請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78349
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙治宇(Chih-Yu Chao) | |
dc.contributor.author | Hsu-Hsiang Liu | en |
dc.contributor.author | 劉序庠 | zh_TW |
dc.date.accessioned | 2021-07-11T14:52:27Z | - |
dc.date.available | 2023-08-11 | |
dc.date.copyright | 2020-08-14 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-10 | |
dc.identifier.citation | Tu YY. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 17, 1217-1220 (2011). Raju TN. The Nobel chronicles. 1945: Sir Alexander Fleming (1881-1955); Sir Ernst Boris Chain (1906-79); and Baron Howard Walter Florey (1898-1968). Lancet 353, 936. (1999). van der Zee J. Heating the patient: a promising approach? Ann Oncol 13, 1173-1184 (2002). Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002). Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002). Lu CH, Chen WT, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLOS ONE 14 (2019). https://doi.org/10.1101/548552 Stewaer BW, Chirstopher P. World cancer report 2014. World Health Organization (2014). Teng D, Wu K. Significant increased CA199 levels in acute pancreatitis patients predicts the presence of pancreatic cancer. Oncotarget 9, 12745-12753 (2018). Pancreatic cancer treatment (PDQ®) patient version (2020). National Cancer Institute. Retrived from https://www.cancer.gov/types/pancreatic/patient/pancreatic-treatment-pdq Peters ML, Tseng JF, Miksad RA. Genetic testing in pancreatic ductal adenocarcinoma: implications for prevention and treatment. Clin. Ther. 38, 1622–1635 (2016). Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet 378, 607–620 (2011). Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH. Recent progress in pancreatic cancer. CA Cancer J. Clin. 63, 318–348 (2013). Amsterdam A, Raanan C, Schreiber L, Polin N, Givol D. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer. Biochem. Biophys. Res. Commun. 433, 157-162 (2013). Hu CM, Tien SC, Hsieh PK, Jeng YM, Chang MC, Lee WH, et al. High glucose triggers nucleotide imbalance through O-Glcnacylation of key enzymes and induces KRAS mutation in pancreatic cells. Cell Metab. 29, 1334-1349 (2019). Pericleous M, Rossi RE, Mandair D, Whyand T, Caplin ME. Nutrition and pancreatic cancer. Anticancer Res. 34, 9-21 (2014). Bond-Smith G, Banga N, Hammond TM, Imber CJ. Pancreatic adenocarcinoma. BMJ 344, e2476 (2012). Fingerhut A, Vassiliu P, Dervenis C, Alexakis N, Leandros E. What is in a word: Pancreatoduodenectomy or pancreaticoduodenectomy? Surgery 142, 428-429 (2007). McEachron KR, Bellin MD. Total pancreatectomy and islet autotransplantion for chronic and recurrent acute pancreatitis. Curr. Opin. Gastroenterol. 34, 367–373 (2018). Lawrence TS, Chang EY, Hahn TM, Hertel LW, Shewach DS. Radiosensitization of pancreatic cancer cells by 2’,2’-difluoro-2’-deoxycytidine. Int. J. Radiat. Oncol. Biol. Phys. 34, 867-872 (1996). Carmichael J, Fink U, Russell RC, Spittle MF, Harris AL, Blatter J, et al. Phase II study of gemcitabine in patients with advanced pancreatic cancer. Br. J. Cancer 73, 101–105 (1996). Miyabayashi K, Ijichi H, Mohri D, Tada M, Yamamoto K, Koike K, et al. Erlotinib prolongs survival in pancreatic cancer by blocking gemcitabine-induced MAPK signals. Cancer Res. 73, 2221-2234 (2003). Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Parulekar W, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Int. J. Clin. Oncol. 25, 1960-1966 (2007). Ulrich-Pur H, Raderer M, Verena Kornek G, Schüll B, Schmid K,Scheithauer W, et al. Irinotecan plus raltitrexed vs raltitrexed alone in patients with gemcitabine-pretreated advanced pancreatic adenocarcinoma. Br. J. Cancer 88, 1180-1184 (2003). Fisher BJ, Perera FE, Kocha W, Tomiak A, Taylor M, Vincent M, Bauman GS. Analysis of the clinical benefit of 5-fluorouracil and radiation treatment in locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 45, 291-295 (1999). Alfons L. Apoptosis-an introduction. Bioessays 25, 888-896 (2003). Singh J, Cumming E,Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of Momordica charantia: active constituents and modes of actions. Open J. Med. Chem. 5, 70-77 (2011). Ng TB, Chan WY, Yeung HW. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen. Pharmacol. 23, 575-590 (1992). Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar JR. Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Curr. Mol. Med. 9, 1080-1094 (2009). Ray RB, Raychoudhuri A, Steele R, Nerurkar P. Bitter melon (Momordica charantia) extract inhibits breast cancer cell proliferation by modulating cell cycle regulatory genes and promotes apoptosis. Cancer Res. 70, 1925-1931 (2010). Dhar D, Deep G, Kumar S, Wempe MF, Raina K, Agarwal C, Agarwal R. Bitter melon juice exerts its efficacy against pancreatic cancer via targeting both bulk and cancer stem cells. Mol. Carcinog. 57, 1166-1180 (2018). Yasuda M, Iwamoto M, Okabe H, Yamauchi T. Structures of Momordicines I, II and III, the bitter principles in the leaves and vines of Momordica charantia L. Chem. Pharm. Bull. 32, 2044-2047 (1984). Fatope MO, Takeda Y, Yamashita H, Okabe H, Yamauchi T. New Cucurbitane triterpenoid from Momordica charantia. J. Nat. Prod. 53, 1491-1497 (1990). Akihisa T, Higo N, Tokuda H, Ukiya M, Akazawa H, Tochigi Y, Kimura Y, Suzuki T, Nishino H. Cucurbitane-type triterpenoids from the fruits of Momordica charantia and their cancer chemopreventive effects. J. Nat. Prod. 70, 1233-1239 (2007). Preti A, Kantarjian HM. Management of adult acute lymphocytic leukemia: present issues and key challenges. J. Clin. Oncol. 12, 1312-1322 (1994). Anon. Drugs of choice for cancer. Treat Guidel Med Lett 1, 41-52 (2003). Einhorn LH, Fee WH, Farber MO, Livingston RB, Gottlieb JA. Improved chemotherapy for small-cell undifferentiated lung cancer. JAMA 235, 1225-1229 (1976). Overgaard J. The current and potential role of hyperthermia in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 16, 535-549 (1989). Roti Roti JL. Cellular responses to hyperthermia (40-46℃): Cell killing and molecular events. Int J Hyperthermia 24, 3-15 (2008). Huang SH, Yang KJ, Wu JC, Chang KJ, Wang SM. Effects of hyperthermia on the cytoskeleton and focal adhesion proteins in a human thyroid carcinoma cell line. J. Cell. Biochem. 75, 327-337 (1999). Oei AL, Vriend LEM, Crezee J, Franken NAP, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat. Oncol. 10, 165 (2015). Calderwood SK, Theriault JR, Gong J. How is the immune response affected by hyperthermia and heat shock proteins? Int J Hyperthermia 21, 713-716 (2005). Song CW, Shakil A, Osborn JL, Iwata K. Tumour oxygenation is increased by hyperthermia at mild temperatures. Int J Hyperthermia 25, 91-95 (2009). Chen F, Wang CC, Kim E, Harrison LE. Hyperthermia in combination with oxidative stress induces autophagic cell death in HT-29 colon cancer cells. Cell Biol. Int. 32, 715-723 (2008). Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW. Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia 22, 205-213 (2006). Kaur P, Hurwitz MD, Krishnan S, Asea A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers 3, 3799-3823 (2011). Schildkopf P, Ott OJ, Frey B, Wadepohl M, Sauer R, Fietkau R, Gaipl US. Biological rationales and clinical applications of temperature controlled hyperthermia--implications for multimodal cancer treatments. Curr. Med. Chem. 17, 3045-3057 (2010). Lea RW, Boaz M, Yoram D, Valentina K, Rumelia K. Combined intravesical hyperthermia and mitomycin chemotherapy: a preliminary in vivo study. Int. J. Exp. Pathol. 84, 145–152 (2003). Adachi S, Kokura S, Okayama T, Ishikawa T, Takagi T, Yoshikawa T, et al. Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int J Hyperthermia 25, 210-219 (2009). Refaat T, Sachdev S, Sathiaseelan V, Helenowski I, Abdelmoneim S, Kiel KD, et al. Hyperthermia and radiation therapy for locally advanced or recurrent breast cancer. Breast 24, 418–425 (2015). Bakshandeh-Bath A, Stoltz AS, HomannN, Wagner T, Stephanie Stölting, Stefan O Peters. Preclinical and clinical aspects of carboplatin and gemcitabine combined with whole-body hyperthermia for pancreatic adenocarcinoma. Anticancer Res. 29, 3069-3077 (2009). Jun HJ, Park SJ, Kang HJ, Lee GY, Lee N, Yoo HS, et al. The survival benefit of combination therapy with mild temperature hyperthermia and an herbal prescription of gun-chil-jung in 54 cancer patients treated with chemotherapy or radiation therapy: A retrospective study. Integr Cancer Ther 19, 1-12 (2020). Dewhirst MW, Viglianti BL, Lora-Michiels, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19, 267-294 (2003). Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10, 787-800 (1984). Wei YQ, Zhao X, Kariya Y, Teshigawara K, Uchida A. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunol. Immunother. 40, 73-78 (1995). Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol 190, 191–199 (2008). Yang R, Reilly CR, Rescorla FJ, Faught PR, Sanghvi NT, Grosfeld JL, et al. High-intensity focused ultrasound in the treatment of experimental liver cancer. Arch Surg. 126, 1002-1010 (1991). Poissonniera L, Chapelon JY, Rouvière O, Curiel L, Bouvier R, Martin X , Gelet A, et al. Control of prostate cancer by transrectal HIFU in 227 patients. Eur. Urol. 51, 381-387 (2006). Khokhlova TD, Hwang JH. HIFU for palliative treatment of pancreatic cancer. J Gastrointest Oncol. 2, 175-184 (2001). Church CC. Thermal dose and the probability of adverse effects from HIFU. AIP Conf Proc 911, 131-137 (2007). Zhao QL, Fujiwara Y, Kondo T. Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic. Biol. Med. 40, 1131-1143 (2006). Shelton SN, Dillard CD, Robertson JD. Activation of Caspase-9, but Not Caspase-2 or Caspase-8, is essential for heat-induced apoptosis in jurkat cells. Int. J. Biol. Chem. 285, 40525-40533 (2010). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78349 | - |
dc.description.abstract | 隨著醫療的進步,一些病症相繼被克服,而癌症成為了目前造成國人死亡最多的病症,癌細胞主要的治療手法為手術切除以及各種的化學治療、放射線治療,但若使用足夠有效的高劑量治療,會對人體造成各式的副作用。但天然草本萃取物大多數僅會對人體造成較小傷害,並且仍對癌細胞具有一定的抑制作用。除了藥物方面的研究,目前有許多團隊亦在進行熱療搭配化學或放射線治療的試驗,但傳統熱療方式易對癌症腫瘤四周的正常細胞造成不可逆的傷害,也因此本研究欲驗證具有週期性穿插降溫過程的循環加熱技術,是否可於減少正常細胞受損的同時,仍使患部的癌細胞能受到有效的熱刺激。本研究旨在探討苦瓜素MMD-I輔以循環加熱對於胰臟癌細胞的協同抑制效果,並進行傳統加熱與循環加熱對人類正常及胰臟癌細胞的影響比較。實驗中採用PANC-1與H6c7細胞株分別模擬人體內的胰臟癌細胞及正常胰管細胞,以MTT試驗測試在各種處理之下的PANC-1與H6c7細胞存活率,並針對MMD-I協同循環加熱以流式細胞術測定細胞凋亡比例與氧化壓力、西方墨點法定量細胞中Bax、Bcl-2、PARP、cleaved PARP等細胞凋亡相關的指標蛋白含量。實驗結果顯示,苦瓜素MMD-I與循環加熱均具有抗癌作用,且循環加熱與MMD-I協同抑制癌細胞的效果較傳統加熱為佳,並在顯微鏡影像中可明顯看到PANC-1細胞外觀於處理後有凋亡的表現。而進一步的以流式細胞術的螢光檢測細胞狀態,結果顯示PANC-1細胞株再經過藥物與循環加熱協同處理過後,其細胞內部氧化壓力與產生凋亡現象細胞的比例皆有明顯的上升。最後以西方墨點法來定量PANC-1細胞經處理過後,其內部各種凋亡相關的指標蛋白冷光訊號,透過Bax / Bcl-2以及cleaved PARP / PARP的蛋白訊號強度比例來推斷細胞凋亡傾向,結果顯示苦瓜素MMD-I協同循環加熱確實有促使PANC-1細胞進行凋亡反應,且較單獨藥物或加熱處理的組別有明顯的增強抑制癌細胞的效果。總結本研究的實驗結果,我們發現循環加熱技術並不會對正常胰臟H6c7細胞造成太大的傷害,且與苦瓜素MMD-I的協同抑制PANC-1胰臟癌細胞表現較傳統加熱為佳。而苦瓜素MMD-I輔以循環加熱的協同處理能透過增加細胞氧化壓力的方式促使PANC-1胰臟癌細胞凋亡,且其對於抑制人類胰臟癌細胞株的效果較單獨藥物或循環加熱處理的組別有顯著的提升。本研究所進行的此種藥物與循環加熱協同的癌細胞抑制效果,未來是有潛力應用於胰臟癌的治療。 | zh_TW |
dc.description.abstract | To date, cancer has become one of the major diseases that causes the death of Taiwanese people. The current anticancer therapies now are the traditional surgical excision, chemotherapy, radiotherapy, and so on. However, if we tend to effectively medicate with high dosage medicine, the side effects are so intense that patients can barely endure. Nowadays, many research teams have gradually put an eye on the herbal medicines, which are commonly known to cause milder side effects to patients, but still can efficiently suppress many kinds of cancer cells. Besides the evolution of medicament, hyperthermia (HT) treatment is also gradually drawing the attention of many medical professions. However, traditional HT treatment will unavoidably cause the irreversible damage to normal tissues. Therefore, for fighting cancer in this thesis, we replace HT treatment with a new methodology - thermal cycling-hyperthermia treatment (TC-HT), which is periodically interspersing low-temperature process in the high-temperature traditional HT treatment, to investigate whether it is possible to decrease the damage on normal tissues while still being able to provide sufficient thermal dosage to kill cancer cells. This study is designed to research if the TC-HT combined with Momordicin I (MMD-I) can inhibit human pancreatic cancer cells, and compare the effects of HT and TC-HT on human normal cells and pancreatic cancer cells. In this thesis, we used PANC-1 and H6c7 cell lines as the human pancreatic cancer and human pancreatic duct epithelial cell models, respectively. MTT assay was adopted for the cell viability measurements of PANC-1 and H6c7 cells under various treatments. Then we focused on the synergy of MMD-I and TC-HT technique. Flow cytometry was used for measuring cell apoptosis rate and reactive oxygen species quantity. Western bolt analysis was taken for measuring the expression of apoptosis-related proteins such as Bax, Bcl-2, PARP, and cleaved PARP. Our experimental data showed that both MMD-I and TC-HT inhibited PANC-1 cells, and the effect of synergistic combination of the two was superior than that of MMD-I treated with conventional HT. On the other hand, the results of flow cytometry and western bolt analyses also showed that the combined treatment of MMD-I and TC-HT, comparing to the single treatment groups, was able to significantly increase the portion of apoptosis cells, reactive oxygen species quantity, and the expressions of apoptosis-related proteins. In summary, this study demonstrates that MMD-I combined with TC-HT exhibited better effect in synergistically inhibiting PANC-1 cells than with conventional HT treatment, while TC-HT method was found to cause much less damage on H6c7 cells which we adopted as the normal pancreatic cell model. And we further find that the combination treatment of MMD-I and TC-HT can increase intracellular level of ROS via heat-sensitizing effect, and further causing the cell apoptosis. The study suggests that MMD-I and TC-HT combination would be potentially used as an effective therapeutic method for combating human pancreatic cancer. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:52:27Z (GMT). No. of bitstreams: 1 U0001-2807202015431200.pdf: 13415403 bytes, checksum: 2c23d76a9a265fcc5bc90c4262068f95 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 論文口試委員審定書 i 致謝 ii 摘要 viii Abstract x 第一章 緒論與文獻回顧 1 1.1 研究動機 1 1.2 胰臟癌簡介 3 1.2.1 胰臟癌的產生 3 1.2.2 胰臟癌現今的治療方式與困境 4 1.3 細胞凋亡與其相關路徑 7 1.4 藥物簡介:苦瓜素MMD-I (Momordicin I) 9 1.5 生物熱效應簡介 10 1.6 傳統熱療簡介 11 1.7 循環加熱簡介 12 第二章 實驗材料與方法 14 2.1 細胞株冷凍保存與培養 14 2.1.1 細胞株解凍復甦 14 2.1.2 人類胰臟癌細胞株PANC-1之繼代培養 15 2.1.3 人類胰管細胞株H6c7之繼代培養 17 2.1.4 細胞株冷凍 18 2.2 細胞之MMD-I與加熱處理 19 2.2.1 細胞分盤 19 2.2.2 MMD-I處理 19 2.2.3 傳統加熱與循環加熱處理 20 2.3 MTT試驗測定細胞存活率 22 2.4 流式細胞術測定細胞狀態 24 2.4.1 Annexin V / PI細胞凋亡檢測 24 2.4.2 DHE細胞內活性氧物質檢測 26 2.5 西方墨點法原理與測定(Western Blot) 27 2.5.1 細胞收集與蛋白質萃取 27 2.5.2 蛋白質濃度定量分析 27 2.5.3 蛋白質前處理 28 2.5.4 膠片製作 29 2.5.5 凝膠電泳 29 2.5.6 蛋白質轉印 30 2.5.7 封閉轉印膜 30 2.5.8 抗體反應與冷光顯影 31 第三章 實驗設計與數據結果 32 3.1 MMD-I與循環加熱對PANC-1細胞株生長的影響 32 3.1.1 MMD-I對PANC-1細胞株存活率影響之濃度梯度測定 32 3.1.2 傳統加熱與循環加熱對H6c7人類胰腺導管細胞株存活率影響之比較 33 3.1.3 MMD-I協同傳統加熱與循環加熱對PANC-1人類胰臟癌細胞株細胞存活率影響之比較 34 3.1.4 不同濃度MMD-I協同循環加熱對PANC-1細胞株存活率影響之測定 35 3.1.5 MMD-I與循環加熱處理對PANC-1細胞株外觀之影響 36 3.2 流式細胞儀測定PANC-1細胞株狀態 40 3.2.1 細胞凋亡測定 40 3.2.2 細胞內活性氧物質測定 42 3.3 西方墨點法測定PANC-1蛋白表現量變化 44 3.3.1 測定cleaved PARP / PARP 蛋白表現量變化 44 3.3.2 測定Bax / Bcl-2蛋白表現量變化 47 第四章 結果討論 48 4.1 MMD-I對於胰臟癌PANC-1細胞株之抑制作用 48 4.2 傳統加熱與循環加熱對H6c7與PANC-1細胞株影響之比較 48 4.3 MMD-I與循環加熱協同誘導PANC-1人類胰臟癌細胞凋亡現象 50 4.4 MMD-I與循環加熱誘導PANC-1細胞凋亡之分子機制 51 4.5 苦瓜素MMD-I與循環加熱的協同效應原理 53 第五章 總結 54 參考資料 56 | |
dc.language.iso | zh-TW | |
dc.title | 循環加熱增強苦瓜素MMD-I對人類胰臟癌細胞的抗癌作用 | zh_TW |
dc.title | Thermal Cycling Hyperthermia Enhances the Anticancer Effect of Momordicin I on PANC-1 Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭貽生(Yi-Sheng Cheng),溫進德(Jin-Der Wen) | |
dc.subject.keyword | 苦瓜素 MMD-I,熱療法,胰臟癌,協同效應,細胞凋亡, | zh_TW |
dc.subject.keyword | Momordicin I,hyperthermia,pancreatic cancer,synergistic effect,cell apoptosis, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU202001973 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
dc.date.embargo-lift | 2023-08-11 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2807202015431200.pdf 目前未授權公開取用 | 13.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。