請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78326完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林辰栖(Chen-Si Lin) | |
| dc.contributor.author | Chi-Hsun Liao | en |
| dc.contributor.author | 廖啟勛 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:51:20Z | - |
| dc.date.available | 2025-08-04 | |
| dc.date.copyright | 2020-08-12 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | 1. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN: Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clinical Medicine Research 2009, 7(1-2):4-13. 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018, 68(6):394-424. 3. Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, Díez M, Viladot M, Arance A, Muñoz M: Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 2015, 24 Suppl 2:S26-35. 4. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C et al: Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Medicine 2010, 7(5):e1000279-e1000279. 5. Waks AG, Winer EP: Breast Cancer Treatment: A Review. The Journal of the American Medical Association 2019, 321(3):288-300. 6. Nagayama A, Vidula N, Ellisen L, Bardia A: Novel antibody-drug conjugates for triple negative breast cancer. Therapeutic Advances in Medical Oncology 2020, 12:1758835920915980-1758835920915980. 7. Chiu YH, Lei HJ, Huang KC, Chiang YL, Lin CS: Overexpression of Kynurenine 3-Monooxygenase Correlates with Cancer Malignancy and Predicts Poor Prognosis in Canine Mammary Gland Tumors. Journal of Clinical Oncology 2019, 2019:6201764. 8. Jin H, Zhang Y, You H, Tao X, Wang C, Jin G, Wang N, Ruan H, Gu D, Huo X et al: Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma. Scientific Reports 2015, 5:10466. 9. Huang TT, Tseng LM, Chen JL, Chu PY, Lee CH, Huang CT, Wang WL, Lau KY, Tseng MF, Chang YY et al: Kynurenine 3-monooxygenase upregulates pluripotent genes through beta-catenin and promotes triple-negative breast cancer progression. EBioMedicine 2020, 54:102717. 10. Boros FA, Vecsei L: Immunomodulatory Effects of Genetic Alterations Affecting the Kynurenine Pathway. Frontiers in Immunology 2019, 10:2570. 11. Vecsei L, Szalardy L, Fulop F, Toldi J: Kynurenines in the CNS: recent advances and new questions. Nature Reviews Drug Discovery 2013, 12(1):64-82. 12. Kwidzinski E, Bechmann I: IDO expression in the brain: a double-edged sword. Molecular Medicine 2007, 85(12):1351-1359. 13. Mellor AL, Munn DH: Tryptophan catabolism and regulation of adaptive immunity. The Journal of Immunology 2003, 170(12):5809-5813. 14. Orabona C, Pallotta MT, Grohmann U: Different partners, opposite outcomes: a new perspective of the immunobiology of indoleamine 2,3-dioxygenase. Molecular Medicine 2012, 18:834-842. 15. Sas K, Szabo E, Vecsei L: Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection. Molecules 2018, 23(1). 16. Nemeth H, Toldi J, Vecsei L: Role of kynurenines in the central and peripheral nervous systems. Current Neurovascular Research 2005, 2(3):249-260. 17. Ganong AH, Cotman CW: Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus. Journal of Pharmacology and Experimental Therapeutics 1986, 236(1):293-299. 18. Okuda S, Nishiyama N, Saito H, Katsuki H: 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. Journal of Neurochemistry 1998, 70(1):299-307. 19. Schwarcz R, Whetsell WO, Jr., Mangano RM: Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 1983, 219(4582):316-318. 20. Bohar Z, Toldi J, Fulop F, Vecsei L: Changing the face of kynurenines and neurotoxicity: therapeutic considerations. International Journal of Molecular Sciences 2015, 16(5):9772-9793. 21. Mowat CG: Role of Kynurenine Pathway in Cancer Biology. Targeting the Broadly Pathogenic Kynurenine Pathway 2015: 273-286. 22. Topalian SL, Weiner GJ, Pardoll DM: Cancer immunotherapy comes of age. Journal of Clinical Oncology 2011, 29(36):4828-4836. 23. Engin AB, Ozkan Y, Fuchs D, Yardim-Akaydin S: Increased tryptophan degradation in patients with bronchus carcinoma. European Journal of Cancer Care 2010, 19(6):803-808. 24. Le Floc'h N, Otten W, Merlot E: Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 2011, 41(5):1195-1205. 25. Prendergast GC: Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 2008, 27(28):3889-3900. 26. Schrocksnadel K, Wirleitner B, Winkler C, Fuchs D: Monitoring tryptophan metabolism in chronic immune activation. Clinica Chimica Acta 2006, 364(1-2):82-90. 27. Kolodziej LR, Paleolog EM, Williams RO: Kynurenine metabolism in health and disease. Amino Acids 2011, 41(5):1173-1183. 28. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C et al: The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. The Journal of Immunology 2006, 176(11):6752-6761. 29. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB: Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. Journal of Experimental Medicine 2002, 196(4):459-468. 30. Belenky P, Bogan KL, Brenner C: NAD+ metabolism in health and disease. Trends in Biochemical Sciences 2007, 32(1):12-19. 31. Zaher SS, Germain C, Fu H, Larkin DF, George AJ: 3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival. Investigative Ophthalmology Visual Science 2011, 52(5):2640-2648. 32. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P: T cell apoptosis by tryptophan catabolism. Cell Death Differentiation 2002, 9(10):1069-1077. 33. Simon R: Bioinformatics in cancer therapeutics—hype or hope? Nature Clinical Practice Oncology 2005, 2(5):223-223. 34. Wu D, Rice CM, Wang X: Cancer bioinformatics: a new approach to systems clinical medicine. BMC Bioinformatics 2012, 13:71-71. 35. Kasaian K, Li YY, Jones SJM: Bioinformatics for Cancer Genomics. Cancer Genomics 2014: 133-152. 36. Wang X, Liotta L: Clinical bioinformatics: a new emerging science. Journal of Clinical Bioinformatics 2011, 1(1):1. 37. Wang X: Role of clinical bioinformatics in the development of network-based Biomarkers. Journal of Clinical Bioinformatics 2011, 1(1):28. 38. Foulkes WD, Smith IE, Reis-Filho JS: Triple-negative breast cancer. The New England Journal of Medicine 2010, 363(20):1938-1948. 39. Heimes A-S, Schmidt M: Immuntherapie beim Mammakarzinom. Der Gynäkologe 2020, 53(4):224-228. 40. Chiarugi A, Dolle C, Felici R, Ziegler M: The NAD metabolome--a key determinant of cancer cell biology. Nature Reviews Cancer 2012, 12(11):741-752. 41. Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q: Kynurenines in the mammalian brain: when physiology meets pathology. Nature Reviews Neuroscience 2012, 13(7):465-477. 42. Hanauer DA, Rhodes DR, Sinha-Kumar C, Chinnaiyan AM: Bioinformatics approaches in the study of cancer. Current Molecular Medicine 2007, 7(1):133-141. 43. Omenn GS: Bioinformatic and Systems Biology of Cancers. Progress in Molecular Biology and Translational Science 2010:159-188. 44. Shyr D, Liu Q: Next generation sequencing in cancer research and clinical application. Biological Procedures Online 2013, 15(1):4-4. 45. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P, Ducar M, Van Hummelen P, Macconaill LE, Hahn WC et al: High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discovery 2012, 2(1):82-93. 46. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P et al: Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007, 9(2):166-180. 47. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z: GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research 2017, 45(W1):W98-w102. 48. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E et al: COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research 2019, 47(D1):D941-d947. 49. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E et al: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling 2013, 6(269):pl1. 50. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E et al: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discovery 2012, 2(5):401-404. 51. Jezequel P, Frenel JS, Campion L, Guerin-Charbonnel C, Gouraud W, Ricolleau G, Campone M: bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses. Database 2013, 2013:bas060. 52. Jezequel P, Campone M, Gouraud W, Guerin-Charbonnel C, Leux C, Ricolleau G, Campion L: bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Research and Treatment 2012, 131(3):765-775. 53. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z: An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Research and Treatment 2010, 123(3):725-731. 54. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN et al: Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology 2020. 55. Koster J, Volckmann R, Zwijnenburg D, Molenaar P, Versteeg R: Abstract 2490: R2: Genomics analysis and visualization platform. Cancer Research 2019, 79(13 Supplement):2490. 56. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P et al: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 2019, 47(D1):D607-d613. 57. Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2. 58. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY: cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 2014, 8 Suppl 4(Suppl 4):S11. 59. Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M et al: Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. The Journal of Biological Chemistry 2001, 276(13):9945-9954. 60. Kouroumalis A, Nibbs RJ, Aptel H, Wright KL, Kolios G, Ward SG: The chemokines CXCL9, CXCL10, and CXCL11 differentially stimulate G alpha i-independent signaling and actin responses in human intestinal myofibroblasts. The Journal of Immunology 2005, 175(8):5403. 61. Kelsen SG, Aksoy MO, Yang Y, Shahabuddin S, Litvin J, Safadi F, Rogers TJ: The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology 2004, 287(3):L584-L591. 62. Shahabuddin S, Ji R, Wang P, Brailoiu E, Dun N, Yang Y, Aksoy MO, Kelsen SG: CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways. American Journal of Physiology-Cell Physiology 2006, 291(1):C34-C39. 63. Mulligan AM, Raitman I, Feeley L, Pinnaduwage D, Nguyen LT, Malley FP, Ohashi PS, Andrulis IL: Tumoral Lymphocytic Infiltration and Expression of the Chemokine CXCL10 in Breast Cancers from the Ontario Familial Breast Cancer Registry. Clinical Cancer Research 2013, 19(2):336. 64. Zhao G-N, Jiang D-S, Li H: Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2015, 1852(2):365-378. 65. Yasuda K, Nakanishi K, Tsutsui H: Interleukin-18 in Health and Disease. International journal of molecular sciences 2019, 20(3):649. 66. Novikov O, Wang Z, Stanford EA, Parks AJ, Ramirez-Cardenas A, Landesman E, Laklouk I, Sarita-Reyes C, Gusenleitner D, Li A et al: An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells. Molecular pharmacology 2016, 90(5):674-688. 67. D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, Nemkov TG, D'Alessandro A, Hansen KC, Richer JK: A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Research 2015, 75(21):4651-4664. 68. Wei L, Zhu S, Li M, Li F, Wei F, Liu J, Ren X: High Indoleamine 2,3-Dioxygenase Is Correlated With Microvessel Density and Worse Prognosis in Breast Cancer. Frontiers in Immunology 2018, 9:724. 69. Dewi DL, Mohapatra SR, Blanco Cabañes S, Adam I, Somarribas Patterson LF, Berdel B, Kahloon M, Thürmann L, Loth S, Heilmann K et al: Suppression of indoleamine-2,3-dioxygenase 1 expression by promoter hypermethylation in ER-positive breast cancer. Oncoimmunology 2017, 6(2):e1274477. 70. Soliman H, Rawal B, Fulp J, Lee JH, Lopez A, Bui MM, Khalil F, Antonia S, Yfantis HG, Lee DH et al: Analysis of indoleamine 2-3 dioxygenase (IDO1) expression in breast cancer tissue by immunohistochemistry. Cancer Immunol Immunother 2013, 62(5):829-837. 71. Hubalek M, Czech T, Müller H: Biological Subtypes of Triple-Negative Breast Cancer. Breast Care 2017, 12(1):8-14. 72. Yang Z-J, Yu Y, Hou X-W, Chi J-R, Ge J, Wang X, Cao X-C: The prognostic value of node status in different breast cancer subtypes. Oncotarget 2017, 8(3):4563-4571. 73. Galea MH, Blamey RW, Elston CE, Ellis IO: The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Research and Treatment 1992, 22(3):207-219. 74. Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420(6917):860-867. 75. Grivennikov SI, Greten FR, Karin M: Immunity, Inflammation, and Cancer. Cell 2010, 140(6):883-899. 76. Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature 2008, 454(7203):436-444. 77. Vilgelm AE, Richmond A: Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy. Frontiers in Immunology 2019, 10(333). 78. Cambien B, Karimdjee BF, Richard-Fiardo P, Bziouech H, Barthel R, Millet MA, Martini V, Birnbaum D, Scoazec JY, Abello J et al: Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. British Journal of Cancer 2009, 100(11):1755-1764. 79. Zhu G, Yan HH, Pang Y, Jian J, Achyut BR, Liang X, Weiss JM, Wiltrout RH, Hollander MC, Yang L: CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity. Oncotarget 2015, 6(41):43408-43419. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78326 | - |
| dc.description.abstract | Kynurenine 3-monooxygenase(KMO)是位於粒線體外膜上的單體蛋白,在犬尿氨酸途徑中扮演重要的角色。已有研究指出,在犬隻乳腺腫瘤、人類肝細胞癌和乳癌中KMO轉錄上調,並發現過表達的KMO調節兩種人類癌細胞的增殖,遷移和侵襲。我們使用了多種生物資訊分析工具來調查臨床人類乳癌患者的KMO基因改變,mRNA表現量和臨床結果,在基因層面,我們發現KMO在人類乳癌中的突變率很低,這與KMO在所有癌症統計中相似。在mRNA層面,與正常組織相比,KMO在八種類型的癌症中過表達,其中,在浸潤性乳管癌發現最高的KMO mRNA表達變化,並且在許多惡性狀況(例如TNBC,淋巴結轉移陽性和高級別的NPI患者)中KMO mRNA表達較高。在臨床結果中,我們發現KMO表達較高的乳癌患者,其無復發存活期(RFS)和總體生存期(OS)明顯較短。使用KMO相關的基因來建構蛋白質交互作用(PPI)網絡,並在PPI網絡中進一步鑑定了10個中樞基因,在這10個中樞基因中包含了趨化因子以及促炎蛋白。許多研究表明,趨化因子以及促炎細胞因子參與了各種人類癌症的進展。總合上述結果,此研究通過各種生物資訊分析工具研究了臨床乳癌患者中KMO的分子特徵,結果表明KMO可能在癌症中具有關鍵的作用。 | zh_TW |
| dc.description.abstract | Kynurenine 3-monooxygenase (KMO) is a monomeric protein located on the outer membrane of mitochondrial and plays a significant role in the kynurenine pathway. KMO transcripts were found upregulated in canine mammary gland tumors, human hepatocellular carcinoma, and breast cancers. Overexpressed KMO positively regulated proliferation, migration, and invasion in human liver and breast cancer cells. We used various bioinformatic analysis tools to investigate the KMO genetic alternation, mRNA expression, and clinical outcome of human breast cancer patients. At the gene level, we found that KMO has a lower mutation rate in human breast cancer, which is similar in all cancer. At the mRNA level, it was found that KMO was overexpressed in eight types of cancers compared with normal tissues. The highest KMO mRNA expression fold change was found in invasive ductal breast carcinoma, and KMO mRNA expression is high in many malignant statuses such as TNBC, nodal positive, and higher grade NPI patients. In the clinical outcome, we found that breast cancer patients with higher KMO expression were associated with significantly shorter relapse-free survival (RFS) and overall survival (OS). The KMO correlated genes were used to construct a protein-protein interaction (PPI) network and further identified 10 hub genes in the PPI network. These 10 hub genes contain chemokines and pro-inflammatory proteins. Many studies have shown that chemokines and inflammation are involved in the progression of various human cancers. Taken together, this study investigated the molecular characteristics of KMO in clinical breast cancer patients through various bioinformatic tools, and the results indicate that KMO may play a critical role in cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:51:20Z (GMT). No. of bitstreams: 1 U0001-0408202011045000.pdf: 5695214 bytes, checksum: 14e32664d16ba622f3c35fe37501ffde (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv Contents vi Chapter 1. Background and Literature Review 1 1.1 Breast cancer 1 1.2 Kynurenine 3-monooxygenase 1 1.3 Kynurenine pathway in the central nerve system (CNS) and the immune system 2 1.4 Relationship between kynurenine pathway and tumor 3 1.5 Bioinformatics in cancer 4 Chapter 2. Introduction 6 Chapter 3. Materials and methods 9 3.1 Oncomine database analysis for KMO expression 9 3.2 Data mining in Gene Expression Profiling Interactive Analysis (GEPIA) 9 3.3 Catalogue of Somatic Mutations in Cancer (COSMIC) analysis for KMO mutations 10 3.4 cBioPortal database analysis 10 3.5 Breast Cancer Gene-Expression Miner v4.4 (bc-GenExMiner v4.4) 11 3.6 Kaplan‑Meier plotter 11 3.7 University of California Santa Cruz (UCSC) cancer genomics analysis 11 3.8 PPI network construction and hub genes screening 12 3.9 Statistical analysis 12 Chapter 4. Result 14 4.1 Up-regulation of KMO mRNA expression in human breast cancer 14 4.2 KMO mutation in breast cancer 14 4.3 The association between KMO mRNA expression and clinicopathological parameters in patients with breast cancer 15 4.4 Association of elevated KMO expression with prognosis in human breast cancer 17 4.5 PPI network construction and hub genes analysis of KMO correlated genes 17 Chapter 5. Discussion 19 Tables 23 Figures 26 Supplementary Tables 40 Reference 48 | |
| dc.language.iso | en | |
| dc.subject | 趨化因子 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 犬尿氨酸-3-單氧化酶 | zh_TW |
| dc.subject | 生物資訊學 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | kynurenine 3-monooxygenase | en |
| dc.subject | breast cancer | en |
| dc.subject | inflammation | en |
| dc.subject | chemokine | en |
| dc.subject | bioinformatics | en |
| dc.title | 使用生物資訊分析方法探討犬尿氨酸-3-單氧化酶在人類乳癌發生的作用 | zh_TW |
| dc.title | Investigating the tumorigenic role of Kynurenine 3-monooxygenase in human breast cancers using bioinformatic analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖泰慶(Tai-Ching Liao),廖光文(Kuang-Wen Liao),蔡女滿(Nv-Man Cai),邱亦涵(Yi-Ham Chiu) | |
| dc.subject.keyword | 乳癌,犬尿氨酸-3-單氧化酶,生物資訊學,趨化因子,發炎反應, | zh_TW |
| dc.subject.keyword | breast cancer,kynurenine 3-monooxygenase,bioinformatics,chemokine,inflammation, | en |
| dc.relation.page | 54 | |
| dc.identifier.doi | 10.6342/NTU202002348 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-04 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-04 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202011045000.pdf 未授權公開取用 | 5.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
