Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳宗霖(Tzong-Lin Wu)
dc.contributor.authorTing-Yi Linen
dc.contributor.author林庭毅zh_TW
dc.date.accessioned2021-07-11T14:51:53Z-
dc.date.available2025-08-03
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-08-03
dc.identifier.citation[1] J. Zhou et al, “A Blocker-Resilient Wideband Receiver with Low-Noise Active Two-Point Cancellation of > 0dBm TX Leakage and TX Noise in RX Band for FDD/Co-Existence,” ISSCC Dig. Tech. Papers, pp. 352-353, Feb. 2014.
[2] S. A. Ayati, D. Mandal, B. Bakkaloglu, and S. Kiaei, “Integrated quasi-circulator with RF leakage cancellation for full-duplex wireless transceivers,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1421– 1430, Mar. 2018.
[3] J. Laskar., B.Matinpour and S. Chakraborty “Receiver System Design,” in Modern receiver front-ends Systems, Circuits, and Integration, Hoboken, NJ, USA: Wiley, 2004.
[4] B. Floyd, S. Reynolds, U. Pfeiffer, T. Zwick, T. Beukema, and B. Gaucher, “SiGe bipolar transceiver circuits operating at 60 GHz,” IEEE J. of Solid-State Circuits, vol. 40, pp. 156-167, January 2005.
[5] C. R. Paul, ”A comparison of the contributions of common-mode and differential-mode currents in radiated emissions,” IEEE Trans. Electromagn. Compat, vol. 31, no. 2, pp. 189–193, May 1989.
[6] A. Ziroff, M. Nalezinski, and W. Menzel, “A 40 GHz LTCC receiver module using a novel submerged balancing filter structure,” in Proc. Radio Wireless Conf., 2003, pp. 151–154.
[7] M. Li, H. Lee, J. G. Park, and J. C. Lee, “A narrow bandpass balanced filter with back-to-back structure,” in Proceedings of the 5th Global Symposium on Millimeter Waves (GSMM), Harbin, China, pp. 295–298, 27–30 May 2012.
[8] J. Shi and Q. Xue, “Balanced bandpass filters using center-loaded half-wavelength resonators,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 970–977, Apr. 2010.
[9] C.-H. Wu, C.-H. Wang, and C. H. Chen, “Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 507–509, Jul. 2007.
[10] J. Shi and Q. Xue, “Dual-band and wide-stopband single-band balanced bandpass filters with high selectivity and common-mode suppression,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 2204–2212, Aug. 2010.
[11] P. Vélez et al., “Differential bandpass filter with common-mode suppression based on open split ring resonators and open complementary split ring resonators,” IEEE Trans. Microw. Theory Techn., vol. 23, no. 1, pp. 22–24, Jan. 2013.
[12] S. Y. Shi, W. J. Feng, and W. Q. Che, “A microstrip ultra-wideband differential filter with shorted parallel coupled-line,” in Proc. Asia-Pacific Microw. Conf., Australia, 2011.
[13] X. Wang, S. Hu and Q. Cao, “Differential broadband filter based on microstrip coupled line structures,” Electronics Letters, vol. 50, no. 15, pp. 1069-1070, Jul. 2014.
[14] L. Li, J. Bao, J. J. Du, and Y. M. Wang, “Differential Wideband Bandpass Filters With Enhanced Common-Mode Suppression Using Internal Coupling Technique,” IEEE Microw. Compon. Lett., vol. 24, pp. 300-302, May. 2014.
[15] C.-H. Wu, C.-H. Wang, and C. H. Chen, “Balanced coupled-resonator bandpass filters using multi-section resonators for common-mode suppression and stopband extension,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 8, pp. 1756–1763, Aug. 2007.
[16] X.-H.Wu and Q.-X.Chu, “Compact differential ultra-wideband bandpass filter with common-mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 94, pp. 456–458, Sep. 2012.
[17] H.-W. Deng, T. Zhang, F. Liu, and T. Xu, “High selectivity and CM suppression frequency-dependent coupling balanced BPF,” 2015 IEEE Symposium on Electromagnetic Compatibility and Signal Integrity, Santa Clara, CA, 2015, pp. 79-84.
[18] J.-L. Olvera-Cervantes and A. Corona-Chavez, “Microstrip balanced bandpass filter with compact size, extended-stopband and common mode noise suppression,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 10, pp. 530–532, Oct. 2013.
[19] A. Fernandez-Prieto, A. Lujambio, J. Martel, F. Medina, F. Mesa, and R. R. Boix, “Simple and compact balanced bandpass filters based on magnetically coupled resonators,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1843–1853, Jun. 2015.
[20] H.-C. Chen, C.-H. Tsai, and T.-L. Wu, “A compact and embedded balanced bandpass filter with wideband common-mode suppression on wireless SiP,” IEEE Trans. Compon., Packag. Manufact. Technol., vol. 2, no. 6, pp. 1030–1038, Jun. 2012.
[21] M. Kong, Y. Wu, Z. Zhuang, W. Wang and Y. Liu, 'Ultra-miniaturized Balanced Bandpass Filter Using GaAs-based Integrated Passive Device Technology,' 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 2019, pp. 1-3.
[22] M. Morgan and T. Boyd, “Theoretical and experimental study of a new class of reflectionless filter,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1214–1221, May 2011.
[23] M. Morgan and T. Boyd, “Reflectionless filter structures,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1263–1271, Apr. 2015.
[24] M. Khalaj-Amirhosseini and M.-M. Taskhiri, “Twofold reflectionless filters of inverse-Chebyshev response with arbitrary attenuation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4616–4620, Jun. 2017.
[25] C. Y. Hsiao, C. H. Cheng and T. L. Wu, “A New Broadband Common-Mode Noise Absorption Circuit for High-Speed Differential Digital Systems,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 1894- 1901, June 2015.
[26] P.-J. Li, and T.-L. Wu, “Synthesized Method of Dual-Band Common- Mode Noise Absorption Circuits,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 4, pp. 1392-1401, Apr. 2019.
[27] W. Zhang, Y. Wu, Y. Liu, C. Yu, A. Hasan and F. M. Ghannouchi, “Planar Wideband Differential-Mode Bandpass Filter With Common-Mode Noise Absorption,” IEEE Microw. Compon. Lett., vol. 27, pp. 458- 460, May. 2017.
[28] S. Zhang and L. Zhu, “General synthesis method for symmetrical even-order Chebyshev bandpass filter,” in Proc. Asia-Pacific Microw. Conf., Dec. 2012, pp. 667–669.
[29] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application. New York, Wiley, 2001.
[30] A. Fern´andez-Prieto, J. Martel, F. Medina, F. Mesa, and R. R. Boix, “Compact balanced FSIR bandpass filter modified for enhancing common-mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 154–156, Mar. 2015.
[31] W. Feng, W. Che, H. Chen, and Q. Xue, “Balanced filter circuit based on open/shorted loaded stubs,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3, Jun. 2015.
[32] G. Mathaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Norwood, MA: Artech House, 1980.
[33] S. Lee and Y. Lee, “Generalized miniaturization method for coupled line bandpass filters by reactive loading,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 9, pp. 2383-2391, Sep. 2010.
[34] P. Cheong, S. W. Fok, and K. W. Tam, “Miniaturized parallel coupled line bandpass filter with spurious-response suppression,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 5, pp. 1810-1816, May. 2005.
[35] M. Sans et al., “Compact wideband balanced bandpass filters with very broad common-mode and differential-mode stopbands,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 2, pp. 737-750, Feb. 2018.
[36] J. G. Zhou, Y.-C. Chiang, and W. Che., “Compact wideband balanced bandpass filter with high common-mode suppression based on cascade parallel coupled lines,” IET Microw., Antennas, Propag., vol. 8, no. 8, pp. 564-570, Jun. 2014.
[37] R. Garg, and I. J. Bahl, “Characteristics of coupled microstriplines,” IEEE Trans. Microw. Theory Techn., vol.27, no.7, pp. 700-705, July 1979.
[38] D. M. Pozar, Microwave Engineering, John Wiley Sons, Inc., 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78337-
dc.description.abstract在高速電路發展的過程中,以差動形式建立高雜訊抗性、高動態範圍的通訊系統為一常見的手法,射頻前端模組或作為所有通訊系統對外進行資料傳輸之不可或缺的重要電路。本論文致力於平衡式饋入之帶通濾波器的新式設計,其最大的特色為針對雜訊抑制的手法採用非反射式的設計,此為過去相關的研究未曾著墨的方式,以系統觀點視之,這樣的方式能夠避免反射的雜訊漫流於系統中,以輻射或其他形式的干擾影響元件的正常運作。
本論文先提出了兩種四埠平衡式帶通濾波器的設計。此二者皆以傳統三階四分之波長帶通濾波器改良,第一種電路利用共模虛開路的特性,將中間級設計為高阻抗電路,搭配前後二級設計阻抗匹配,致使雜訊能夠在一定的頻寬內被吸收。第二種電路,則在共模上引入衰減器的特性控制雜訊抑制的深度,能夠使雜訊在所有頻率範圍內控制在一定的深度以下,達到非常寬頻的雜訊抑制響應。
接著,為改善分散式元件面積過大的問題,本論文提出第三種設計,以集總元件實踐平衡式帶通濾波器的設計,與第一種設計相同,其電路前後級在共模下皆可針對一特定頻率進行匹配設計,唯在第三種設計中,中間級的高阻抗特性並無頻寬限制,因此在縮小化的同時亦達到寬頻抑制以及雜訊吸收的特性。
最後,為展示全頻段無反射的雜訊抑制概念,本論文提出一種基於耦合傳輸線所設計的平衡式帶通濾波器,藉由電阻調整耦合線之輸入阻抗,再以外展級調整其阻抗匹配於系統阻抗,便可完成一全頻段雜訊無反射之平衡式帶通濾波器。
zh_TW
dc.description.abstractUnder the trend of high-speed network development, it is a common approach to establish a communication system in the form of differential architecture due to its high immunity to noise and high dynamic range. This dissertation is devoted to exhibit new concepts of balanced bandpass filter (BBPF) designs. Non-reflective common-mode (CM) noise-rejecting feature (Absorptive or Reflectionless) is the most prominent point, which has not been linked in the related researches in the past. From the aspect of system performance, it is possible to prevent the reflected noise power from roaming around in the system, affecting the normal operation of other components by radiation or other forms of interference.
In the beginning, this dissertation proposes two kinds of four-port BBPF design. Both of the designs are based on the conventional branch-line BPF. For the first design, CM noise is rejected by the intermediate stage due to the virtual open boundary at the operating frequency, while the input and output stage are designed as matching circuits to the system impedance at the same frequency. Therefore, the CM noise would be absorbed into the loading resistors instead of reflected within a certain bandwidth. In the second design, the concept of π-type attenuator is introduced into the CM circuit, so that the noise rejection can be controlled below a specified level and the filter exhibits a very broadband noise suppression response.
Next, in order to improve the excessively large area taken by the distributed elements, this dissertation reports the third BBPF design that implemented by lumped elements. Similar to the first design, the input and output stages are the matching circuit at the operating frequency band. However, in the third filter design, the high input impedance seeing into the intermediate stage has no bandwidth limitation, which results an all-stop characteristic of CM response. In a short word, the third design not only keeps the merits of the previous two filter designs, but also has the advantage of size reduction.
Additionally, in order to demonstrate the concept of reflectionless noise rejection, a BBPF based on the terminated coupled line pair is proposed in this dissertation as the fourth filter design. For CM, the input impedance is adjusted to the system impedance by terminated coupled line pair at the middle stage and the external cells with resistor-loading branch lines on the both sides of coupled line pair. Thus, the proposed fourth BBPF design with the reflectionless noise rejection is complete.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:51:53Z (GMT). No. of bitstreams: 1
U0001-0308202002412400.pdf: 12971172 bytes, checksum: c3a19e1f4c9e89bcaa6c59c9295ad65e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents國立台灣大學博士學位論文口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xii
ACRONYMS xiii
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Literature Survey 3
1.3 Contributions 6
Chapter 2 Fundamentals of Filter Design 7
2.1 Insertion-Loss Method 7
2.2 Classical Lowpass Prototypes 9
2.2.1 Butterworth Lowpass Prototype 9
2.2.2 Chebyshev Lowpass Prototype 11
2.2.3 Quasi-Elliptic Lowpass Prototype 12
2.3 Frequency and Element Transformations 15
2.3.1 Impedance Transformation 15
2.3.2 Frequency Transformation 16
2.3.3 Bandpass Transformation 16
2.4 Immittance Inverters 18
2.4.1 Characterization of Ideal Immittance Inverters 18
2.4.2 Realization of Immittance Inverter 22
2.5 Transmission Line Resonators 25
2.5.1 Short-Circuited Quarter-Wavelength Transmission Line 25
2.5.2 Coupled-Line Resonator 27
2.6 Matching Approaches 30
2.6.1 Blocking Stage and Matching Circuit 30
2.6.2 π-pad Attenuator 31
2.6.3 Resistively Terminated Coupled Line 33
2.7 Summary 37
Chapter 3 Novel Balanced Bandpass Filter Designs with Noise Absorbing Feature 39
3.1 Proposed Circuit Topology for First Design 40
3.1.1 Theories and Models 40
3.1.2 Equivalent Circuit and Analysis of DM 41
3.1.3 Equivalent Circuit and Analysis of CM 42
3.1.4 Filter Realization 45
3.2 Proposed Circuit Topology for Second Design 48
3.2.1 Introduction of the Second Design 48
3.2.2 Theories and Models 48
3.2.3 Equivalent Model and Analysis of Differential Mode 49
3.2.4 Equivalent Model and Analysis of CM 52
3.2.5 Design Procedure of the Second Filter Design 55
3.2.6 Filter Implementation 57
3.3 Summary 61
Chapter 4 Compact High-Selectivity Balanced Bandpass Filters with Noise-Absorbing Feature and Extended Stopband 63
4.1 Proposed Circuit and Theory 64
4.1.1 Theories and Models of Proposed Third Design 64
4.1.2 Equivalent Circuit and Analysis of BPFS: 65
4.1.3 Equivalent Circuit and Analysis of HPMS: 70
4.1.4 Design Procedure of Third Proposed Filter 77
4.2 Implementation and Simulated Results 78
4.2.1 Design 3A: Type I HPMS – BPFS – Type I HPMS 79
4.2.2 Design 3B: Type II HPMS – BPFS – Type II HPMS 84
4.2.3 Design 3C: Type I HPMS-BPFS-Type II HPMS 90
4.2.4 Comparison 97
4.3 Summary 100
Chapter 5 Balanced Bandpass Filter with Reflectionless Noise-Rejecting Feature 101
5.1 Proposed Circuit Model and Synthesis Method 102
5.1.1 Equivalent Model and Analysis of Differential Mode 103
5.1.2 Equivalent Model and Analysis of Common Mode 107
5.1.3 Design Procedure of the Proposed Filter Circuit 109
5.2 IMPLEMENTATION AND RESULTS 110
5.2.1 Second-Order Filter Design 110
5.2.2 Fourth-Order Filter Design 115
5.3 Comparison and Discussion 119
5.4 Summary 122
Chapter 6 Conclusion 123
6.1 Brief Conclusion 123
6.2 Recommendations of Future Works 124
REFERENCE 126
PUBLICATION LIST 131
dc.language.isoen
dc.subject吸收zh_TW
dc.subject共模雜訊zh_TW
dc.subject全頻段雜訊抑制zh_TW
dc.subject差模訊號傳輸zh_TW
dc.subject射頻前端zh_TW
dc.subject縮小化zh_TW
dc.subject輻射zh_TW
dc.subject射頻干擾zh_TW
dc.subject印刷電路板zh_TW
dc.subjectprinted circuit board(PCB)en
dc.subjectAbsorptionen
dc.subjectcommon-mode (CM) noiseen
dc.subjectall-stop CM rejectionen
dc.subjectdifferential signalingen
dc.subjectradio-frequency front enden
dc.subjectinterference (EMI)en
dc.subjectminiaturizationen
dc.subjectradiationen
dc.subjectradio-frequency interference (RFI)en
dc.title非反射式雜訊抑制之平衡式饋入帶通濾波器設計zh_TW
dc.titleBalanced Bandpass Filters with Non-Reflective Noise-Rejecting Featureen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee盧信嘉(Hsin-Chia Lu),馬自莊(Tzyh-Ghuang Ma),陳士元(Shih-Yuan Chen),邱政男(Cheng-Nan Chiu),黃揚智(Yang-Chih Huang)
dc.subject.keyword吸收,共模雜訊,全頻段雜訊抑制,差模訊號傳輸,射頻前端,縮小化,輻射,射頻干擾,印刷電路板,zh_TW
dc.subject.keywordAbsorption,common-mode (CM) noise,all-stop CM rejection,differential signaling,radio-frequency front end,interference (EMI),miniaturization,radiation,radio-frequency interference (RFI),printed circuit board(PCB),en
dc.relation.page131
dc.identifier.doi10.6342/NTU202002246
dc.rights.note有償授權
dc.date.accepted2020-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
dc.date.embargo-lift2025-08-03-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202002412400.pdf
  未授權公開取用
12.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved