請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78333完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王培育(Pei-Yu Wang) | |
| dc.contributor.author | Chun-Chieh Huang | en |
| dc.contributor.author | 黃俊傑 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:51:41Z | - |
| dc.date.available | 2025-07-31 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-08 | |
| dc.identifier.citation | Barbosa, F.F., Santos, J.R., Meurer, Y.S.R., Macêdo, P.T., Ferreira, L.M.S., Pontes, I.M.O., Ribeiro, A.M., and Silva, R.H. (2013). Differential Cortical c-Fos and Zif-268 Expression after Object and Spatial Memory Processing in a Standard or Episodic-Like Object Recognition Task. Front Behav Neurosci 7, 112-112. C Konturek, P., Haziri, D., Brzozowski, T., Hess, T., Heyman, S., Kwiecien, S., J Konturek, S., and Koziel, J. (2015). Emerging role of fecal microbiota therapy in the treatment of gastrointestinal and extra-gastrointestinal diseases. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society 66, 483-491. Chien, C.-H., and Chen, S.-K. (2020). The Study of the Gut Microbiota in Calorie-restriction- induced Memory Enhancement and Parkinson’s Disease. Department of Life Science, College of Life Science, National Taiwan University (Unpublished master dissertation). Choi, J.-H., Sim, S.-E., Kim, J.-i., Choi, D.I., Oh, J., Ye, S., Lee, J., Kim, T., Ko, H.-G., Lim, C.-S., et al. (2018). Interregional synaptic maps among engram cells underlie memory formation. Science 360, 430. Chu, C., Murdock, M.H., Jing, D., Won, T.H., Chung, H., Kressel, A.M., Tsaava, T., Addorisio, M.E., Putzel, G.G., Zhou, L., et al. (2019). The microbiota regulate neuronal function and fear extinction learning. Nature 574, 543-548. Cohen, S.J., Munchow, A.H., Rios, L.M., Zhang, G., Asgeirsdóttir, H.N., and Stackman, R.W., Jr. (2013). The rodent hippocampus is essential for nonspatial object memory. Curr Biol 23, 1685-1690. Colman, R.J., Anderson, R.M., Johnson, S.C., Kastman, E.K., Kosmatka, K.J., Beasley, T.M., Allison, D.B., Cruzen, C., Simmons, H.A., Kemnitz, J.W., et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science (New York, NY) 325, 201-204. Conrad, C.D., Ortiz, J.B., and Judd, J.M. (2017). Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiology Behavior 178, 66-81. Deacon, R.M.J. (2013). Measuring motor coordination in mice. Journal of visualized experiments : JoVE, e2609-e2609. Desbonnet, L., Clarke, G., Traplin, A., O'Sullivan, O., Crispie, F., Moloney, R.D., Cotter, P.D., Dinan, T.G., and Cryan, J.F. (2015). Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 48, 165-173. Dinan, T.G., and Cryan, J.F. (2017). The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol Clin North Am 46, 77-89. Fabbiano, S., Suárez-Zamorano, N., Chevalier, C., Lazarević, V., Kieser, S., Rigo, D., Leo, S., Veyrat-Durebex, C., Gaïa, N., Maresca, M., et al. (2018). Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. Cell Metabolism 28, 907-921.e907. Fanselow, M.S., and Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7-19. Frankfurt, M., and Luine, V. (2015). The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 74, 28-36. Gareau, M.G., Wine, E., Rodrigues, D.M., Cho, J.H., Whary, M.T., Philpott, D.J., MacQueen, G., and Sherman, P.M. (2011). Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307. Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J., and Woodgett, J.R. (2011). Assessment of social interaction behaviors. Journal of visualized experiments : JoVE, 2473. Kennedy, E.A., King, K.Y., and Baldridge, M.T. (2018). Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Front Physiol 9, 1534-1534. Leung, C., Cao, F., Nguyen, R., Joshi, K., Aqrabawi, A.J., Xia, S., Cortez, M.A., Snead, O.C., Kim, J.C., and Jia, Z. (2018). Activation of Entorhinal Cortical Projections to the Dentate Gyrus Underlies Social Memory Retrieval. Cell Reports 23, 2379-2391. Li, Q., Han, Y., Dy, A.B.C., and Hagerman, R.J. (2017). The Gut Microbiota and Autism Spectrum Disorders. Frontiers in Cellular Neuroscience 11. Lopez-Rojas, J., and Kreutz, M.R. (2016). Mature granule cells of the dentate gyrus—Passive bystanders or principal performers in hippocampal function? Neuroscience Biobehavioral Reviews 64, 167-174. Luo, Y., Zeng, B., Zeng, L., Du, X., Li, B., Huo, R., Liu, L., Wang, H., Dong, M., Pan, J., et al. (2018). Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational psychiatry 8, 187-187. Lüscher Dias, T., Fernandes Golino, H., Oliveira, V.E.M.d., Dutra Moraes, M.F., and Schenatto Pereira, G. (2016). c-Fos expression predicts long-term social memory retrieval in mice. Behavioural Brain Research 313, 260-271. Mao, J.-H., Kim, Y.-M., Zhou, Y.-X., Hu, D., Zhong, C., Chang, H., Brislawn, C.J., Fansler, S., Langley, S., Wang, Y., et al. (2020). Genetic and metabolic links between the murine microbiome and memory. Microbiome 8, 53. Möhle, L., Mattei, D., Heimesaat, Markus M., Bereswill, S., Fischer, A., Alutis, M., French, T., Hambardzumyan, D., Matzinger, P., Dunay, Ildiko R., et al. (2016). Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Reports 15, 1945-1956. Most, J., Tosti, V., Redman, L.M., and Fontana, L. (2017). Calorie restriction in humans: An update. Ageing research reviews 39, 36-45. Neufeld, K.M., Kang, N., Bienenstock, J., and Foster, J.A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterology Motility 23, 255-e119. Ogbonnaya, E.S., Clarke, G., Shanahan, F., Dinan, T.G., Cryan, J.F., and O’Leary, O.F. (2015). Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biological Psychiatry 78, e7-e9. Pan, F., Zhang, L., Li, M., Hu, Y., Zeng, B., Yuan, H., Zhao, L., and Zhang, C. (2018). Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice. Microbiome 6, 54-54. Rezzi, S., Martin, F.-P.J., Shanmuganayagam, D., Colman, R.J., Nicholson, J.K., and Weindruch, R. (2009). Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Experimental Gerontology 44, 356-362. Rudzki, L., Ostrowska, L., Pawlak, D., Małus, A., Pawlak, K., Waszkiewicz, N., and Szulc, A. (2019). Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100, 213-222. Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell 167, 1469-1480.e1412. Sgritta, M., Dooling, S.W., Buffington, S.A., Momin, E.N., Francis, M.B., Britton, R.A., and Costa-Mattioli, M. (2019). Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron 101, 246-259.e246. Suarez, A.N., Hsu, T.M., Liu, C.M., Noble, E.E., Cortella, A.M., Nakamoto, E.M., Hahn, J.D., de Lartigue, G., and Kanoski, S.E. (2018). Gut vagal sensory signaling regulates hippocampus function through multi-order pathways. Nature Communications 9, 2181. Teng, L.-L., Lu, G.-L., Chiou, L.-C., Lin, W.-S., Cheng, Y.-Y., Hsueh, T.-E., Huang, Y.-C., Hwang, N.-H., Yeh, J.-W., Liao, R.-M., et al. (2019). Serotonin receptor HTR6-mediated mTORC1 signaling regulates dietary restriction–induced memory enhancement. PLOS Biology 17, e2007097. Wallace, C.J.K., and Milev, R. (2017). The effects of probiotics on depressive symptoms in humans: a systematic review. Annals of general psychiatry 16, 14-14. Wang, S., Huang, M., You, X., Zhao, J., Chen, L., Wang, L., Luo, Y., and Chen, Y. (2018). Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Scientific Reports 8, 13037. Wang, Y., Lawler, D., Larson, B., Ramadan, Z., Kochhar, S., Holmes, E., and Nicholson, J.K. (2007). Metabonomic Investigations of Aging and Caloric Restriction in a Life-Long Dog Study. Journal of Proteome Research 6, 1846-1854. Witte, A.V., Fobker, M., Gellner, R., Knecht, S., and Flöel, A. (2009). Caloric restriction improves memory in elderly humans. Proceedings of the National Academy of Sciences of the United States of America 106, 1255-1260. Zhang, C., Li, S., Yang, L., Huang, P., Li, W., Wang, S., Zhao, G., Zhang, M., Pang, X., Yan, Z., et al. (2013). Structural modulation of gut microbiota in life-long calorie-restricted mice. Nature communications 4, 2163-2163. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78333 | - |
| dc.description.abstract | 飲食節制在許多模式生物上都被證實具有延緩老化、抗發炎、抗肥胖及提升記憶功能的效果。我們實驗室先前藉由小鼠記憶行為實驗針對飲食節制的效果做 更近一步的分析,發現飲食限制會透過調控腦中血清素受體來達到記憶功能提升 的效果,然而飲食限制是透過何種路徑影響到大腦並不清楚。先前其他研究指出 飲食限制會藉由改變腸道菌相藉以達成抗肥胖等功效。同時,腸道菌相被認為會 透過所謂腸-腦軸線來影響大腦發育及行為功能。 在本實驗中,我們假設飲食限制亦是透過調控腸道菌相進而導致大腦中神經 細胞產生結構及功能上的變化,最後行為上表現出增強記憶功能。 我們透過抗生素處理的小鼠以及無菌小鼠兩種小鼠模式進行實驗,發現飲食 限制無法引發兩者之記憶功能提升與神經細胞樹突結構的改變。綜合以上結果可 知,飲食限制增強記憶力之效果的確是需要腸道菌相。為了證實其中的因果關係, 我們將飲食節制小鼠糞便中萃取出之菌相餵給正常飲食的小鼠,發現亦可提高記 憶功能表現,並引發神經細胞樹突結構的改變。 未來我們將近一步探討腸道菌相是否藉由迷走神經或是血液中代謝物等面向 影響大腦,並透過近一步的腸道菌相分析找到能夠提升記憶功能的關鍵菌種。 | zh_TW |
| dc.description.abstract | Dietary restriction (DR) is one of the most powerful regimens to improve the physiological condition. Various beneficial effects including anti-inflammation, longevity, and cognitive function were reported in multiple model organisms. We have previously demonstrated DR improves memory performance in mice although the underlying mechanism is not fully understood. Recent studies demonstrated DR modulates gut microbiota to exert various beneficial effects. In this study, we hypothesize that the microbiota-gut-brain axis plays a critical role in DR-induced memory enhancement. We adopted antibiotic-treated mice and germ-free mice as our experimental model. We demonstrated that DR-induced memory enhancement as well as structural alteration of hippocampal neurons is abolished by the removal of gut microbiota. More importantly, these DR-induced neurobehavioral effects could be accomplished by oral gavage of DR-derived fecal content without actually performing DR. Overall, our data demonstrated that the beneficial effects induced by DR were associated with the modulation of gut microbiota. The ongoing experiments are aimed to investigate several aspects of the gut-brain axis that responsible for DR-induced memory enhancement. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:51:41Z (GMT). No. of bitstreams: 1 U0001-0308202020354400.pdf: 3297699 bytes, checksum: 63ef79209645b6def38beb214b8a66b9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 .............................................................................................................. ii 誌謝 ................................................................................................................................. iii 中文摘要 .......................................................................................................................... v Abstract .......................................................................................................................... vi Chapter 1 Introduction .................................................................................................. 1 1.1 Overview of dietary restriction .................................................................................1 1.2 Dietary restriction and gut microbiota......................................................................1 1.3 Gut microbiota, gut-brain-axis and cognitive function..............................................2 Chapter 2 Materials and Methods ................................................................................ 4 2.1 Animals.....................................................................................................................4 2.2 Behavioral tests.........................................................................................................5 2.2.1 Novel object recognition test ...................................................................................................5 2.2.2 Three chamber social test ........................................................................................................6 2.2.3 Rotarod .....................................................................................................................................6 2.2.4 Elevated plus maze...................................................................................................................7 2.2.5 Open field test...........................................................................................................................7 2.2.6 Tail suspension..........................................................................................................................7 2.2.7 Marble burying test .................................................................................................................7 2.3 Dendritic morphology analysis..................................................................................8 2.3.1 Golgi-Cox impregnation process.............................................................................................8 2.3.2 Dendritic morphology and dendritic spine density analysis.................................................9 2.4 Statistics analysis ......................................................................................................9 Chapter 3 Results.......................................................................................................... 10 3.1 Microbiota depletion mouse model .........................................................................10 3.1.1 Microbiota depletion abolishes DR-induced memory enhancement .................................10 3.1.2 Microbiota depletion and DR have no effects on mood-related behavior test; microbiota depletion partially abolishes DR effect on motor improvement..................................................11 3.1.3 Microbiota depletion abolishes DR-induced structural alterations...................................11 3.1.4 DR increases spine density while abolished by abx-treatment...........................................12 3.2 Germ-free mouse model..........................................................................................13 3.2.1 GF mice display no memory enhancement under DR ........................................................13 3.2.2. GF mice have reduced depression-like behavior and DR does not improve motor coordination under germ-free status .............................................................................................13 3.2.3 Gut microbiota is required for DR-induced structural alterations ...................................14 3.2.4 DR fails to increase spine density without gut microbiota..................................................14 3.3 Fecal microbiota transplantation ............................................................................14 3.3.1 DR fecal content is sufficient to improve memory function, while the presence of bacteria is of the essence.................................................................................................................15 3.3.2 FMT does not affect spontaneous locomotor activity, anxiety-like behavior, depression-like behavior, and motor coordination.......................................................................15 3.3.3 DR fecal content is sufficient to partially recapitulate DR-induced structural alterations..........................................................................................................................................................16 3.3.4 DR fecal content is sufficient to increase spine density.......................................................16 Chapter 4 Discussion .................................................................................................... 17 Chapter 5 Figures ......................................................................................................... 21 Chapter 6 References ................................................................................................... 57 | |
| dc.language.iso | en | |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | 腸-腦軸線 | zh_TW |
| dc.subject | 飲食節制 | zh_TW |
| dc.subject | 記憶提升 | zh_TW |
| dc.subject | 樹突結構 | zh_TW |
| dc.subject | gut microbiota | en |
| dc.subject | dendritic morphology | en |
| dc.subject | memory improvement | en |
| dc.subject | gut-brain-axis | en |
| dc.subject | dietary restriction | en |
| dc.title | 腸道菌對於飲食限制增強記憶功能之研究 | zh_TW |
| dc.title | The role of gut microbiota in dietary restriction-induced memory enhancement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 王培育(0000-0002-1792-8935) | |
| dc.contributor.oralexamcommittee | 吳明賢(Ming-Shiang Wu),陳示國(Shih-Kuo Chen),徐丞志(Cheng-Chih Hsu),姚皓傑(Hau-Jie Yau) | |
| dc.contributor.oralexamcommittee-orcid | 吳明賢(0000-0002-1940-6428),陳示國(0000-0002-7921-1358),徐丞志(0000-0002-2892-5326),姚皓傑(0000-0001-7454-7971) | |
| dc.subject.keyword | 飲食節制,腸道菌相,腸-腦軸線,記憶提升,樹突結構, | zh_TW |
| dc.subject.keyword | dietary restriction,gut microbiota,gut-brain-axis,memory improvement,dendritic morphology, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU202002313 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 腦與心智科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 腦與心智科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202020354400.pdf 未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
