請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78365
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建彰(Jian-Zhang Chen) | |
dc.contributor.author | Pei-Yu Cheng | en |
dc.contributor.author | 鄭珮妤 | zh_TW |
dc.date.accessioned | 2021-07-11T14:53:15Z | - |
dc.date.available | 2024-07-22 | |
dc.date.copyright | 2020-07-31 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-27 | |
dc.identifier.citation | [1] J. W. Yeh et al., 'Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,' (in English), Advanced Engineering Materials, vol. 6, no. 5, pp. 299-303, May 2004. [2] Y. F. Kao, T. J. Chen, S. K. Chen, and J. W. Yeh, 'Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys,' Journal of Alloys and Compounds, vol. 488, no. 1, pp. 57-64, 2009. [3] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, 'Microstructural development in equiatomic multicomponent alloys,' Materials Science and Engineering: A, vol. 375-377, pp. 213-218, 2004. [4] H. Luo, Z. Li, A. M. Mingers, and D. Raabe, 'Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution,' Corrosion Science, vol. 134, pp. 131-139, 2018. [5] J. Y. He et al., 'Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys,' Intermetallics, vol. 79, pp. 41-52, 2016. [6] S.-M. Na, J.-H. Yoo, P. K. Lambert, and N. J. Jones, 'Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys,' AIP Advances, vol. 8, no. 5, 2018. [7] A. S. Rogachev et al., 'Structure and properties of equiatomic CoCrFeNiMn alloy fabricated by high-energy ball milling and spark plasma sintering,' Journal of Alloys and Compounds, vol. 805, pp. 1237-1245, 2019. [8] T. Lu, W. Chai, T. Dai, and Y. Pan, 'FeCoNiCr0.5Alx High-Entropy Alloys with Dual-Phase Solidification Microstructure and High Compressive Properties,' Jom, vol. 71, no. 10, pp. 3460-3465, 2019. [9] J. Y. He, H. Wang, Y. Wu, X. J. Liu, T. G. Nieh, and Z. P. Lu, 'High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy,' Materials Science and Engineering: A, vol. 686, pp. 34-40, 2017. [10] W. H. Liu, T. Yang, and C. T. Liu, 'Precipitation hardening in CoCrFeNi-based high entropy alloys,' Materials Chemistry and Physics, vol. 210, pp. 2-11, 2018. [11] P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, and M. Garuti, 'Microwave processing of high entropy alloys: A powder metallurgy approach,' Chemical Engineering and Processing: Process Intensification, vol. 122, pp. 397-403, 2017. [12] Z. Wu, H. Bei, F. Otto, G. M. Pharr, and E. P. George, 'Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys,' Intermetallics, vol. 46, pp. 131-140, 2014. [13] W. Kai et al., 'Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700–900 °C,' Corrosion Science, vol. 121, pp. 116-125, 2017. [14] X.-w. Qiu, M.-j. Wu, C.-g. Liu, Y.-p. Zhang, and C.-x. Huang, 'Corrosion performance of Al2CrFeCoxCuNiTi high-entropy alloy coatings in acid liquids,' Journal of Alloys and Compounds, vol. 708, pp. 353-357, 2017. [15] N. Kumar, M. Fusco, M. Komarasamy, R. S. Mishra, M. Bourham, and K. L. Murty, 'Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy,' Journal of Nuclear Materials, vol. 495, pp. 154-163, 2017. [16] D. M. Cate, J. A. Adkins, J. Mettakoonpitak, and C. S. Henry, 'Recent developments in paper-based microfluidic devices,' Anal Chem, vol. 87, no. 1, pp. 19-41, Jan 6 2015. [17] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, 'Patterned paper as a platform for inexpensive, low-volume, portable bioassays,' Angew Chem Int Ed Engl, vol. 46, no. 8, pp. 1318-20, 2007. [18] J. Hellmann, 'FLASH: A rapid method for prototyping paper-based,' Yearbook of Neonatal and Perinatal Medicine, vol. 2008, pp. 334-336, 2008. [19] Z. Nie et al., 'Electrochemical sensing in paper-based microfluidic devices,' Lab Chip, vol. 10, no. 4, pp. 477-83, Feb 21 2010. [20] R. CONSDEN, A. H. GORDON, and A. J. P. MARTIN, ' A. Qualitative Analysis of Proteins: a Partition Chromatographic Method Using Paper,' Biochemical Journal, 1944. [21] P. W. WEST, 'Selective Spot Test for Copper,' Industrial and Engineering Chemistry, 1945. [22] G. A. Posthuma-Trumpie, J. Korf, and A. v. Amerongen, 'A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey,' Anal Bioanal Chem, 2009. [23] Z. W. and V. D. B. A., 'Lab on paper,' Lab on a Chip, 2008. [24] A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, 'Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices,' Analytical Chemistry, 2010. [25] X. Li, D. R. Ballerini, and W. Shen, 'A perspective on paper-based microfluidics: Current status and future trends,' Biomicrofluidics, vol. 6, no. 1, pp. 11301-1130113, Mar 2012. [26] X. Chen et al., 'Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices,' Biosens Bioelectron, vol. 35, no. 1, pp. 363-368, May 15 2012. [27] C. J. TONG et al., 'Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements,' METALLURGICAL AND MATERIALS TRANSACTIONS A, vol. 36A, 2005. [28] J. W. Yeh, Y. L. Chen, S. J. Lin, and S. K. Chen, 'High-Entropy Alloys – A New Era of Exploitation,' Materials Science Forum, vol. 560, pp. 1-9, 2007. [29] D. B. Miracle and O. N. Senkov, 'A critical review of high entropy alloys and related concepts,' Acta Materialia, vol. 122, pp. 448-511, 2017. [30] H.-P. Chou, Y.-S. Chang, S.-K. Chen, and J.-W. Yeh, 'Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys,' Materials Science and Engineering: B, vol. 163, no. 3, pp. 184-189, 2009. [31] A. J. Zaddach, R. O. Scattergood, and C. C. Koch, 'Tensile properties of low-stacking fault energy high-entropy alloys,' Materials Science and Engineering: A, vol. 636, pp. 373-378, 2015. [32] A. Gali and E. P. George, 'Tensile properties of high- and medium-entropy alloys,' Intermetallics, vol. 39, pp. 74-78, 2013. [33] Z. Wu, H. Bei, G. M. Pharr, and E. P. George, 'Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures,' Acta Materialia, vol. 81, pp. 428-441, 2014. [34] L. OuYang, C. Wang, F. Du, T. Zheng, and H. Liang, 'Electrochromatographic separations of multi-component metal complexes on a microfluidic paper-based device with a simplified photolithography,' RSC Adv., vol. 4, no. 3, pp. 1093-1101, 2014. [35] A. K. Yetisen, M. S. Akram, and C. R. Lowe, 'Paper-based microfluidic point-of-care diagnostic devices,' Lab Chip, vol. 13, no. 12, pp. 2210-51, Jun 21 2013. [36] W. Dungchai, O. Chailapakul, and C. S. Henry, 'A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing,' Analyst, vol. 136, no. 1, pp. 77-82, Jan 7 2011. [37] T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal, 'Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping,' Talanta, vol. 85, no. 5, pp. 2587-93, Oct 15 2011. [38] Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, 'Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay,' Electrophoresis, vol. 30, no. 9, pp. 1497-500, May 2009. [39] E. Carrilho, A. W. Martinez, and G. M. Whitesides, 'Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics,' Analytical Chemistry, vol. 81, no. 16, p. 5, 2009. [40] B. J. de Gans, S. Hoeppener, and U. S. Schubert, 'Polymer-Relief Microstructures by Inkjet Etching,' Advanced Materials, vol. 18, no. 7, pp. 910-914, 2006. [41] B.-J. de Gans, S. Hoeppener, and U. S. Schubert, 'Polymer relief microstructures by inkjet etching,' Journal of Materials Chemistry, vol. 17, no. 29, 2007. [42] K. Abe, K. Suzuki, and D. Citterio, 'Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper,' Analytical Chemistry, vol. 80, no. 18, p. 7, 2008. [43] X. Li, J. Tian, G. Garnier, and W. Shen, 'Fabrication of paper-based microfluidic sensors by printing,' Colloids Surf B Biointerfaces, vol. 76, no. 2, pp. 564-70, Apr 1 2010. [44] J. Wang, M. R. Monton, X. Zhang, C. D. Filipe, R. Pelton, and J. D. Brennan, 'Hydrophobic sol-gel channel patterning strategies for paper-based microfluidics,' Lab Chip, vol. 14, no. 4, pp. 691-5, Feb 21 2014. [45] J. Olkkonen, K. Lehtinen, and T. Erho, 'Flexographically Printed Fluidic Structures in Paper,' Analytical Chemistry, vol. 82, no. 24, p. 5, 2010. [46] A. Määttänen, D. Fors, S. Wang, D. Valtakari, P. Ihalainen, and J. Peltonen, 'Paper-based planar reaction arrays for printed diagnostics,' Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 1404-1412, 2011. [47] E. M. Fenton, M. R. Mascarenas, G. P. Lopez, and S. S. Sibbett, 'Multiplex lateral-flow test strips fabricated by two-dimensional shaping,' ACS Appl Mater Interfaces, vol. 1, no. 1, pp. 124-9, Jan 2009. [48] C. Renault, X. Li, S. E. Fosdick, and R. M. Crooks, 'Hollow-channel paper analytical devices,' Anal Chem, vol. 85, no. 16, pp. 7976-9, Aug 20 2013. [49] E. Fu, B. Lutz, P. Kauffman, and P. Yager, 'Controlled reagent transport in disposable 2D paper networks,' Lab Chip, vol. 10, no. 7, pp. 918-20, Apr 7 2010. [50] L. Cai et al., 'Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay,' Analyst, vol. 139, no. 18, pp. 4593-8, Sep 21 2014. [51] Q. He, C. Ma, X. Hu, and H. Chen, 'Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning,' Anal Chem, vol. 85, no. 3, pp. 1327-31, Feb 5 2013. [52] V. F. Curto, N. Lopez-Ruiz, L. F. Capitan-Vallvey, A. J. Palma, F. Benito-Lopez, and D. Diamonda, 'Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink,' The Royal Society of Chemistry, vol. 3, p. 6, 2013. [53] S. Ma, Y. Tang, J. Liu, and J. Wu, 'Visible paper chip immunoassay for rapid determination of bacteria in water distribution system,' Talanta, vol. 120, pp. 135-40, Mar 2014. [54] T. Nurak, N. Praphairaksit, and O. Chailapakul, 'Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water,' Talanta, vol. 114, pp. 291-6, Sep 30 2013. [55] G. Demirel and E. Babur, 'Vapor-phase deposition of polymers as a simple and versatile technique to generate paper-based microfluidic platforms for bioassay applications,' Analyst, vol. 139, no. 10, pp. 2326-31, May 21 2014. [56] A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, and G. M. Whitesides, 'FLASH: a rapid method for prototyping paper-based microfluidic devices,' Lab Chip, vol. 8, no. 12, pp. 2146-50, Dec 2008. [57] B. Eliasson and U. Kogelschatz, 'Nonequilibrium Volume Plasma Chemical Processing,' IEEE TRANSACTIONS ON PLASMA SCIENCE, vol. 19, no. 6, p. 15, 1991. [58] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, 'The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources,' IEEE TRANSACTIONS ON PLASMA SCIENCE, vol. 26, no. 6, p. 10, 1998. [59] D. Benyoucef, M. Yousfi, B. Belmadani, and A. Settaouti, 'PIC MC Using Free Path for the Simulation of Low-Pressure RF Discharge in Argon,' IEEE Transactions on Plasma Science, vol. 38, no. 4, pp. 902-908, 2010. [60] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, 'Atmospheric pressure plasmas: A review,' Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006. [61] R. Brandenburg, 'Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments,' Plasma Sources Science and Technology, vol. 26, no. 5, 2017. [62] J. Winter, R. Brandenburg, and K. D. Weltmann, 'Atmospheric pressure plasma jets: an overview of devices and new directions,' Plasma Sources Science and Technology, vol. 24, no. 6, 2015. [63] S. Brandt, F. D. Klute, A. Schutz, and J. Franzke, 'Dielectric barrier discharges applied for soft ionization and their mechanism,' Anal Chim Acta, vol. 951, pp. 16-31, Jan 25 2017. [64] A. Hsu et al., 'Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors,' Coatings, vol. 8, no. 2, 2018. [65] F. H. Kuok, C. Y. Liao, T. H. Wan, P. W. Yeh, I. C. Cheng, and J. Z. Chen, 'Atmospheric pressure plasma jet processed reduced graphene oxides for supercapacitor application,' (in English), Journal of Alloys and Compounds, vol. 692, pp. 558-562, Jan 25 2017. [66] C. H. Xu et al., 'Atmospheric pressure plasma jet processed nanoporous Fe2O3/CNT composites for supercapacitor application,' (in English), Journal of Alloys and Compounds, vol. 676, pp. 469-473, Aug 15 2016. [67] T. H. Wu, I. C. Cheng, C. C. Hsu, and J. Z. Chen, 'UV photocurrent responses of ZnO and MgZnO/ZnO processed by atmospheric pressure plasma jets,' (in English), Journal of Alloys and Compounds, vol. 628, pp. 68-74, Apr 15 2015. [68] C. H. Wu and J. Z. Chen, 'Ultrafast atmospheric-pressure-plasma-jet processed conductive plasma-resistant Y2O3/carbon-nanotube nanocomposite,' (in English), Journal of Alloys and Compounds, vol. 651, pp. 357-362, Dec 5 2015. [69] J. Z. Chen et al., 'Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices,' (in English), Coatings, vol. 5, no. 1, pp. 26-38, Mar 2015. [70] T. H. Wan, Y. F. Chiu, C. W. Chen, C. C. Hsu, I. C. Cheng, and J. Z. Chen, 'Atmospheric-Pressure Plasma Jet Processed Pt-Decorated Reduced Graphene Oxides for Counter-Electrodes of Dye-Sensitized Solar Cells,' (in English), Coatings, vol. 6, no. 4, Dec 2016. [71] A. R. Hsu et al., 'Scan-Mode Atmospheric-Pressure Plasma Jet Processed Reduced Graphene Oxides for Quasi-Solid-State Gel-Electrolyte Supercapacitors,' (in English), Coatings, vol. 8, no. 2, Feb 2018. [72] H. H. Chien et al., 'Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth,' (in English), Electrochimica Acta, vol. 260, pp. 391-399, Jan 10 2018. [73] H. M. Chang, Y. J. Yang, H. C. Li, C. C. Hsu, I. C. Cheng, and J. Z. Chen, 'Preparation of nanoporous TiO2 films for DSSC application by a rapid atmospheric pressure plasma jet sintering process,' (in English), Journal of Power Sources, vol. 234, pp. 16-22, Jul 15 2013. [74] H. Chang et al., 'Dye-sensitized solar cells with nanoporous TiO2 photoanodes sintered by N-2 and air atmospheric pressure plasma jets with/without air-quenching,' (in English), Journal of Power Sources, vol. 251, pp. 215-221, Apr 1 2014. [75] W. Y. Liao, Y. J. Yang, C. M. Hsu, C. C. Hsu, I. C. Cheng, and J. Z. Chen, 'Atmospheric-pressure-plasma-jet sintered dual-scale porous TiO2 using an economically favorable NaCl solution,' (in English), Journal of Power Sources, vol. 281, pp. 252-257, May 1 2015. [76] S. H. Chang et al., 'Feasibility study of surface-modified carbon cloth electrodes using atmospheric pressure plasma jets for microbial fuel cells,' (in English), Journal of Power Sources, vol. 336, pp. 99-106, Dec 30 2016. [77] N. Saleema and D. Gallant, 'Atmospheric pressure plasma oxidation of AA6061-T6 aluminum alloy surface for strong and durable adhesive bonding applications,' Applied Surface Science, vol. 282, pp. 98-104, 2013. [78] C. Regula, J. Ihde, U. Lommatzsch, and R. Wilken, 'Corrosion protection of copper surfaces by an atmospheric pressure plasma jet treatment,' Surface and Coatings Technology, vol. 205, pp. S355-S358, 2011. [79] P. Li et al., 'Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating,' Applied Surface Science, vol. 297, pp. 109-115, 2014. [80] E. S. Massima Mouele, O. O. Fatoba, O. Babajide, K. O. Badmus, and L. F. Petrik, 'Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges,' Environ Sci Pollut Res Int, vol. 25, no. 10, pp. 9265-9282, Apr 2018. [81] C. Paradisi, E. Marotta, and B. R. Locke, 'Papers by Selected Lecturers at the 11th International Symposium on Non-thermal/Thermal Plasma Pollution Control Technology Sustainable Energy (ISNTPT 11),' Plasma Chemistry and Plasma Processing, vol. 39, no. 3, pp. 519-522, 2019. [82] E. E. Flater, W. R. Ashurst, and R. W. Carpick, 'Nanotribology of Octadecyltrichlorosilane Monolayers and Silicon: Self-Mated versus Unmated Interfaces and Local Packing Density Effects,' Langmuir, vol. 23, p. 11, 2007. [83] T. Beyer et al., 'Mini spectrometer with silver halide sensor fiber for in situ detection of chlorinated hydrocarbons,' Sensors and Actuators B: Chemical, vol. 90, no. 1-3, pp. 319-323, 2003. [84] F. Y. Zhu, Q. Q. Wang, X. S. Zhang, W. Hu, X. Zhao, and H. X. Zhang, '3D nanostructure reconstruction based on the SEM imaging principle, and applications,' Nanotechnology, vol. 25, no. 18, p. 185705, May 9 2014. [85] V. Gupta, H. Ganegoda, M. H. Engelhard, J. Terry, and M. R. Linford, 'Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements,' Journal of Chemical Education, vol. 91, no. 2, pp. 232-238, 2013. [86] C. Stan, C. Beavers, M. Kunz, and N. Tamura, 'X-Ray Diffraction under Extreme Conditions at the Advanced Light Source,' Quantum Beam Science, vol. 2, no. 1, 2018. [87] A. A. Bunaciu, E. G. Udristioiu, and H. Y. Aboul-Enein, 'X-ray diffraction: instrumentation and applications,' Crit Rev Anal Chem, vol. 45, no. 4, pp. 289-99, 2015. [88] B. G.E., C. A., S. M., D. S., C. P., and S. A., 'POLARISATION MEASUREMENTS USED FOR CORROSION RATES DETERMINATION ' SUSTENABLE ENERGY, vol. 1, no. 1, 2010. [89] N. Hammouda, H. Chadli, G. Guillemot, and K. Belmokre, 'The Corrosion Protection Behaviour of Zinc Rich Epoxy Paint in 3% NaCl Solution,' Advances in Chemical Engineering and Science, vol. 01, no. 02, pp. 51-60, 2011. [90] R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, and R. L. Jones, 'Corrosion, erosion and erosion–corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings,' Surface and Coatings Technology, vol. 199, no. 2-3, pp. 158-167, 2005. [91] P. Y. Cheng, N. H. Lu, Y. S. Lu, C. H. Chen, Y. L. Lee, and J. Z. Chen, 'Surface Modification of FeCoNiCr Medium-Entropy Alloy (MEA) Using Octadecyltrichlorosilane and Atmospheric-Pressure Plasma Jet,' Polymers (Basel), vol. 12, no. 4, Apr 2 2020. [92] A. Abbasi Aghuy, M. Zakeri, M. H. Moayed, and M. Mazinani, 'Effect of grain size on pitting corrosion of 304L austenitic stainless steel,' Corrosion Science, vol. 94, pp. 368-376, 2015. [93] Y. Shi, B. Yang, and P. Liaw, 'Corrosion-Resistant High-Entropy Alloys: A Review,' Metals, vol. 7, no. 2, 2017. [94] Y. L. Lee, F. J. Chen, and C. S. Lin, 'Corrosion Resistance Studies of Cerium Conversion Coating with a Fluoride-Free Pretreatment on AZ91D Magnesium Alloy,' Journal of The Electrochemical Society, vol. 160, no. 1, pp. C28-C35, 2012. [95] F. Wong and R. G. Buchheit, 'Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings,' Progress in Organic Coatings, vol. 51, no. 2, pp. 91-102, 2004. [96] A. Vyas, Y. Shen, Z. Zhou, and K. Li, 'Nano-structured CrN/CNx multilayer films deposited by magnetron sputtering,' Composites Science and Technology, vol. 68, no. 14, pp. 2922-2929, 2008. [97] W. D. L. Cruz, O. Contreras, G. Soto, and E. Perez-Tijerina, 'Cobalt nitride films produced by reactive pulsed laser deposition,' Revista Mexicana de Física, vol. 52, pp. 409-412, 2006. [98] B. J. Tan, K. J. Klabunde, and P. M. A. Sherwood, 'XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica.,' J. Am. Chem. Soc., vol. 113, pp. 855-861, 1991. [99] A. Davidson, J. F. Tempere, M. Che, H. Roulet, and G. Dufour, 'Spectroscopic Studies of Nickel(II) and Nickel(III) Species Generated upon Thermal Treatments of Nickel/Ceria-Supported Materials,' J. Phys. Chem., vol. 100, pp. 4919–4929, 1996. [100] O. Nishimura, K. Yabe, and M. Iwaki, 'X-ray photoelectron spectroscopy studies of high-dose nitrogen ion implanted-chromium: A possibility of a standard material for chemical state analysis.,' Journal of Electron Spectroscopy and Related Phenomena, vol. 49, no. 3, pp. 335-342, 1989. [101] M. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. McIntyre, 'X-ray photoelectron spectroscopy studies of chromium compounds,' Surface and Interface Analysis, vol. 36, no. 12, pp. 1550-1563, 2004. [102] K. Sawada, Y. Yamada, T. Miyachika, N. Ezumi, A. Iwamae, and M. Goto, 'Collisional-Radiative Model for Spectroscopic Diagnostic of Optically Thick Helium Plasma,' Plasma and Fusion Research, vol. 5, pp. 001-001, 2010. [103] J. Aveyard et al., 'Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting,' J Mater Chem B, vol. 5, no. 13, pp. 2500-2510, Apr 7 2017. [104] R.-W. Zhou et al., 'Reactive oxygen species in plasma against E. coli cells survival rate,' Chinese Physics B, vol. 24, no. 8, 2015. [105] A. Calborean et al., 'Adsorption mechanisms of L-Glutathione on Au and controlled nano-patterning through Dip Pen Nanolithography,' Mater Sci Eng C Mater Biol Appl, vol. 57, pp. 171-80, Dec 1 2015. [106] S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, 'Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),' J. Mater. Chem., vol. 16, no. 2, pp. 155-158, 2006. [107] S. Stankovich et al., 'Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,' Carbon, vol. 45, no. 7, pp. 1558-1565, 2007. [108] V. Kuzmenko et al., 'Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors,' RSC Adv., vol. 7, no. 73, pp. 45968-45977, 2017. [109] R. Sadri et al., 'A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids,' J Colloid Interface Sci, vol. 504, pp. 115-123, Oct 15 2017. [110] Y.-Y. Chen et al., 'Electrochemical and Microstructural Investigations of PtFe Nanocompounds Synthesized by Atmospheric-Pressure Plasma Jet,' Journal of The Electrochemical Society, vol. 167, no. 5, 2019. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78365 | - |
dc.description.abstract | 本研究分為兩部分。第一部分為使用氮氣直流脈衝常壓噴射電漿(DC-pulse atmospheric-pressure plasma jet)與十八烷基三氯矽烷自組裝分子(octadecyltrichlorosilane self-assembling monolayers, OTS SAM)對於鐵鈷鎳鉻中熵合金(FeCoNiCr medium-entropy alloy, FeCoNiCr MEA)進行表面改質,並進一步探討其對於抗腐蝕性質的影響。根據水接觸角實驗,常壓噴射電漿、十八烷基三氯矽烷自組裝分子或兩者都使用可以提升鐵鈷鎳鉻中熵合金的疏水性。透過極化曲線與電化學組抗分析,(Electrochemical Impedance Spectroscopy, EIS),經過大氣電漿處理的鐵鈷鎳鉻中熵合金有最佳的抗腐蝕性。而在X-射線光電子光譜儀(X-ray photoelectron spectroscopy, XPS)的實驗結果中,常壓噴射電漿氧化了所有鐵鈷鎳鉻中熵合金中的金屬元素。然而,第二部分為使用大氣介電質放電噴射電漿(atmospheric-pressure dielectric-barrier-discharge jet, DBDjet)與十八烷基三氯矽烷自組裝分子以紙為基板製作紙基微流道,並使用水接觸角、X-射線光電子光譜儀(XPS)和表面輪廓儀等實驗探討其機制。在這個部分中,成功的蝕刻出一毫米寬的微流道。且兩種不同的液體可以在微流道中被傳輸或混合。 | zh_TW |
dc.description.abstract | This study demonstrates two applications of atmospheric-pressure plasma jet. The first one is surface modification of FeCoNiCr medium-entropy alloy (MEA) using Octadecyltrichlorosilane (OTS) and DC-pulse atmospheric-pressure plasma jet (APPJ). Corrosion properties was investigated. According to contact angle measurements, engaging OTS-coating treatment, APPJ treatment, or the combination of both treatments (OTS-coated APPJ-treated) can improve the hydrophobicity of the FeCoNiCr MEA. The APPJ-treated FeCoNiCr MEA exhibits the best anti-corrosion properties, evidenced by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. APPJ treatment oxidizes all alloying elements of MEA, as revealed by X-ray photoelectron spectroscopy (XPS). The second part is the hydrophilic patterning of octadecyltrichlorosilane (OTS)-coated paper via atmospheric-pressure dielectric-barrier-discharge jet (DBDjet).Water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and surface profilerwere used to characterize the DBDjet patterned OTS-coated paper. 1-mm-wide hydrophilic microstripes are patterned successfully, and liquids are successfully demonstrated to be transported and mixed in the hydrophilic microstripes. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:53:15Z (GMT). No. of bitstreams: 1 U0001-2207202015113600.pdf: 7967904 bytes, checksum: 1fcacf87c5b8e5e128f0045af31c61e3 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 I 中文摘要 II ABSTRACT III 總目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文大綱 2 第二章 基本原理與文獻回顧 3 2.1 中熵合金 3 2.1.1. 簡介與定義 3 2.1.2. 性質 4 2.2 紙基微流體裝置製程技術 6 2.2.1 光蝕刻法(Photolithography) 6 2.2.2 塗蠟法(Wax Patterning) 7 2.2.3 噴墨列印法(Inkjet Printing or Etching) 7 2.2.4 柔版印刷法(Flexographic Printing) 7 2.2.5 切割成型法(Paper Cutting and Shaping) 8 2.2.6 化學改質法(Chemical Modification of Paper) 8 2.2.7 其他製程方法 9 2.3 大氣常壓電漿 9 2.3.1 工作原理 10 2.3.2 優勢與應用 13 第三章 實驗方法與流程 14 3.1 實驗材料與測量儀器 14 3.2 實驗規劃 16 3.3 實驗流程 17 3.3.1 中熵合金製程 17 3.3.2 微流道製程 20 3.4 測量儀器與原理 22 3.4.1 光放射光譜儀(Optical emission spectroscopy, OES) 22 3.4.2 高解析場發射鎗掃描式電子顯微鏡 (Scanning electron microscope, SEM) 23 3.4.3 X-射線光電子光譜儀(X-ray photoelectron spectroscopy, XPS) 24 3.4.4 X射線繞射儀(X-ray Diffractometer, XRD) 25 3.4.5 電化學分析 26 第四章 實驗結果與討論 30 4.1 氮氣直流脈衝常壓噴射電漿與十八烷基三氯矽烷自組裝分子對於中熵合金的抗腐蝕性質影響 30 4.1.1 水接觸角 30 4.1.2 極化曲線 31 4.1.3 EIS 33 4.1.4 XPS 36 4.1.5 SEM EDS 41 4.1.6 XRD 54 4.2 大氣介電質放電噴射電漿與十八烷基三氯矽烷自組裝分子以紙為基板製作紙基微流體裝置 55 4.2.1 DBDjet對於OTS-treated paper圖案化之成果 55 4.2.2 水接觸角 56 4.2.3 表面粗糙度分析 58 4.2.4 OES 60 4.2.5 XPS 62 4.2.6 SEM 70 第五章 結論與未來展望 73 附錄I:MEA的極化曲線量測四次的詳細圖 74 I.I 極化曲線實驗參數 74 I.II 極化曲線實驗結果 74 附錄II:MEA的EIS量測之詳細圖表 76 II.I EIS實驗參數 76 II.II EIS實驗結果 76 附錄III:MEA的OES量測結果 81 附錄IV:MEA的XPS之縱深量測結果 83 附錄V:DBDJET處理紙張的XPS AU4F之量測結果 85 附錄VI:表面粗糙度分析的MATLAB程式碼 87 參考文獻 89 | |
dc.language.iso | zh-TW | |
dc.title | 使用十八烷基三氯矽烷自組裝分子與大氣常壓噴射電漿進行FeCoNiCr中熵合金與纖維素紙的表面改質 | zh_TW |
dc.title | Surface modification of FeCoNiCr medium-entropy alloy and chromatography paper using octadecyltrichlorosilane self-assembling monolayers (SAM) and atmospheric-pressure plasma jet | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0003-3647-9212 | |
dc.contributor.advisor-orcid | 陳建彰(0000-0002-1071-2234) | |
dc.contributor.oralexamcommittee | 陳奕君(I-Chun Cheng),李岳聯(Yueh-Lien Lee),徐振哲(Cheng-Che Hsu) | |
dc.contributor.oralexamcommittee-orcid | 陳奕君(0000-0003-2209-3298),李岳聯(0000-0001-6620-2586),徐振哲(0000-0002-8366-3592) | |
dc.subject.keyword | 大氣常壓噴射電漿,表面處理,疏水性,中熵合金,氧化,十八烷基三氯矽烷自組裝分子,介電質放電,微流體裝置,紙基生物晶片, | zh_TW |
dc.subject.keyword | Atmospheric-pressure plasma jet,dielectric barrier discharge,Octadecyltrichlorosilane,Surface treatment,Hydrophobicity,Medium entropy alloy,Oxidation,microfluidic device,paper-based biochip, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU202001738 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
dc.date.embargo-lift | 2024-07-22 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2207202015113600.pdf 目前未授權公開取用 | 7.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。