Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單偉彌(Vianney Denis)
dc.contributor.authorWan-Chien Hsiaoen
dc.contributor.author蕭菀謙zh_TW
dc.date.accessioned2021-07-11T14:53:21Z-
dc.date.available2021-07-31
dc.date.copyright2020-08-03
dc.date.issued2020
dc.date.submitted2020-07-22
dc.identifier.citationAnthony KR, Connolly SR (2004) Environmental limits to growth: physiological niche boundaries of corals along turbidity–light gradients. Oecologia 141:373-384
Bauman AG, Feary DA, Heron SF, Pratchett MS, Burt JA (2013) Multiple environmental factors influence the spatial distribution and structure of reef communities in the northeastern Arabian Peninsula. Mar Pollut Bull 72:302-312
Bellwood DR, Hughes TP (2001) Regional-scale assembly rules and biodiversity of coral reefs. Science 292:1532-1535
Bessell-Browne P, Negri AP, Fisher R, Clode PL, Duckworth A, Jones R (2017) Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments. Mar Pollut Bull 117:161-170
Biondini ME, Mielke PW, Berry KJ (1988) Data-dependent permutation techniques for the analysis of ecological data. Vegetatio 75:161-168
Bo M, Bertolino M, Borghini M, Castellano M, Harriague AC, Di Camillo CG, Gasparini G, Misic C, Povero P, Pusceddu A (2011) Characteristics of the mesophotic megabenthic assemblages of the Vercelli seamount (North Tyrrhenian Sea). PLoS One 6:e16357
Borcard D, Gillet F, Legendre P (2018) Multivariate Regression Trees: Constrained Clustering Numerical ecology with R. Springer, pp 99-108
Breiman L (1984) Classification and regression trees. Wadsworth International Group, Belmont, California
Bridge T, Fabricius K, Bongaerts P, Wallace C, Muir P, Done T, Webster J (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31:179-189
Burnett W, Aggarwal P, Aureli A, Bokuniewicz H, Cable J, Charette M, Kontar E, Krupa S, Kulkarni K, Loveless A (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498-543
Burt J, Al-Harthi S, Al-Cibahy A (2011) Long-term impacts of coral bleaching events on the world’s warmest reefs. Mar Environ Res 72:225-229
Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3:1-27
Chadwick NE, Morrow KM (2011) Competition among sessile organisms on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral Reefs: an ecosystem in transition. Springer, pp347-371
Chen CA (2014) Status of Coral Reefs in East and North Asia : Taiwan. In: Kimura T, Tun K, Chou LM (eds) Status of Coral Reefs in East Asian Seas Region: 2014. Global Coral Reef Monitoring Network. Ministry of the Environment, Japan 69-78
Chen JL, Yeh HJ (2018) Conflicts between local fisheries and recreational activities in an no-take zone (NTZ) of Taiwan: Perspectives of multiple stakeholders. 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO):1-5
Connell JH, Hughes TP, Wallace CC, Tanner JE, Harms KE, Kerr AM (2004) A long‐term study of competition and diversity of corals. Ecol Monogr 74:179-210
Crossland C, Smith S (1983) Latitudinal limits of coral reef growth. Mar Ecol Prog Ser 11:105-111
Dai CF (2011) Eco-tourism map of coral reefs in Taiwan (In Chinese). Commonwealth Publishing Co., Ltd, Taiwan
Dai CF, Soong K, Chen CA, Hwang JS, Fan TY, Hsieh HY, Chang JS (2002) The status of coral reefs in Taiwan and the conservation problems. Proceedings of the IUCN/WCPA EA4 Taipei Conference, Taipei, Taiwan:265-276
Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Cote IM, Bellwood D (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378-1386
De'Ath G (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83:1105-1117
De’Ath G (2007) Mvpart: multivariate partitioning R package version 1.2–6 Rpart by TM Therneau and B Atkinson R port of rpart by B Ripley Some routines from vegan by J Oksanen
Dean AJ, Steneck RS, Tager D, Pandolfi JM (2015) Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef. Coral Reefs 34:581-594
Denis V, Soto D, De Palmas S, Lin YTV, Benayahu Y, Huang YM, Liu S, Chen J, Chen Q, Sturaro N, Ho M, Su Y, Dai CF, Chen CA (2019) Taiwan. In: Loya Y, Puglise KA, Bridge TC (eds) Mesophotic coral ecosystems Springer, Cham,Switzerland, pp249-264
Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247:121-132
Done TT (2011) Corals: environmental controls on growth. In: Hopely D (ed) Encyclopedia of Modern Coral Reefs, pp281-293
Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345-366
Ennis RS, Brandt ME, Grimes KRW, Smith TB (2016) Coral reef health response to chronic and acute changes in water quality in St. Thomas, United States Virgin Islands. Mar Pollut Bull 111:418-427
Evans S, Abdo D (2010) A cost-effective technique for measuring relative water movement for studies of benthic organisms. Mar Freshw Res 61:1327-1335
Fabricius K, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science (AIMS)
Field CB (2014) Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects. Cambridge University Press, Cambridge, England
Field ME, Chezar H, Storlazzi CD (2012) SedPods: a low-cost coral proxy for measuring net sedimentation. Coral Reefs 32:155-159
Gori A, Rossi S, Berganzo E, Pretus JL, Dale MR, Gili JM (2011) Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata, and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar Biol 158:143-158
Hallock P, Schlager W (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios:389-398
Hédouin L, Pilon R, Puisay A (2015) Hyposalinity stress compromises the fertilization of gametes more than the survival of coral larvae. Mar Environ Res 104:1-9
Ho MJ, Dai CF (2014) Coral recruitment of a subtropical coral community at Yenliao Bay, northern Taiwan. Zool Stud 53:5
Hoegh-Guldberg O, Poloczanska E, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158
Hoey AS, Pratchett MS, Cvitanovic C (2011) High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages. PLoS One 6:e25824
Huang SF (1999) Floristic Studies on the Benthic Marine Algae of Northeastern Taiwan. Taiwania 44:271-298
Huang SF (2000) Seaweeds of Northeastern Taiwan. National Taiwan Museum, Taipei
Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193-218
Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017) Coral reefs in the Anthropocene. Nature 546:82-90
Kahng S, Copus J, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72-81
Kassambara A, Mundt F (2017) Package ‘factoextra’ Extract and visualize the results of multivariate data analyses
Kim G, Ryu JW, Yang HS, Yun ST (2005) Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: Implications for global silicate fluxes. Earth Planet Sci Lett 237:156-166
Kleypas J, Mcmanus J, Menez L (1999) Environmental Limits to Coral Reef Development: Where Do We Draw the Line? Am Zool 39:146-159
Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259-1269
Komyakova V, Jones GP, Munday PL (2018) Strong effects of coral species on the diversity and structure of reef fish communities: A multi-scale analysis. PloS One 13:e0202206
Kostylev VE, Erlandsson J, Ming MY, Williams GA (2005) The relative importance of habitat complexity and surface area in assessing biodiversity: fractal application on rocky shores. Ecological Complexity 2:272-286
Lantz C, Atkinson M, Winn C, Kahng S (2014) Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs 33:105-115
Laverick JH, Andradi-Brown DA, Rogers AD (2017) Using light-dependent scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras. PLoS One 12:e0183075
Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271-280
Lesser MP, Slattery M, Laverick JH, Macartney KJ, Bridge TC (2019) Global community breaks at 60 m on mesophotic coral reefs. Glob Ecol Biogeogr 28:1403-1416
Lin SM, Tseng LC, Ang PO, Bolton J, Liu LC (2018) Long-term study on seasonal changes in floristic composition and structure of marine macroalgal communities along the coast of Northern Taiwan, southern East China Sea. Mar Biol 165:83
Lin YV, Denis V (2019) Acknowledging differences: number, characteristics, and distribution of marine benthic communities along Taiwan coast. Ecosphere 10:e02803
Littler MM, Littler DS (2013) The nature of crustose coralline algae and their interactions on reefs. In: Lang MA, Marinelli RL, Roberts SJ, Taylor PR (eds) Research and Discoveries: The Revolution of Science through Scuba, pp199-212
Lowe RJ, Falter JL (2015) Oceanic forcing of coral reefs. Ann Rev Mar Sci 7:43-66
Lugo-Fernández A, Gravois M (2010) Understanding impacts of tropical storms and hurricanes on submerged bank reefs and coral communities in the northwestern Gulf of Mexico. Cont Shelf Res 30:1226-1240
Luo MB, Liu F (2011) Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva prolifera. J Exp Mar Bio Ecol 409:223-228
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1:281-297
Matheus Z, Francini-Filho RB, Pereira-Filho GH, Moraes FC, Moura RL, Brasileiro PS, Amado-Filho GM (2019) Benthic reef assemblages of the Fernando de Noronha Archipelago, tropical South-west Atlantic: Effects of depth, wave exposure and cross-shelf positioning. PLoS One 14:e0210664
McClanahan T, Sala E, Stickels P, Cokos B, Baker AC, Starger C, Jones Iv S (2003) Interaction between nutrients and herbivory in controlling algal communities and coral condition on Glover¹s Reef, Belize. Mar Ecol Prog Ser 261:135-147
McCook L, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400-417
McManus JW, Polsenberg JF (2004) Coral–algal phase shifts on coral reefs: ecological and environmental aspects. Prog Oceanogr 60:263-279
Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D Vegan: Community Ecology Package. R package version 2.4-5. 2017
Ouellette M, Legendre P (2013) MVPARTwrap: Additional features for package mvpart. R package version 0.1-9.2
Perdue EM, Koprivnjak JF (2007) Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuar Coast Shelf Sci 73:65-72
Perry C, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427-432
Pineda MC, Strehlow B, Sternel M, Duckworth A, Den Haan J, Jones R, Webster NS (2017) Effects of sediment smothering on the sponge holobiont with implications for dredging management. Sci Rep 7:1-15
R core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Ribas-Deulofeu L, Denis V, De Palmas S, Kuo CY, Hsieh HJ, Chen CA (2016) Structure of Benthic Communities along the Taiwan Latitudinal Gradient. PLoS One 11:e0160601
Ritson-Williams R, Arnold SN, Fogarty ND, Steneck RS, Vermeij MJ, Paul VJ (2009) New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci 38:437
Roberts DW (2007) labdsv: Ordination and multivariate analysis for ecology R package version
Rodgers KS, Jokiel PL, Brown EK, Hau S, Sparks R (2015) Over a decade of change in spatial and temporal dynamics of hawaiian coral reef communities. Pacific Science 69
Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185-202
Rooney J, Donham E, Montgomery A, Spalding H, Parrish F, Boland R, Fenner D, Gove J, Vetter O (2010) Mesophotic coral ecosystems in the Hawaiian Archipelago. Coral Reefs 29:361-367
Schoepf V, Stat M, Falter JL, McCulloch MT (2015) Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Sci Rep 5:1-14
Sheppard C, Davy S, Pilling G, Graham N (2017) The biology of coral reefs. Oxford University Press
Shimokawa S, Murakami T, Ukai A, Kohno H, Mizutani A, Nakase K (2014) Relationship between coral distributions and physical variables in Amitori Bay, Iriomote Island, Japan. J Geophys Res Oceans 119:8336-8356
Solandt J, Campbell AC (2001) Macroalgal feeding characteristics of the sea urchin Diadema antillarum Philippi at Discovery Bay, Jamaica. Caribbean Journal of Science 37:227-238
Sommer B, Harrison PL, Beger M, Pandolfi JM (2014) Trait‐mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95:1000-1009
Spalding M, Burke L, Wood SA, Ashpole J, Hutchison J, zu Ermgassen P (2017) Mapping the global value and distribution of coral reef tourism. Mar Policy 82:104-113
Staniczenko PP, Sivasubramaniam P, Suttle KB, Pearson RG (2017) Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks. Ecol Lett 20:693-707
Takeshita Y, Cyronak T, Martz TR, Kindeberg T, Andersson AJ (2018) Coral reef carbonate chemistry variability at different functional scales. Front Mar Sci 5:175
Tâmega FT, Figueiredo MA (2019) Colonization, Growth and Productivity of Crustose Coralline Algae in Sunlit Reefs in the Atlantic Southernmost Coral Reef. Front Mar Sci 6:81
Tanaka Y, Miyajima T, Watanabe A, Nadaoka K, Yamamoto T, Ogawa H (2011) Distribution of dissolved organic carbon and nitrogen in a coral reef. Coral Reefs 30:533-541
Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1-103
Van der Meij SE, Hoeksema BW (2010) Long-term changes in coral assemblages under natural and anthropogenic stress in Jakarta Bay (1920–2005). Mar Pollut Bull 60:1442-1454
Van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67-76
Vermeij M, Dailer M, Smith C (2011) Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs. Mar Ecol Prog Ser 422:1-7
Wang J, Chern C, Jan S, Yang Y, Chen S, Chang M, Chiou M, Kuo T, Kuo C (2014) Overview of seawater movement Regional oceanography of Taiwan. National Taiwan University, Taipei,Taiwan., pp123-240
Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK, Iglesias-Prieto R, Palmer C, Bythell JC, Ortiz J-C (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 62:205-215
Williams GJ, Smith JE, Conklin EJ, Gove JM, Sala E, Sandin SA (2013) Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ 1:e81
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78367-
dc.description.abstract全球環境尺度下,人為活動及氣候變遷對熱帶珊瑚礁生態系的未來造成莫大的影響。區域環境尺度下,周遭環境使得不同群聚間存在些微的差異,因此對於環境的改變也有不同的靈敏度。儘管非生物性環境因子對於這些群聚有重要意義, 但先前的研究多著重於相變而忽略了環境因子在小尺度範圍下的影響。
本研究目的為探討不同底棲群聚與其對應的環境條件(如:物理、化學、及地質因子)之間的關係,並探討群聚組成會受哪些決定性環境因子影響。實驗地點為台灣東北角10個樣點(5個地點X 2個深度)以形態功能群(morpho-functional group)為區分方式進行底棲群聚調查及周遭環境因子資料蒐集。藉由兩種方法,(1)非監督式k均質集群分析(Unsupervised k-means clustering) 和 (2)監督式多變項回歸樹分析 (Supervised Multivariate Regression Tree, MRT)探討決定性環境因子與底棲群聚之間的關聯,並比較兩種方法的差異性和檢驗非監督式k均質集群分析對於環境因子的預測力是否準確 。
研究結果顯示殼狀珊瑚藻 (Crustose coralline algae, CCA) 在本研究實驗地點中有約一半的覆蓋率,為東北角相對優勢的形態功能群。其他形態功能群在實驗地點間擁有較大的標準差, 表示在各個樣點有不同的覆蓋率。化學因子在深度以及地點間並無明顯的差異,波浪(wave motion)強度及底質的不同在兩種分析方法中解釋了大部分的群聚差異,可視為東北角的決定性環境因子。MRT 和 k-means 的分群結果獲得0.82的調整蘭德指數 (Adjusted Rand Index),顯示兩種分析方法所獲得的結果有高度的相似性,也間接證實了非監督式學習方法對於相對應環境因子的高度預測能力。本研究所獲得的結論除了能夠評估未來群聚潛在的動態變化之外, 也可以對海洋沿岸底棲群聚的保育及管理有所幫助。
zh_TW
dc.description.abstractOn a global scale, human activities and their effects on climate jeopardized the future of tropical reef ecosystems. On a regional scale, sensitivity difference could exist among communities that may originate from how they are locally shaped by environmental conditions. However, despite the possible importance of these abiotic factors, relatively few studies have focused on how they could influence benthic communities on a small spatial scale.
Here, I propose to uncover the determinism of marine coastal benthic communities by a detailed investigation of their response to small-scale modification of the environmental conditions including physical, chemical, and geological factors. At ten locations (confounding site and depth) in Northern Taiwan (NT), benthic communities were delineated using a morpho-functional classification of the organisms observed on photo-transects. k-means clustering was used to identify k homogenous groups among transects assuming it can ascertain the diversity of communities present. Their environmental determinism was later examined by combining this result with 16 environmental variables of transect conditions into a regression tree (RT) framework. Biotic and abiotic information were further analyzed with a Multivariate Regression Tree (MRT) to figure out the hierarchical environmental determinism. The classifications produced by both approach were compared using the Adjusted Rand index (ARI) to assess the predictive power of unsupervised clustering (UC) on its missing explanatory components (abiotic variables).
Crustose coralline algae (CCA) was dominant in NT and represented consistently about half of the benthic cover. Other morpho-functional categories presented high deviation across NT suggesting various cover among locations. Both MRT and k-means produce 5 communities with a similarity of 0.82 in ARI. Chemical factors in this study were quite unanimous and did not stand out as determinism while wave motion followed by substrate type resolves most of the variance. The high value in ARI and comparable structure between MRT and RT concluded that the community itself may inform us of the environmental conditions it is thriving in.
A greater consideration of these different communities and their environmental context is important to determine their trajectories under global change. Expansion of our analytical work will have implications with further potential ramifications on their dynamics.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:53:21Z (GMT). No. of bitstreams: 1
U0001-2107202014265400.pdf: 2242428 bytes, checksum: 9cd69bff7dbd3964d455d647cf02f5ff (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
Abstract iii
中文摘要 v
Contents vi
Introduction 1
Materials and Methods 4
Study locations 4
Benthic surveys 5
Abiotic surveys 6
Data analysis 8
Results 11
Discussion 14
References 20
List of figures 28
List of tables 36
Supplementary information 41
dc.language.isoen
dc.subject監督式學習zh_TW
dc.subject環境因子zh_TW
dc.subject非監督式學習zh_TW
dc.subject底棲群聚zh_TW
dc.subject生態系zh_TW
dc.subjectEcosystemsen
dc.subjectBenthic communityen
dc.subjectEnvironmental determinismen
dc.subjectAbiotic factorsen
dc.subjectUnsupervised clusteringen
dc.subjectSupervised clusteringen
dc.title北台灣底棲群聚與環境因子間的關聯zh_TW
dc.titleEnvironmental factors determining benthic communities in northern Taiwanen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-6747-1216
dc.contributor.advisor-orcid單偉彌(0000-0002-0914-5586)
dc.contributor.oralexamcommittee戴昌鳳(Chang-Feng Dai),樊同雲(Tung-Yung Fan),野澤洋耕(Yoko Nozawa),林卉婷(Huei-Ting Lin)
dc.contributor.oralexamcommittee-orcid戴昌鳳(0000-0003-2242-5643),野澤洋耕(0000-0001-6124-6045),林卉婷(0000-0003-3754-6739)
dc.subject.keyword底棲群聚,環境因子,非監督式學習,監督式學習,生態系,zh_TW
dc.subject.keywordBenthic community,Environmental determinism,Abiotic factors,Unsupervised clustering,Supervised clustering,Ecosystems,en
dc.relation.page51
dc.identifier.doi10.6342/NTU202001692
dc.rights.note有償授權
dc.date.accepted2020-07-23
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
U0001-2107202014265400.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved