請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78328完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王東美(Tong-Mei Wang) | |
| dc.contributor.author | Yi-Hao Lan | en |
| dc.contributor.author | 藍翊豪 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:51:27Z | - |
| dc.date.available | 2025-08-10 | |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981 Dec;10(6):387-416. Al-Nawas B, Wagner W, Grötz KA. Insertion torque and resonance frequency analysis of dental implant systems in an animal model with loaded implants. Int J Oral Maxillofac Implants. 2006 Sep-Oct;21(5):726-32. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52(2):155-70. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25. Albrektsson T, Zarb GA. Current interpretations of the osseointegrated response: clinical significance. Int J Prosthodont. 1993 Mar-Apr;6(2):95-105. Albrektsson T, Donos N, Albrektsson T, Donos N, Thoma D, Pjetursson B, et al. Implant survival and complications. The Third EAO consensus conference 2012. Clin Oral Implants Res. 2012 Oct;23 Suppl 6:63-5. Al-faraje L. Surgical Complications in Oral Implantology. (1st Edition ed.). Chicago: Quintessence, 2011: 77-87. Almeida KP, Delgado-Ruiz R, Carneiro LG, Leiva AB, Calvo-Guirado JL, Gómez-Moreno G, et al. Influence of Drilling Speed on Stability of Tapered Dental Implants: An Ex Vivo Experimental Study. Int J Oral Maxillofac 82 Implants. 2016 Jul-Aug;31(4):795-8. Alsaadi G, Quirynen M, Michiels K, Jacobs R, van Steenberghe D. A biomechanical assessment of the relation between the oral implant stability at insertion and subjective bone quality assessment. J Clin Periodontol. 2007 Apr;34(4):359-66. Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003;14 Suppl 3:S13-8. Beumer JI, Faulkner RF, Shah K, Moy PK. Fundamental of implant dentistry: prosthodontic principles. Chicago: Quintessence. 2015:3-12. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008 Apr;42(4):606-15. Bonfield W, Li CH. The temperature dependence of the deformation of bone. J Biomech. 1968 Dec;1(4):323-9. Bornstein MM, Schmid B, Belser UC, Lussi A, Buser D. Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface. 5-year results of a prospective study in partially edentulous patients. Clin Oral Implants Res. 2005 Dec;16(6):631-8. Brånemark PI, Albrektsson T. Introduction to osseointegration. Tissue-Integrated Prostheses. Berlin, New York: Quintessence. 1985:11-76. Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81-100. 83 Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132. Brånemark PI, Lindstrom J. A modified rabbit's ear chamber; high-power high-resolution studies in regenerated and preformed tissues. Anat Rec. 1963 Apr;145:533-40. Brånemark R, Ohrnell LO, Skalak R, Carlsson L, Brånemark PI. Biomechanical characterization of osseointegration: an experimental in vivo investigation in the beagle dog. J Orthop Res. 1998 Jan;16(1):61-9. Brisman DL. The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants. 1996 Jan-Feb;11(1):35-7. Burstein J, Mastin C, Le B. Avoiding injury to the inferior alveolar nerve by routine use of intraoperative radiographs during implant placement. J Oral Implantol. 2008;34(1):34-8. Chang PC, Lang NP, Giannobile WV. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin Oral Implants Res. 2010 Jan;21(1):1-12. Chen D, Zhu S, Yi H, Zhang X, Chen D, Liang J, et al. Cone beam x-ray luminescence computed tomography: a feasibility study. Med Phys. 2013 Mar;40(3):031111. 84 Chrcanovic BR, Kisch J, Albrektsson T, Wennerberg A. Impact of Different Surgeons on Dental Implant Failure. Int J Prosthodont. 2017 September/October;30(5):445–54. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998 Sep-Oct;11(5):391-401. Devlin H, Horner K, Ledgerton D. A comparison of maxillary and mandibular bone mineral densities. J Prosthet Dent. 1998 Mar;79(3):323-7. Diz P, Scully C, Sanz M. Dental implants in the medically compromised patient. J Dent. 2013 Mar;41(3):195-206. Duncan RL, Turner CH, Duncan RL. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int. 1995 Nov;57(5):344-58. Eckerdal O, Kvint S. Presurgical planning for osseointegrated implants in the maxilla. A tomographic evaluation of available alveolar bone and morphological relations in the maxilla. Int J Oral Maxillofac Surg. 1986 Dec;15(6):722-6. Engquist B, Bergendal T, Kallus T, Linden U. A retrospective multicenter evaluation of osseointegrated implants supporting overdentures. Int J Oral Maxillofac Implants. 1988;3(2):129-34. Eriksson RA, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg. 1984;18(3):261-8. Esposito M, Grusovin MG, Maghaireh H, Worthington HV. Interventions for 85 replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev. 2013 Mar 28;(3):CD003878. Fan HY, Lin LD. Investigating implant stability parameters with different implant macro-design in Sawbone® blocks. Master Thesis. 2015. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University. Fernandes MG, Fonseca EM, Jorge RN. Assessment of different drill diameter on bone drilling. J. Mech. Eng. Sci.. 2017;1:135-141. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Brånemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants. 1991;6(2):142-6. Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography: an in vitro study in pig ribs. Clin Oral Implants Res. 1995 Sep;6(3):164-71. Friberg B, Sennerby L, Meredith N, Lekholm U. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg. 1999 Aug;28(4):297-303. Friberg B, Sennerby L, Roos J, Lekholm U. Identification of bone quality in conjunction with insertion of titanium implants. A pilot study in jaw autopsy specimens. Clin Oral Implants Res. 1995 Dec;6(4):213-9. Fugazzotto PA, Wheeler SL, Lindsay JA. Success and failure rates of cylinder implants in type IV bone. J Periodontol. 1993 Nov;64(11):1085-7. Fyhrie DP. Summary--Measuring 'bone quality'. J Musculoskelet Neuronal Interact. 2005 Oct-Dec;5(4):318-20. 86 Gehrke SA, Guirado JLC, Bettach R, Fabbro MD, Martínez CP, Shibli JA. Evaluation of the insertion torque, implant stability quotient and drilled hole quality for different drill design: an in vitro Investigation. Clin Oral Implants Res. 2018 Jun;29(6):656-62. Glauser R, Ruhstaller P, Windisch S, Zembic A, Lundgren A, Gottlow J, et al. Immediate occlusal loading of Brånemark System TiUnite implants placed predominantly in soft bone: 4-year results of a prospective clinical study. Clin Implant Dent Relat Res. 2005;7 Suppl 1:S52-9. Gotfredsen K, Holm B. Implant-supported mandibular overdentures retained with ball or bar attachments: a randomized prospective 5-year study. Int J Prosthodont. 2000 Mar-Apr;13(2):125-30. Greenstein G, Cavallaro J. Implant Insertion Torque: Its Role in Achieving Primary Stability of Restorable Dental Implants. Compend Contin Educ Dent. 2017 Feb;38(2):88-95; quiz 96. Greenstein G, Cavallaro J, Greenstein B, Tarnow D. Treatment planning implant dentistry with a 2-mm twist drill. Compend Contin Educ Dent. 2010 Mar;31(2):126-8, 130, 132 passim; quiz 137-8. Herekar M, Sethi M, Ahmad T, Fernandes AS, Patil V, Kulkarni H. A correlation between bone (B), insertion torque (IT), and implant stability (S): BITS score. J Prosthet Dent. 2014 Oct;112(4):805-10. Hillery HT, Shuaib I. Temperature effects in drilling of human and bovine bone. J Mater Process Technol. 1999;92e93: 302-308. Hohn EA, Brooks AG, Leasure J, Camisa W, van Warmerdam J, Kondrashov D, et 87 al. Development of a surgical skills curriculum for the training and assessment of manual skills in orthopedic surgical residents. J Surg Educ. 2015 Jan-Feb;72(1):47-52. Hounsfield GN. Computed medical imaging. Medical physics. 1980;7:283-290. Hsu YT, Wang HL. Ideal implant positioning. J Taiwan Periodontol. 2013;21:359-71. Huang HM, Lee SY, Yeh CY, Lin CT. Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clin Oral Implants Res. 2002 Feb;13(1):65-74. Huiskes R, Van Driel WD, Prendergast PJ, Søballe K. A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med. 1997 Dec;8(12):785-8. Hutton JE, Heath MR, Chai JY, Harnett J, Jemt T, Johns RB, et al. Factors related to success and failure rates at 3-year follow-up in a multicenter study of overdentures supported by Brånemark implants. Int J Oral Maxillofac Implants. 1995 Jan-Feb;10(1):33-42. Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5-year analysis. J Periodontol. 1991 Jan;62(1):2-4. Jemt T, Chai J, Harnett J, Heath MR, Hutton JE, Johns RB, et al. A 5-year prospective multicenter follow-up report on overdentures supported by osseointegrated implants. Int J Oral Maxillofac Implants. 1996 May-Jun;11(3):291-8. Jensen O. Site classification for the osseointegrated implant. J Prosthet Dent. 1989 Feb;61(2):228-34. Jeong CH, Kim DY, Shin SY, Hong J, Kye SB, Yang SM. The effect of implant drilling speed on the composition of particle collected during site preparation. J Korean Acad Periodontol, 2009, 39. Suppl:253-59. Johansson P, Strid KG. Assessment of bone quality from cutting resistance during implant surgery. Int J Oral Maxillofac Implants. 1994;9:279-88. Johns RB, Jemt T, Heath MR, Hutton JE, McKenna S, McNamara DC, et al. A multicenter study of overdentures supported by Brånemark implants. Int J Oral Maxillofac Implants. 1992;7(4):513-22. Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys. 2011 Dec;33(10):1221-7. Kim DG, Elias KL, Jeong YH, Kwon HJ, Clements M, Brantley WA, et al. Differences between buccal and lingual bone quality and quantity of peri-implant regions. J Mech Behav Biomed Mater. 2016 07;60:48-55. Kinoshita H, Nagahata M, Takano N, Takemoto S, Matsunaga S, Abe S, et al. Development of a Drilling Simulator for Dental Implant Surgery. J Dent Educ. 2016 Jan;80(1):83-90. Krafft T, Winter W, Wichmann M, Karl M. In vitro validation of a novel diagnostic device for intraoperative determination of alveolar bone quality. Int J Oral Maxillofac Implants. 2012 Mar-Apr;27(2):318-28. Lee J, Ozdoganlar OB, Rabin Y. An experimental investigation on thermal exposure during bone drilling. Med Eng Phys. 2012 Dec;34(10):1510-20. 89 Lee S, Gantes B, Riggs M, Crigger M. Bone density assessments of dental implant sites: 3. Bone quality evaluation during osteotomy and implant placement. Int J Oral Maxillofac Implants. 2007 Mar-Apr;22(2):208-12. Lee YP, Lin LD. Analyzing the correlation between density of artificial bone and profile of cutting resistance with 3.3mm screw tap. Master thesis. 2007. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University. Lekholm U, Zarb GA. Patient selection and preparation. Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence, 1985:199-209. Lin CJ, Wang TM, Yang TC, Lin LD. Effects of drilling protocols in soft bone on primary stability parameters. Master thesis. 2017. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University. Lin YC, Wang TM, Lin LD. Evaluation of Sawbone® training protocol in using tactile sensation to classify bone quality during implant surgery. Master thesis. 2018. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University. Lin YY, Wang TM, Yang TC, Lin LD. Comparison of microstructure for cone beam computed tomography and micro computed tomography and investigating implant stability parameter in iliac bone blocks of swine. Master thesis. 2017. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University. Linck GK, Ferreira GM, De Oliveira RC, Lindh C, Leles CR, Ribeiro-Rotta RF. 90 The Influence of Tactile Perception on Classification of Bone Tissue at Dental Implant Insertion. Clin Implant Dent Relat Res. 2016 Jun;18(3):601-8. Lindh C, Petersson A, Rohlin M. Assessment of the trabecular pattern before endosseous implant treatment: diagnostic outcome of periapical radiography in the mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996 Sep;82(3):335-43. Lindh C, Oliveira GH, Leles CR, do Carmo Matias Freire M, Ribeiro-Rotta RF. Bone quality assessment in routine dental implant treatment among Brazilian and Swedish specialists. Clin Oral Implants Res. 2014 Sep;25(9):1004-9. Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res. 1996 Dec;7(4):329-36. Linkow LI, Chercheve R. Theories and techniques of oral implantology. CV Mosby Co, 1970. Lioubavina-Hack N, Lang NP, Karring T. Significance of primary stability for osseointegration of dental implants. Clin Oral Implants Res. 2006 Jun;17(3):244-50. Lughmani WA, Farukh F, Bouazza-Marouf K, Ali H. Drilling resistance: A method to investigate bone quality. Acta Bioeng Biomech. 2017;19(1):55-62. Lundskog J. Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scand J Plast Reconstr Surg. 1972;9:1-80. MacMillan HA. Structural characteristics of the alveolar process. Int J Ortho. 1926.12:722-730. Marković A, Calvo-Guirado JL, Lazić Z, Gómez-Moreno G, Ćalasan D, Guardia J, et al. Evaluation of primary stability of self-tapping and non-self-tapping dental implants. A 12-week clinical study. Clin Implant Dent Relat Res. 2013 Jun;15(3):341-9. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. Clin Oral Implants Res. 2001 Oct;12(5):423-32. Marotti G, Palumbo C. The mechanism of transduction of mechanical strains into biological signals at the bone cellular level. Eur J Histochem. 2007;51 Suppl 1:15-9. Matthews LS, Hirsch C. Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am. 1972 Mar;54(2):297-308. Misch CE. Density of bone: effect on treatment plans, surgical approach, healing, and progressive boen loading. Int J Oral Implantol. 1990;6(2):23-31. Misch CE. Density of bone: effect on treatment planning, surgical approach, and healing. Contemporary Implant dentistry. 1993:469-85. Misch CE. Non-functional immediate teeth in partially edentulous patients: A pilot study of 10 consecutive cases using the maestro dental implant system. Compendium. 1998;19:25-36. Misch CE. Contemporary Implant Dentistry. (3rd ed.). : C V Mosby Co, 2008;7:130-46. 92 Misch CE, Perel ML, Wang HL, Sammartino G, Galindo-Moreno P, Trisi P, et al. Implant success, survival, and failure: the International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant Dent. 2008 Mar;17(1):5-15. Misch CE, Resnik R. Misch's Avoiding Complications in Oral Implantology. (1st ed.). : C V Mosby Co, 2017. Misch CE, Wang HL, Misch CM, Sharawy M, Lemons J, Judy KW. Rationale for the application of immediate load in implant dentistry: part II. Implant Dent. 2004 Dec;13(4):310-21. Mohammad AA, Bin K, Hideaki K, Fumiya N, Shiya H, Yasutomo Y, Satoru M, Shinichi ABE, Naoki TA. Quantitative study of force sensing while drilling trabecular bone in oral implant surgery. J Biomech Science and Engineering. 2016;11:1-9. Morris HE, Ochi S, Crum P, Orenstein I, Plezia R. Bone density: its influence on implant stability after uncovering. J Oral Implantol. 2003;29(6):263-9. Moy PK, Medina D, Shetty V, Aghaloo TL. Dental implant failure rates and associated risk factors. Int J Oral Maxillofac Implants. 2005 Jul-Aug;20(4):569-77. Naitoh M, Nakahara K, Suenaga Y, Gotoh K, Kondo S, Ariji E. Comparison between cone-beam and multislice computed tomography depicting mandibular neurovascular canal structures. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Jan;109(1):e25-31. Niimi A, Ozeki K, Ueda M, Nakayama B. A comparative study of removal torque 93 of endosseous implants in the fibula, iliac crest and scapula of cadavers: preliminary report. Clin Oral Implants Res. 1997 Aug;8(4):286-9. O'Sullivan D, Sennerby L, Meredith N. Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. Clin Implant Dent Relat Res. 2000;2(2):85-92. O'Sullivan D, Sennerby L, Jagger D, Meredith N. A comparison of two methods of enhancing implant primary stability. Clin Implant Dent Relat Res. 2004;6(1):48-57. Pandey RK, Panda SS. Drilling of bone: A comprehensive review. J Clin Orthop Trauma. 2013 Mar;4(1):15-30. PARFITT GJ. An investigation of the normal variations in alveolar bone trabeculation. Oral Surg Oral Med Oral Pathol. 1962 Dec;15:1453-63. Patterson EA, Johns RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants. 1992;7(1):26-33. Pogrel MA, Thamby S. Permanent nerve involvement resulting from inferior alveolar nerve blocks. J Am Dent Assoc. 2000 Jul;131(7):901-7. Preiskel HW, Tsolka P. Treatment outcomes in implant therapy: the influence of surgical and prosthodontic experience. Int J Prosthodont. 1995 May-Jun;8(3):273-9. Rabel A, Köhler SG, Schmidt-Westhausen AM. Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig. 2007 Sep;11(3):257-65. 94 Ramp LC, Jeffcoat RL. Dynamic behavior of implants as a measure of osseointegration. Int J Oral Maxillofac Implants. 2001 Sep-Oct;16(5):637-45. Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech. 1988;21(2):155-68. Ritchey, B., Orban, B. The crests of the interdental alveolar septa. J.Periodontol. 1953 ; 24(2), 75-87. Rokn A, Rasouli Ghahroudi AA, Daneshmonfared M, Menasheof R, Shamshiri AR. Tactile sense of the surgeon in determining bone density when placing dental implant. Implant Dent. 2014 Dec;23(6):697-703 Romanos GE, Basha-Hijazi A, Gupta B, Ren YF, Malmstrom H. Role of clinician's experience and implant design on implant stability. An ex vivo study in artificial soft bones. Clin Implant Dent Relat Res. 2014 Apr;16(2):166-71. Romanos GE, Bastardi DJ, Moore R, Kakar A, Herin Y, Delgado-Ruiz RA. In Vitro Effect of Drilling Speed on the Primary Stability of Narrow Diameter Implants with Varying Thread Designs Placed in Different Qualities of Simulated Bone. Materials (Basel). 2019 Apr 25;12(8):E1350. Sachdeva A, Dhawan P, Sindwani S. Assessment of Implant Stability: Methods and Recent Advances. Br J Med Med Res. 2016;12:1-10. Schnitman PA, Rubenstein JE, Whörle PS, DaSilva JD, Koch GG. Implants for partial edentulism. J Dent Educ. 1988 Dec;52(12):725-36. Schwarz MS, Rothman SL, Rhodes ML, Chafetz N. Computed tomography: Part I. Preoperative assessment of the mandible for endosseous implant surgery. Int J Oral Maxillofac Implants. 1987;2(3):137-41. Sendyk DI, Chrcanovic BR, Albrektsson T, Wennerberg A, Zindel Deboni MC. Does Surgical Experience Influence Implant Survival Rate? A Systematic Review and Meta-Analysis. Int J Prosthodont. 2017 Jul/Aug;30(30):341-7. Smedberg JI, Lothigius E, Bodin I, Frykholm A, Nilner K. A clinical and radiological two-year follow-up study of maxillary overdentures on osseointegrated implants. Clin Oral Implants Res. 1993 Mar;4(1):39-46. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res. 1998;43(2):192-203. Tabassum A, Meijer GJ, Wolke JG, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin Oral Implants Res. 2010 Feb;21(2):213-20. Thompson HC. Effect of drilling into bone. J Oral Surg (Chic). 1958 Jan;16(1):22-30. Toyoshima T, Wagner W, Klein MO, Stender E, Wieland M, Al-Nawas B. Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model. Clin Implant Dent Relat Res. 2011 Mar;13(1):71-8. Trisi P, Rao W. Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res. 1999 Feb;10(1):1-7. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res. 2009 May;20(5):467-71. Truhlar RS, Morris HF, Ochi S, Winkler S. Second-stage failures related to bone quality in patients receiving endosseous dental implants: DICRG Interim Report No. 7. Dental Implant Clinical Research Group. Implant Dent. 1994;3(4):252-5. Turkyilmaz I, Aksoy U, McGlumphy EA. Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data. Clin Implant Dent Relat Res. 2008 Dec;10(4):231-7. Turner CH, Pavalko FM. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci. 1998;3(6):346-55. Van Steenberghe D, Jacobs R, Desnyder M, Maffei G, Quirynen M. The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage. Clin Oral Implants Res. 2002 Dec;13(6):617-22. Velikov S, Susin C, Heuberger P, Irastorza-Landa A. A New Site Preparation Protocol That Supports Bone Quality Evaluation and Provides Predictable Implant Insertion Torque. J Clin Med. 2020 Feb 11;9(2):E494. Wallach S, Farley JR, Baylink DJ, Brenner-Gati L. Effects of calcitonin on bone quality and osteoblastic function. Calcif Tissue Int. 1993 May;52(5):335-9. Wang TM. Technical innovation for improving the reliability, stability and survival rates of dental implants: From engineering informatics to 97 experiments. PhD thesis. 2013. Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University. Wang TM, Lee MS, Wang JS, Lin LD. The effect of implant design and bone quality on insertion torque, resonance frequency analysis, and insertion energy during implant placement in low or low- to medium-density bone. Int J Prosthodont. 2015 Jan-Feb;28(1):40-7. Weng D, Jacobson Z, Tarnow D, Hürzeler MB, Faehn O, Sanavi F, et al. A prospective multicenter clinical trial of 3i machined-surface implants: results after 6 years of follow-up. Int J Oral Maxillofac Implants. 2003 May-Jun;18(3):417-23. Wu MF, TM Lee, K Yuan, CC Tseng. The osseointegration of nano-structured implants: a literature review. J Taiwan Periodontol. 2016;21:359-71. Yamaguchi Y, Shiota M, Munakata M, Kasugai S, Ozeki M. Effect of implant design on primary stability using torque-time curves in artificial bone. Int J Implant Dent. 2015 Dec;1(1):21. Yang CB. The myth and trap of jaw bone quality (density) Classification. Taiwan Dental Journal. 2011;30:20-5. Yuan JC, Kaste LM, Lee DJ, Harlow RF, Knoernschild KL, Campbell SD, et al. Dental student perceptions of predoctoral implant education and plans for providing implant treatment. J Dent Educ. 2011 Jun;75(6):750-60. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78328 | - |
| dc.description.abstract | 中文摘要 實驗目的 骨質的軟硬一直被認為是影響人工植牙成功率的重要因子之一。過硬或過軟的骨質可能影響人工牙根植體植入時的初期穩定度、進而影響等待骨整合的時間以及植體的成功率。臨床上手術醫師常以鑽骨時的手感來診斷骨質並決定手術步驟。由於不同醫師鑽骨時認知的手感可能不同,且受到鑽針轉速的影響,因此可能需要累積足夠的經驗才有能力診斷骨質。 本實驗目的是探討不同的鑽針轉速對於鑽骨手感的影響, 藉此找出區分不同骨質的合適鑽針轉速,以提供缺乏植牙手術經驗的牙醫師選用合適的鑽針轉速, 協助以鑽骨手感來判定骨質軟硬的能力養成。 實驗材料與方法 本實驗邀請牙醫師以不同鑽針轉速在不同密度的模擬骨塊上鑽孔,以反饋手感確認骨塊的硬度並填寫問卷作答。本實驗分前導實驗與正式實驗兩部分 1. 前導實驗 甲、受試者招募: 前導實驗收錄 10 位少植牙經驗但領有牙醫師執照之台灣大學醫學院附設醫院醫師,其中含 5 位女性、5 位男性,平均年齡: 29.2 歲。 乙、實驗設計: 使用 Sawbone®(Pacific Research Laboratories, Inc. Vashon, Washington,USA) 所出品聚氯酯生物力學模擬骨塊(biomechanical test block) 模擬人體海綿骨。使用之模擬骨塊密度為 5pcf、10pcf、15pcf、30pcf、50pcf,pcf 是密度單位 pounds per cubic foot 的縮寫。將骨塊切割成尺寸50mm(長) X 50mm(寬) X 20mm(高)的長方體並依標準水粉比(100g powder : 23c.c.water )包埋於 type IV die stone (Silky-Rock, Whip-Mix Corporation, USA),以石膏研磨機整平表面後在骨塊表面貼上 PVC 膠帶,完成標準模型備製。 使用的植牙手機為日本 NSK Nakanishi 公司出產的 Surgic XT Plus machine (Mont Blanc 20:1 Push Button Dental Implant Handpiece Low Speed Contra-angle, NSK Nakanishi, Japan ),設定扭力 25N-cm。 每位受試者共測試一次,每次四輪,每輪為不同鑽針轉速,總共四種轉速(500RPM, 1000RPM, 1500RPM, 2000RPM),四種轉速順序為隨機順序,每輪開始測試時由主持人設定好轉速後請受試者對 50pcf 模擬骨塊鑽孔並告知為最硬的骨塊,接著對 5pcf、10pcf、10pcf、15pcf、30pcf 共五塊模擬骨塊隨機順序鑽骨,感受鑽骨時的阻抗。每次鑽骨後以視覺類比樣表(Visual analog scale, VAS )作答該骨塊之硬度,每輪測試結束後即更換下一輪之骨塊與鑽針轉速直到四輪測試完成。 丙、結果測量與統計 : 記錄群體受試者對於不同硬度骨塊的鑽骨手感 VAS 值及敘述性統計。以 ANOVA 評估鑽針轉速對鑽骨手感的影響。統計骨塊在不同鑽針轉速設定下的排序正確率,並兩兩進行 paired t-test 是否有統計上的差異。所有統計分析 p-value 設定在<0.05 表示在統計學上其有差異。 丁、實驗結果: One way ANOVA 顯示在 30pcf 骨塊中不同轉速組別的 VAS 值有顯著差異(P<0.05),其餘骨塊則無顯著差異。兩次相同密度骨塊(10pcf) 的平均 VAS 值比較結果顯示沒有顯著差異。骨塊 10pcf 中 1000 RPM 以及 1500 RPM 的平均 VAS 值比 2000RPM來得高(paired t-test, p<0.05)。骨塊 30pcf 中 500RPM 的平均 VAS 值比2000RPM 來得高(paired t-test, p<0.05)。全部骨塊的排序正確比例在較低鑽針轉速(500RPM 1000RPM)高於較高鑽針轉速(1500RPM 2000RPM)。在配對排序骨塊中(10pcf 原始-15pcf),較低鑽針轉速的排序正確率高於較高鑽針轉速。 戊、前導實驗結論: 鑽針轉速在模擬骨塊上的測試顯示對鑽骨手感有影響,較高鑽針轉速鑽骨手感的阻抗有比較低鑽針轉速下降的趨勢。在骨塊排序正確率方面較高鑽針轉速有正確率較低的趨勢。 確立鑽針轉速可能對鑽骨手感的影響,需進一步完成正式實驗確認結果。在正式實驗中將樣本人數提高為 30 位,並經統計專家的建議在實驗設計上有微幅更改。 2. 正式實驗 甲、受試者招募: 正式實驗收錄 30 位少植牙經驗但領有牙醫師執照之台灣大學醫學院附設醫院醫師,其中含 20 位女性、10 位男性,平均年齡: 27.3 歲。 乙、實驗設計: 同前導實驗方式製作標準模型。同前導實驗之實驗設計,但每輪測試骨塊由原本 5 塊(5pcf、10pcf、 10pcf、15pcf、30pcf)改至 7 塊(5pcf、5pcf、10pcf、10pcf、15pcf、15pcf、30pcf)。 丙、結果測量與統計 : 同前導實驗敘述。 正式實驗結果: One way ANOVA 顯示在各硬度骨塊中不同鑽針轉速群組之間沒有明顯差異。骨塊 5pcf 中 500 RPM 的平均 VAS 值比 2000RPM 來得低(paired t-test, p<0.05)。全部骨塊的排序正確比例依原始值在較低鑽針轉速(500RPM 1000RPM)高於較高鑽針轉速(1500RPM 2000RPM),其中 500RPM 與 1000RPM 對上 1500RPM時有顯著差異(p<0.05)。在配對排序骨塊中,骨塊 5pcf 對 10pcf、10pcf 對 15pcf、15pcf 對 30pcf 都顯示鑽針較低轉速(500RPM 1000RPM)的排序正確率高於鑽針較高轉速(1500RPM 2000RPM),其中在骨塊 10pcf 對 15pcf 組別裡的 500RPM 與1000RPM 對上 1500RPM 時有顯著差異(p<0.05)。再測信度顯示在 500RPM、1000RPM、2000RPM 各有組別的 Pearson correlation約在 57%~70%,在 1500RPM 組別 Pearson correlation 約 39%。 結論: 鑽針轉速在模擬骨塊上的測試顯示對鑽骨手感有影響。在骨塊排序正確率方面較低鑽針轉速(500RPM 1000RPM)有正確率較高的趨勢。臨床植牙鑽骨可依照本實驗的結果來選擇合適的鑽針轉速。本實驗受限於受試者之主觀感受經驗彼此差異,實驗結果之可重復性仍待更進一步實驗證實。影響鑽骨手感的因素眾多,本實驗僅針對鑽針轉速一節研究討論,未來研究應討論其他因素對於鑽骨手感的影響,用以修正訓練模組並提供臨床醫師更好的環境數據,提高人工植牙成功率,增進病人福祉。 | zh_TW |
| dc.description.abstract | Abstract Research goal Since the concept of “osseointegration” introduced by Dr.Bråanemark in 1952, dental implants have becoming a long-term and predictable treatment option for patients with missing teeth. The establishment of osseointegration is affected by multiple factors.Bone quality is believed as one of most important factors. Many surgeons use their tactile sensation to evaluate the bone quality while drilling at implant site, then adapt or modifiy the following implant placement protocol. However, individual tactile sensation is affected by other factors like surgeon’s personal experience, drilling speed, bur size,…etc. The purpose of this study was to evaluate the effects of drilling speed on tactile sensation while drilling on artificial bone blocks(Sawbone ®) and tried to find the proper drilling speed when bone quality was evaluated. Material and Methods 1. Study enrollment: Thirty operators (10 men and 20 women), were voluntarily recruited from the junior residents of National Taiwan University Hospital since July 2019 to August 2019. They were all board-certified dentists (starting to practice within 5 years) with few implant surgery experiences(less than 10 implants). The average age of participants was 27.3 years (range: 25~34). The study protocol was approved by NTUH institutional research ethic committee (Approval number:201901021RINB). 2. Study designs: Each participant used a new 2-mm twist drill (Twist Drill w Tip 2x15mm, REF 32297, Nobel Biocare AB, Sweden) attached to an implant motor machine (Surgial XT Plus, NSK Nakanishi Inc., Japan) to drill the artificial bone blocks (Biomechnical Test Material, Sawbones® , Pacific Research Laboratories, Inc. Vashon, Washington, USA). They were asked to drill each artificial bone block to a depth of 10mm and to report the drilling resistance by a 100-mm visual analog scale, while VAS=100 was defined as the same drilling resistance as on 50pcf bone block and VAS=0 was defined as no drilling resistance. Each participant had one test, containing 4 rounds. Each round was only assigned to one drilling speed. Four drilling speeds (500rpm, 1000rpm, 1500rpm, and 2000rpm) were set in 4 rounds randomly. Seven artificial bone blocks (5pcf, 5pcf, 10pcf, 10pcf, 15pcf, 15pcf, and 30pcf) were tested in a random sequence in each round. The participants answered the drilling resistance immediately after drilling each block and couldn’t modify their answer later. After they finished one round, the drilling speed was changed in the next round. The test was finished after four rounds were performed. Results Difference in operator’s tactile sensation among different drilling speed was noted.In the group of harder artificial bone block(15pcf, 30pcf), mean VAS score decreased with higher drilling speeds(1500RPM, 2000RPM).There is different ability of each drilling speed to classify bone quality. Lower drilling speeds(500RPM, 1000RPM) seem to be more accurate to classify the overall artificial bone block(5pcf, 10pcf, 15pcf and 30pcf) than higher drilling speeds. The correct rate in drilling speed 500 RPM(77.5%) and 1000 RPM(77.5%) was higher than in 1500 RPM(59.2%) (p<0.05) and 2000 RPM(67.1%) (p>0.05). And also lower drilling speed is more accurate to classify low to low-medium bone density(5pcf and 10pcf).The correct rate in drilling speed 500 RPM (89.2%)and 1000RPM (90.8%) was higher than 1500 RPM(77.5%)(p<0.05) and 2000 RPM(85%)(p>0.05). Conclusions The result of this study showed that drilling speed may affect tactile sensation. Lower drilling speeds(500RPM 1000RPM) may have higher ability to differentiate the bone quality than higher drilling speeds. The result of this study suggested clinicians to apply drilling speed of 1000 rpm at most surgical areas while 500 rpm at maxillary posterior area for better differentiation of bone quality | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:51:27Z (GMT). No. of bitstreams: 1 U0001-0308202023271300.pdf: 4921693 bytes, checksum: d9361a81df322f1e1588d7496b5d8789 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 謝誌 3 中文摘要 4 Abstract 8 圖目錄 13 表目錄 14 Chapter 1 緒論 15 1.1 引言 15 1.2 文獻回顧 17 1.2.1 骨質條件 17 1.2.1.1 骨質分類 19 1.2.1.2 評估骨質的方法 20 1.2.1.3 骨質對於植體成功率的影響 23 1.2.2 鑽骨手感(Tactile sensation) 24 1.2.2.1 影響鑽骨手感的因素 25 1.2.2.2 2mm 前導鑽針對於植體治療計畫之影響 26 1.2.2.3 模擬骨塊於鑽骨手感之測試應用 28 1.2.3 鑽針轉速(Drilling speed) 29 1.2.3.1 市售各大植體品牌對鑽針轉速的建議 29 1.2.3.2 鑽針轉速對人工植體治療的影響 31 1.2.4 前人研究分析 33 Chapter 2 研究目的 34 Chapter 3 前導實驗研究方法、程序及實驗結果 35 3.1 研究假說 35 3.2 實驗材料及方法 35 3.3 統計分析 37 3.4 實驗結果 38 3.5 前導實驗結論 41 Chapter 4 正式實驗研究方法、程序及實驗結果 42 4.1 研究假說 42 4.2 實驗材料及方法 42 4.3 統計分析 43 4.4 實驗結果 44 Chapter 5 討論 49 Chapter 6 結論 55 Chapter 7 實驗限制及未來展望 56 參考文獻 81 附錄 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鑽針轉速 | zh_TW |
| dc.subject | 人工植牙 | zh_TW |
| dc.subject | 骨質 | zh_TW |
| dc.subject | 鑽骨手感 | zh_TW |
| dc.subject | 生物力學模擬骨塊 | zh_TW |
| dc.subject | bone quality | en |
| dc.subject | dental implant | en |
| dc.subject | biomechnical test material | en |
| dc.subject | drilling speed | en |
| dc.subject | tactile sensation | en |
| dc.title | 以模擬骨塊測試不同鑽針轉速之植牙手感區分骨質能力之比較 | zh_TW |
| dc.title | Comparison of different drilling speed to classify bone quality by tactile sensation on a Sawbone® model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林立德(Li-Deh Lin) | |
| dc.contributor.oralexamcommittee | 洪志遠(Zhi-Yuan Hong) | |
| dc.subject.keyword | 人工植牙,骨質,鑽骨手感,鑽針轉速,生物力學模擬骨塊, | zh_TW |
| dc.subject.keyword | dental implant,bone quality,tactile sensation,drilling speed,biomechnical test material, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU202002330 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-10 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202023271300.pdf 未授權公開取用 | 4.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
