, N., Babajko, S., and Seraphin, B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31-40. Daugeron, M.C., Mauxion, F., and Seraphin, B. (2001). The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 29, 2448-2455. Davidovich, C., Wang, X., Cifuentes-Rojas, C., Goodrich, K.J., Gooding, A.R., Lee, J.T., and Cech, T.R. (2015). Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552-558. Davidovich, C., Zheng, L., Goodrich, K.J., and Cech, T.R. (2013). Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20, 1250-1257. de Valoir, T., Tucker, M.A., Belikoff, E.J., Camp, L.A., Bolduc, C., and Beckingham, K. (1991). A second maternally expressed Drosophila gene encodes a putative RNA helicase of the 'DEAD box' family. Proc. Natl. Acad. Sci. USA 88, 2113-2117. de Vries, S., Naarmann-de Vries, I.S., Urlaub, H., Lue, H., Bernhagen, J., Ostareck, D.H., and Ostareck-Lederer, A. (2013). Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia. J. Biol. Chem. 288, 5815-5827. Decker, C.J., and Parker, R. (1993). A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632-1643. Desouki, M.M., Liao, S., Conroy, J., Nowak, N.J., Shepherd, L., Gaile, D.P., and Geradts, J. (2011). The genomic relationship between primary breast carcinomas and their nodal metastases. Cancer Invest. 29, 300-307. Drummond, S.P., Hildyard, J., Firczuk, H., Reamtong, O., Li, N., Kannambath, S., Claydon, A.J., Beynon, R.J., Eyers, C.E., and McCarthy, J.E. (2011). Diauxic shift-dependent relocalization of decapping activators Dhh1 and Pat1 to polysomal complexes. Nucleic Acids Res. 39, 7764-7774. Dutta, A., Zheng, S., Jain, D., Cameron, C.E., and Reese, J.C. (2011). Intermolecular interactions within the abundant DEAD-box protein Dhh1 regulate its activity in vivo. J. Biol. Chem. 286, 27454-27470. Eichhorn, S.W., Guo, H., McGeary, S.E., Rodriguez-Mias, R.A., Shin, C., Baek, D., Hsu, S.H., Ghoshal, K., Villen, J., and Bartel, D.P. (2014). mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol. Cell 56, 104-115. Ernoult-Lange, M., Baconnais, S., Harper, M., Minshall, N., Souquere, S., Boudier, T., Benard, M., Andrey, P., Pierron, G., Kress, M., et al. (2012). Multiple binding of repressed mRNAs by the P-body protein Rck/p54. RNA 18, 1702-1715. Eulalio, A., Behm-Ansmant, I., Schweizer, D., and Izaurralde, E. (2007a). P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 27, 3970-3981. Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S.F., Doerks, T., Dorner, S., Bork, P., Boutros, M., and Izaurralde, E. (2007b). Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558-2570. Eystathioy, T., Jakymiw, A., Chan, E.K., Seraphin, B., Cougot, N., and Fritzler, M.J. (2003). The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9, 1171-1173. Fabian, M.R., Frank, F., Rouya, C., Siddiqui, N., Lai, W.S., Karetnikov, A., Blackshear, P.J., Nagar, B., and Sonenberg, N. (2013). Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat. Struct. Mol. Biol. 20, 735-739. Fenger-Gron, M., Fillman, C., Norrild, B., and Lykke-Andersen, J. (2005). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905-915. Fischer, N., and Weis, K. (2002). The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788-2797. Gimenez-Barcons, M., Alves-Rodrigues, I., Jungfleisch, J., Van Wynsberghe, P.M., Ahlquist, P., and Diez, J. (2013). The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs. J. Virol. 87, 6192-6200. Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840. Guttman, M., and Rinn, J.L. (2012). Modular regulatory principles of large non-coding RNAs. Nature 482, 339-346. Haas, G., Braun, J.E., Igreja, C., Tritschler, F., Nishihara, T., and Izaurralde, E. (2010). HPat provides a link between deadenylation and decapping in metazoa. J. Cell Biol. 189, 289-302. Haimovich, G., Medina, D.A., Causse, S.Z., Garber, M., Millan-Zambrano, G., Barkai, O., Chavez, S., Perez-Ortin, J.E., Darzacq, X., and Choder, M. (2013). Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 153, 1000-1011. Han, K., Jaimovich, A., Dey, G., Ruggero, D., Meyuhas, O., Sonenberg, N., and Meyer, T. (2014). Parallel measurement of dynamic changes in translation rates in single cells. Nat. Methods 11, 86-93. Hashimoto, K., Nakagawa, Y., Morikawa, H., Niki, M., Egashira, Y., Hirata, I., Katsu, K., and Akao, Y. (2001). Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines. Carcinogenesis 22, 1965-1970. Hata, H., Mitsui, H., Liu, H., Bai, Y., Denis, C.L., Shimizu, Y., and Sakai, A. (1998). Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148, 571-579. Henn, A., Bradley, M.J., and De La Cruz, E.M. (2012). ATP utilization and RNA conformational rearrangement by DEAD-box proteins. Annu Rev Biophys 41, 247-267. Hillebrand, J., Pan, K., Kokaram, A., Barbee, S., Parker, R., and Ramaswami, M. (2010). The Me31B DEAD-Box Helicase Localizes to Postsynaptic Foci and Regulates Expression of a CaMKII Reporter mRNA in Dendrites of Drosophila Olfactory Projection Neurons. Front Neural Circuits 4, 121. Holetz, F.B., Correa, A., Avila, A.R., Nakamura, C.V., Krieger, M.A., and Goldenberg, S. (2007). Evidence of P-body-like structures in Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 356, 1062-1067. Hopkins, K.C., McLane, L.M., Maqbool, T., Panda, D., Gordesky-Gold, B., and Cherry, S. (2013). A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev. 27, 1511-1525. Huang, S. (2009). Reprogramming cell fates: reconciling rarity with robustness. BioEssays 31, 546-560. Huang, S., Eichler, G., Bar-Yam, Y., and Ingber, D.E. (2005). Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94, 128701. Huang, S., Guo, Y.P., May, G., and Enver, T. (2007). Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305, 695-713. Hubstenberger, A., Noble, S.L., Cameron, C., and Evans, T.C. (2013). Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev. Cell 27, 161-173. Huys, A., Thibault, P.A., and Wilson, J.A. (2013). Modulation of hepatitis C virus RNA accumulation and translation by DDX6 and miR-122 are mediated by separate mechanisms. PLoS ONE 8, e67437. Iio, A., Takagi, T., Miki, K., Naoe, T., Nakayama, A., and Akao, Y. (2013). DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim. Biophys. Acta 1829, 1102-1110. Jackson, R.J., Hellen, C.U., and Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113-127. Jangra, R.K., Yi, M., and Lemon, S.M. (2010). DDX6 (Rck/p54) is required for efficient hepatitis C virus replication but not for internal ribosome entry site-directed translation. J. Virol. 84, 6810-6824. Jarmoskaite, I., and Russell, R. (2014). RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83, 697-725. Jonas, S., and Izaurralde, E. (2013). The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev. 27, 2628-2641. Kamenska, A., Lu, W.T., Kubacka, D., Broomhead, H., Minshall, N., Bushell, M., and Standart, N. (2014). Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Res. 42, 3298-3313. Kawahara, C., Yokota, S., and Fujita, H. (2014). DDX6 localizes to nuage structures and the annulus of mammalian spermatogenic cells. Histochem. Cell Biol. 141, 111-121. Kirli, K., Karaca, S., Dehne, H.J., Samwer, M., Pan, K.T., Lenz, C., Urlaub, H., and Gorlich, D. (2015). A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLIfe 4. Kitamura, K., Nakagawa, T., and Shimoda, C. (1990). Novel Sterile Mutants of the Fission Yeast Schizosaccharomyces-Pombe Which Are Defective in Their Response to Starvation. Curr. Genet. 18, 315-321. Koike, N., Yoo, S.H., Huang, H.C., Kumar, V., Lee, C., Kim, T.K., and Takahashi, J.S. (2012). Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349-354. Kruk, J.A., Dutta, A., Fu, J., Gilmour, D.S., and Reese, J.C. (2011). The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 25, 581-593. Kuzuoglu-Ozturk, D., Bhandari, D., Huntzinger, E., Fauser, M., Helms, S., and Izaurralde, E. (2016). miRISC and the CCR4-NOT complex silence mRNA targets independently of 43S ribosomal scanning. EMBO J. 35, 1186-1203. Kwok, C.K., Tang, Y., Assmann, S.M., and Bevilacqua, P.C. (2015). The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci. 40, 221-232. Lackner, D.H., Carre, A., Guzzardo, P.M., Banning, C., Mangena, R., Henley, T., Oberndorfer, S., Gapp, B.V., Nijman, S.M., Brummelkamp, T.R., et al. (2015). A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat Commun 6, 10237. Ladomery, M., Wade, E., and Sommerville, J. (1997). Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Res. 25, 965-973. Leloup, J.-C., Gonze, D., and Goldbeter, A. (2006). Chapter 13 - Computational Models for Circadian Rhythms: Deterministic Versus Stochastic Approaches. In Computational Systems Biology (Burlington: Academic Press), pp. 249-291. Lin, F., Wang, R., Shen, J.J., Wang, X., Gao, P., Dong, K., and Zhang, H.Z. (2008). Knockdown of RCK/p54 expression by RNAi inhibits proliferation of human colorectal cancer cells in vitro and in vivo. Cancer Biol. Ther. 7, 1669-1676. Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505-516. Liu, F., Putnam, A., and Jankowsky, E. (2008). ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl. Acad. Sci. USA 105, 20209-20214. Liu, H.Y., Badarinarayana, V., Audino, D.C., Rappsilber, J., Mann, M., and Denis, C.L. (1998). The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J. 17, 1096-1106. Liu, L., Qi, H., Wang, J., and Lin, H. (2011). PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition. Development 138, 1863-1873. Lowrey, P.L., and Takahashi, J.S. (2004). Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genom. Hum. Genet. 5, 407-441. Lu, D., and Yunis, J.J. (1992). Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. Nucleic Acids Res. 20, 1967-1972. Maekawa, H., Nakagawa, T., Uno, Y., Kitamura, K., and Shimoda, C. (1994). The ste13+ gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 244, 456-464. Maillet, L., and Collart, M.A. (2002). Interaction between Not1p, a component of the Ccr4-not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase. J. Biol. Chem. 277, 2835-2842. Maillet, L., Tu, C., Hong, Y.K., Shuster, E.O., and Collart, M.A. (2000). The essential function of Not1 lies within the Ccr4-Not complex. J. Mol. Biol. 303, 131-143. Mallam, A.L., Del Campo, M., Gilman, B., Sidote, D.J., and Lambowitz, A.M. (2012). Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 490, 121-125. Marnef, A., Weil, D., and Standart, N. (2012). RNA-related nuclear functions of human Pat1b, the P-body mRNA decay factor. Mol. Biol. Cell 23, 213-224. Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E., and Filipowicz, W. (2014). Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 54, 751-765. Matsui, T., Hogetsu, K., Usukura, J., Sato, T., Kumasaka, T., Akao, Y., and Tanaka, N. (2006). Structural insight of human DEAD-box protein rck/p54 into its substrate recognition with conformational changes. Genes Cells 11, 439-452. Matsumoto, K., Kwon, O.Y., Kim, H., and Akao, Y. (2005). Expression of rck/p54, a DEAD-box RNA helicase, in gametogenesis and early embryogenesis of mice. Dev. Dynam. 233, 1149-1156. McMahon, A.C., Rahman, R., Jin, H., Shen, J.L., Fieldsend, A., Luo, W., and Rosbash, M. (2016). TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins. Cell 165, 742-753. Mercer, T.R., and Mattick, J.S. (2013). Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300-307. Minshall, N., Kress, M., Weil, D., and Standart, N. (2009). Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Mol. Biol. Cell 20, 2464-2472. Minshall, N., and Standart, N. (2004). The active form of Xp54 RNA helicase in translational repression is an RNA-mediated oligomer. Nucleic Acids Res. 32, 1325-1334. Minshall, N., Thom, G., and Standart, N. (2001). A conserved role of a DEAD box helicase in mRNA masking. RNA 7, 1728-1742. Mitchell, S.F., Jain, S., She, M., and Parker, R. (2013). Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20, 127-133. Miyaji, K., Nakagawa, Y., Matsumoto, K., Yoshida, H., Morikawa, H., Hongou, Y., Arisaka, Y., Kojima, H., Inoue, T., Hirata, I., et al. (2003). Overexpression of a DEAD box/RNA helicase protein, rck/p54, in human hepatocytes from patients with hepatitis C virus-related chronic hepatitis and its implication in hepatocellular carcinogenesis. J. Viral Hepatitis 10, 241-248. Nakagawa, Y., Morikawa, H., Hirata, I., Shiozaki, M., Matsumoto, A., Maemura, K., Nishikawa, T., Niki, M., Tanigawa, N., Ikegami, M., et al. (1999). Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. Br. J. Cancer 80, 914-917. Nakamura, A., Amikura, R., Hanyu, K., and Kobayashi, S. (2001). Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128, 3233-3242. Nathans, R., Chu, C.Y., Serquina, A.K., Lu, C.C., Cao, H., and Rana, T.M. (2009). Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol. Cell 34, 696-709. Navarro, R.E., Shim, E.Y., Kohara, Y., Singson, A., and Blackwell, T.K. (2001). cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development 128, 3221-3232. Nicklas, S., Okawa, S., Hillje, A.L., Gonzalez-Cano, L., Del Sol, A., and Schwamborn, J.C. (2015). The RNA helicase DDX6 regulates cell-fate specification in neural stem cells via miRNAs. Nucleic Acids Res. 43, 2638-2654. Nishi, K., Nishi, A., Nagasawa, T., and Ui-Tei, K. (2013). Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19, 17-35. Nishimura, T., Padamsi, Z., Fakim, H., Milette, S., Dunham, W.H., Gingras, A.C., and Fabian, M.R. (2015). The eIF4E-Binding Protein 4E-T Is a Component of the mRNA Decay Machinery that Bridges the 5' and 3' Termini of Target mRNAs. Cell Rep. 11, 1425-1436. Nissan, T., Rajyaguru, P., She, M., Song, H., and Parker, R. (2010). Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol. Cell 39, 773-783. Noble, S.L., Allen, B.L., Goh, L.K., Nordick, K., and Evans, T.C. (2008). Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development. J. Cell Biol. 182, 559-572. Oberholzer, U., and Collart, M.A. (1999). In vitro transcription of a TATA-less promoter: negative regulation by the Not1 protein. Biol. Chem. 380, 1365-1370. Ohta, S., Bukowski-Wills, J.C., Sanchez-Pulido, L., Alves Fde, L., Wood, L., Chen, Z.A., Platani, M., Fischer, L., Hudson, D.F., Ponting, C.P., et al. (2010). The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810-821. Ozgur, S., Basquin, J., Kamenska, A., Filipowicz, W., Standart, N., and Conti, E. (2015a). Structure of a Human 4E-T/DDX6/CNOT1 Complex Reveals the Different Interplay of DDX6-Binding Proteins with the CCR4-NOT Complex. Cell Rep. 13, 703-711. Ozgur, S., Buchwald, G., Falk, S., Chakrabarti, S., Prabu, J.R., and Conti, E. (2015b). The conformational plasticity of eukaryotic RNA-dependent ATPases. FEBS J. 282, 850-863. Ozgur, S., Chekulaeva, M., and Stoecklin, G. (2010). Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol. Cell. Biol. 30, 4308-4323. Ozgur, S., and Stoecklin, G. (2013). Role of Rck-Pat1b binding in assembly of processing-bodies. RNA Biol. 10, 528-539. Pan, C., Potratz, J.P., Cannon, B., Simpson, Z.B., Ziehr, J.L., Tijerina, P., and Russell, R. (2014). DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture. PLoS Biol. 12, e1001981. Pelechano, V., Wei, W., and Steinmetz, L.M. (2015). Widespread Co-translational RNA Decay Reveals Ribosome Dynamics. Cell 161, 1400-1412. Pettersson, O.J., Aagaard, L., Andrejeva, D., Thomsen, R., Jensen, T.G., and Damgaard, C.K. (2014). DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1. Nucleic Acids Res. 42, 7186-7200. Presnyak, V., Alhusaini, N., Chen, Y.H., Martin, S., Morris, N., Kline, N., Olson, S., Weinberg, D., Baker, K.E., Graveley, B.R., et al. (2015). Codon optimality is a major determinant of mRNA stability. Cell 160, 1111-1124. Qi, M.Y., Wang, Z.Z., Zhang, Z., Shao, Q., Zeng, A., Li, X.Q., Li, W.Q., Wang, C., Tian, F.J., Li, Q., et al. (2012). AU-rich-element-dependent translation repression requires the cooperation of tristetraprolin and RCK/P54. Mol. Cell. Biol. 32, 913-928. Raisch, T., Bhandari, D., Sabath, K., Helms, S., Valkov, E., Weichenrieder, O., and Izaurralde, E. (2016). Distinct modes of recruitment of the CCR4-NOT complex by Drosophila and vertebrate Nanos. EMBO J. 35, 974-990. Raj, A., and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216-226. Rajyaguru, P., She, M., and Parker, R. (2012). Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Mol. Cell 45, 244-254. Reed, J.C., Molter, B., Geary, C.D., McNevin, J., McElrath, J., Giri, S., Klein, K.C., and Lingappa, J.R. (2012). HIV-1 Gag co-opts a cellular complex containing DDX6, a helicase that facilitates capsid assembly. J. Cell Biol. 198, 439-456. Reppert, S.M., and Weaver, D.R. (2001). Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647-676. Rinn, J.L., and Chang, H.Y. (2012). Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145-166. Robinson, B.A., Reed, J.C., Geary, C.D., Swain, J.V., and Lingappa, J.R. (2014). A temporospatial map that defines specific steps at which critical surfaces in the Gag MA and CA domains act during immature HIV-1 capsid assembly in cells. J. Virol. 88, 5718-5741. Robinson, G.E., Fernald, R.D., and Clayton, D.F. (2008). Genes and social behavior. Science 322, 896-900. Robinson, G.E., Grozinger, C.M., and Whitfield, C.W. (2005). Sociogenomics: social life in molecular terms. Nat. Rev. Genet. 6, 257-270. Rouhana, L., Shibata, N., Nishimura, O., and Agata, K. (2010). Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Dev. Biol. 341, 429-443. Rouya, C., Siddiqui, N., Morita, M., Duchaine, T.F., Fabian, M.R., and Sonenberg, N. (2014). Human DDX6 effects miRNA-mediated gene silencing via direct binding to CNOT1. RNA 20, 1398-1409. Saito, K., Kondo, E., and Matsushita, M. (2011). MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res. 39, 6086-6099. Sauliere, J., Murigneux, V., Wang, Z., Marquenet, E., Barbosa, I., Le Tonqueze, O., Audic, Y., Paillard, L., Roest Crollius, H., and Le Hir, H. (2012). CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol. 19, 1124-1131. Scheller, N., Mina, L.B., Galao, R.P., Chari, A., Gimenez-Barcons, M., Noueiry, A., Fischer, U., Meyerhans, A., and Diez, J. (2009). Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc. Natl. Acad. Sci. USA 106, 13517-13522. Scheper, T., Klinkenberg, D., Pennartz, C., and van Pelt, J. (1999). A mathematical model for the intracellular circadian rhythm generator. J. Neurosci. 19, 40-47. Schmiedel, J.M., Klemm, S.L., Zheng, Y., Sahay, A., Bluthgen, N., Marks, D.S., and van Oudenaarden, A. (2015). Gene expression. MicroRNA control of protein expression noise. Science 348, 128-132. Schutz, P., Bumann, M., Oberholzer, A.E., Bieniossek, C., Trachsel, H., Altmann, M., and Baumann, U. (2008). Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions. Proc. Natl. Acad. Sci. USA 105, 9564-9569. Sharif, H., Ozgur, S., Sharma, K., Basquin, C., Urlaub, H., and Conti, E. (2013). Structural analysis of the yeast Dhh1-Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions. Nucleic Acids Res. 41, 8377-8390. Sheth, U., and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808. Shoemaker, C.J., and Green, R. (2012). Translation drives mRNA quality control. Nat. Struct. Mol. Biol. 19, 594-601. Smillie, D.A., and Sommerville, J. (2002). RNA helicase p54 (DDX6) is a shuttling protein involved in nuclear assembly of stored mRNP particles. J. Cell Sci. 115, 395-407. Stampfl, S., Doetsch, M., Beich-Frandsen, M., and Schroeder, R. (2013). Characterization of the kinetics of RNA annealing and strand displacement activities of the E. coli DEAD-box helicase CsdA. RNA Biol. 10, 149-156. Storch, K.F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F.C., Wong, W.H., and Weitz, C.J. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78-83. Strahl-Bolsinger, S., and Tanner, W. (1993). A yeast gene encoding a putative RNA helicase of the 'DEAD'-box family. Yeast 9, 429-432. Sweet, T., Kovalak, C., and Coller, J. (2012). The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol. 10, e1001342. Tanaka, K.J., Ogawa, K., Takagi, M., Imamoto, N., Matsumoto, K., and Tsujimoto, M. (2006). RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes. J. Biol. Chem. 281, 40096-40106. Taniguchi, K., Sugito, N., Kumazaki, M., Shinohara, H., Yamada, N., Matsuhashi, N., F | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7836 | - |
dc.description.abstract | 對生物而言,受控制的基因表現是至關重要的。基因表現的控制部分有賴後轉錄(Post-transcriptional)調控者,包括DEAD-box protein 6 (DDX6)。DDX6最廣為所知的是它參與RNA代謝(RNA turnover)以及轉譯抑制(translational repression)。本研究中,我們關注DDX6在基因表現調控中所扮演的角色與其在細胞內的分佈、分佈的調控機制、及其生物意義。於第一章,我們闡述了DDX6於基因表現及其調控中的意義,並由此展開DDX6的基礎生化性質、在細胞內的功能、以及其對表型的(phenotypic)影響。第二章包括我們對於DDX6的細胞核質(nucleocytoplasmic)分佈的研究。深入地檢視現行的假說,並以分子生物以及蛋白結構的證據予以反駁。我們的結果更顯示DDX6可以藉由另外兩種並存的機制分布到細胞核與細胞質之中。第三章描述我們對於DDX6的基因表現調控的研究。我們利用整合性的功能性基因體學的方法,來探討DDX6對於核糖核酸 (RNA)及蛋白質表現的調控以及其規模與侷限。我們首先指出DDX6在細胞內能結合信使核糖核酸(messenger RNA)以及長片段非編碼核糖核酸(long noncoding RNA)。不若一般的期待,我們發現在HeLa細胞株中DDX6並不顯著地影響整體的核糖核酸及蛋白質表現量。相反地,我們觀察到DDX6調控基因表現雜訊(gene expression noise)的證據。因此,我們的實驗結果提供對於DDX6的基因表現調控的新觀點。第四章描述了我們對於DDX6的入核機制更進一步的實驗結果。這些結果或能引導未來的研究。 | zh_TW |
dc.description.abstract | Well-tuned gene expression is essential for life and is in part secured by the post-transcriptional regulators. DEAD-box protein 6 (DDX6) is one such regulator. DDX6 is best known for its participation in RNA turnover and translational repression. In this study, we focus on the roles of DDX6 in regulating gene expression and on the subcellular localization of DDX6, and its regulation, as well as its functional implications. In the first chapter, we elaborated a logical sequence to locate the niche of DDX6 in the context of gene expression and regulation. On this basis, we further expounded the fundamental biochemical properties of DDX6, its functional roles in the cells, and their phenotypic consequences. The second chapter includes our investigation on the governing mechanism of the nucleocytoplasmic distribution of DDX6. We scrutinized the working hypothesis and refuted it with molecular and structural evidence. We further demonstrated that two parallel mechanisms direct the nucleocytoplasmic distribution of DDX6. The third chapter includes our investigation on the regulation of gene expression by DDX6. We adopted an integrative functional genomics approach to investigate the size and the extent of the DDX6-mediated regulation on RNA and protein expression. We first demonstrated that DDX6 binds both the messenger RNA and the long noncoding RNA. In contrast our original expectation, we did not observe significant regulation over the RNA or the protein expression levels by DDX6 in the HeLa cell line. Notwithstanding, we provided evidence that DDX6 regulates gene expression noise. Thus, our results provide a new perspective on the gene regulation by DDX6. The fourth chapter includes the further experimental results related to the nuclear entry mechanism of DDX6. The results described therein may guide further investigations in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:55:24Z (GMT). No. of bitstreams: 1 ntu-105-R02b21008-1.pdf: 16606450 bytes, checksum: fa351c7bcdb0f2545c4866868647a698 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試審定書 i
Acknowledgement iii 摘要 v Abstract vii I. Chapter 1 1. Abstract 1 2. Gene expression and post-transcriptional regulation 1 2.1. Gene expression 1 2.2. Post-transcriptional regulation 3 3. DEAD-box proteins 6 3.1. Basic properties of the DEAD-box proteins 6 3.2. DEAD-box proteins as RNA chaperones and RNP remodelers 9 4. DEAD-box protein 6 12 4.1. A brief introduction to the DDX6 subfamily proteins 12 4.2. Identification and characterization of the DDX6 homologs 13 4.3. DDX6 in post-transcriptional gene silencing 20 4.4. The ATPase activity of DDX6 26 4.5. The RNA binding activity of DDX6 28 4.6. The cytoplasmic localization of DDX6 35 4.7. The nuclear localization of DDX6 36 4.8. Future perspectives 41 5. Tables 45 6. References 55 II. Chapter 2 1. Abstract 74 2. Introduction 74 3. Materials and methods 76 3.1. Cell culture and transfection 76 3.2. Drug treatments for CRM1 inhibition and cell cycle synchronization 77 3.3. Plasmid sources, molecular cloning, and fusion protein construction 77 3.4. Immunofluorescence (IF) and fluorescent in situ hybridization (FISH) 78 3.5. Microscopy, image processing, and analysis 79 3.6. Whole cell, nuclear, and cytoplasmic protein extraction 80 3.7. RNA co-immunoprecipitation (RIP) 81 3.8. Western blot (WB) 82 3.9. RNA extraction, reverse transcription, and quantitative real-time PCR (qPCR) 82 3.10. Quantitative mass spectrometry (MS) and data analysis 83 3.11. Protein structures and NLS prediction 83 4. Results 84 4.1. DDX6 is present in the human cell nuclei 84 4.2. DDX6 binds the nuclear lncRNA MALAT1 85 4.3. DDX6 is insensitive to the LMB treatment 85 4.4. The putative NES of DDX6 is structurally inaccessible to CRM1 86 4.5. The putative NLS, miRISC, and MALAT1 are dispensable for the nuclear entry of DDX6 88 4.6. The CTD of DDX6 drives nuclear localization 89 4.7. The CTD of DDX6 binds to the condensed chromosomes during mitosis 91 4.8. The CTD of DDX6 facilitates nuclear entry by hitchhiking on the condensed chromosomes during mitosis 92 4.9. 4E-T can mediate piggyback shuttling of DDX6 92 5. Discussion 94 5.1. The widespread nuclear localization of DDX6 94 5.2. On the nucleocytoplasmic shuttling model of DDX6 96 5.3. The alternative mechanisms for the nucleocytoplasmic distribution of DDX6: A new synthesis 97 6. Figures 100 7. References 132 III. Chapter 3 1. Abstract 138 2. Introduction 138 3. Materials and methods 140 3.1. Cell culture and siRNA transfection 140 3.2. RNA co-immunoprecipitation (RIP) 141 3.3. RNA extraction, reverse transcription, and quantitative real-time PCR (qPCR) 141 3.4. Protein extraction and Western blot (WB) 142 3.5. Polysome fractionation and profiling 142 3.6. RIP-seq and RNA-seq sample preparation and data acquisition 143 3.7. RIP-seq and RNA-seq data analysis 144 3.8. Quantitative MS sample preparation and data acquisition 145 3.9. MS data analysis 146 4. Results 146 4.1. DDX6 binds both the mRNA and the lncRNA in human cell lines 146 4.2. DDX6 binds the RNA localized in different subcellular compartments 147 4.3. DDX6 has limited effect on the overall RNA expression level 149 4.4. DDX6 regulates the expression noise of its target RNA 151 4.5. DDX6 has limited effect on the overall protein expression level 152 4.6. DDX6 regulates the protein expression noise of its bound mRNA 154 4.7. DDX6 has limited effect on the polysome occupancy 155 4.8. DDX6-regulated RNA and protein expression are weakly coupled 155 5. Discussions 156 5.1. A generalization of the concept of the DDX6’s RNA binding activity 156 5.2. On the role of DDX6 in regulating RNA and protein expression 158 5.3. On the role of DDX6 in cell fate maintenance, specifications, and responses to stimuli: Under the “cell fate attractor” theory 162 6. Figures 165 7. References 205 IV. Chapter 4 1. Abstract 213 2. Introduction 213 3. Materials and methods 214 3.1. Molecular cloning 214 3.2. Cell culture and plasmid transfection 214 3.3. Sample preparation and microscopy 214 3.4. Image analysis 215 3.5. Protein sequence and structural analysis 216 4. Results 217 4.1. A semi-automatic workflow for the imaging-based analysis of the nucleocytoplasmic distribution 217 4.2. Time-dependent phenotypic shift in the cells expressing YFP-PKM-DDX6 CTD 218 4.3. The nucleocytoplasmic localization of the DDX6 homologs CTD 219 4.4. Mutational analysis of the DDX6 CTD motifs 220 5. Discussion 220 6. Figures 223 7. References 236 V. Appendices 1. List of quantitative PCR primer sets 238 2. List of small interfering RNA oligonucleotides 239 3. List of antibodies for Western blot 240 4. List of antibodies for immunofluorescence 241 5. List of antibodies for immunoprecipitation 242 6. List of expression vectors and constructs 243 | |
dc.language.iso | en | |
dc.title | DEAD-box Protein 6的分子生物學探討 | zh_TW |
dc.title | Molecular Interrogation of DEAD-box Protein 6 | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張典顯(Tien-Hsien Chang),黃怡萱(Yi-Shuian Huang) | |
dc.subject.keyword | 基因表現,後轉錄調控,基因靜默,DEAD-box protein,DDX6,核質分布,入核信號,出核信號,信使核糖核酸,長片段非編碼核糖核酸,基因表現雜訊, | zh_TW |
dc.subject.keyword | Gene expression,post-transcriptional regulation,DEAD-box proteins,DDX6,nucleocytoplasmic distribution,nuclear localization signal,nuclear export signal,messenger RNA,long noncoding RNA,gene expression noise, | en |
dc.relation.page | 244 | |
dc.identifier.doi | 10.6342/NTU201603271 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-08-22 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
dc.date.embargo-lift | 2026-07-14 | - |
Appears in Collections: | 生命科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-105-1.pdf Until 2026-07-14 | 16.22 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.