請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78321完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈麗娟(Li-Jiuan Shen) | |
| dc.contributor.author | Shan-Yuan Fu | en |
| dc.contributor.author | 傅善圓 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:51:06Z | - |
| dc.date.available | 2025-08-10 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | [1] K. Gohil, B. Carramusa, Ulcerative colitis and Crohn's disease, Pharmacy and Therapeutics, 39 (2014) 576-577. [2] S. Danese, C. Fiocchi, Ulcerative colitis, New England Journal of Medicine, 365 (2011) 1713-1725. [3] G.R. Lichtenstein, S.B. Hanauer, W.J. Sandborn, Management of Crohn's disease in adults, American Journal of Gastroenterology, 104 (2009) 465-483; quiz 464, 484. [4] A. Nishida, R. Inoue, O. Inatomi, S. Bamba, Y. Naito, A. Andoh, Gut microbiota in the pathogenesis of inflammatory bowel disease, Clinical Journal of Gastroenterology, 11 (2018) 1-10. [5] E.K. Wright, N.S. Ding, O. Niewiadomski, Management of inflammatory bowel disease, Med J Aust, 209 (2018) 318-323. [6] I. Loddo, C. Romano, Inflammatory bowel disease: genetics, epigenetics, and pathogenesis, Frontiers in Immunology, 6 (2015) 551. [7] N.A. Molodecky, G.G. Kaplan, Environmental risk factors for inflammatory bowel disease, Gastroenterol Hepatol (N Y), 6 (2010) 339-346. [8] C. Abraham, J.H. Cho, Inflammatory Bowel Disease, New England Journal of Medicine, 361 (2009) 2066-2078. [9] R. Okumura, K. Takeda, Roles of intestinal epithelial cells in the maintenance of gut homeostasis, Experimental Molecular Medicine, 49 (2017) e338-e338. [10] J.C. Onyiah, S.P. Colgan, Cytokine responses and epithelial function in the intestinal mucosa, Cellular and Molecular Life Sciences, 73 (2016) 4203-4212. [11] S.R. Knowles, L.A. Graff, H. Wilding, C. Hewitt, L. Keefer, A. Mikocka-Walus, Quality of life in inflammatory bowel disease: a systematic review and meta-analyses-Part I, Inflamm Bowel Dis, 24 (2018) 742-751. [12] R.W. Stidham, P.D.R. Higgins, Colorectal cancer in inflammatory bowel disease, Clinics in Colon and Rectal Surgery, 31 (2018) 168-178. [13] C.N. Bernstein, J.F. Blanchard, E. Kliewer, A. Wajda, Cancer risk in patients with inflammatory bowel disease: a population-based study, Cancer, 91 (2001) 854-862. [14] S. Söderlund, L. Brandt, A. Lapidus, P. Karlén, O. Broström, R. Löfberg, A. Ekbom, J. Askling, Decreasing time-trends of colorectal cancer in a large cohort of patients with inflammatory bowel disease, Gastroenterology, 136 (2009) 1561-1567. [15] S. Alatab, S.G. Sepanlou, K. Ikuta, H. Vahedi, C. Bisignano, S. Safiri, A. Sadeghi, M.R. Nixon, A. Abdoli, H. Abolhassani, V. Alipour, M.A.H. Almadi, A. Almasi-Hashiani, A. Anushiravani, J. Arabloo, S. Atique, A. Awasthi, A. Badawi, A.A.A. Baig, N. Bhala, A. Bijani, A. Biondi, A.M. Borzì, K.E. Burke, F. Carvalho, A. Daryani, M. Dubey, A. Eftekhari, E. Fernandes, J.C. Fernandes, F. Fischer, A. Haj-Mirzaian, A. Haj-Mirzaian, A. Hasanzadeh, M. Hashemian, S.I. Hay, C.L. Hoang, M. Househ, O.S. Ilesanmi, N. Jafari Balalami, S.L. James, A.P. Kengne, M.M. Malekzadeh, S. Merat, T.J. Meretoja, T. Mestrovic, E.M. Mirrakhimov, H. Mirzaei, K.A. Mohammad, A.H. Mokdad, L. Monasta, I. Negoi, T.H. Nguyen, C.T. Nguyen, A. Pourshams, H. Poustchi, M. Rabiee, N. Rabiee, K. Ramezanzadeh, D.L. Rawaf, S. Rawaf, N. Rezaei, S.R. Robinson, L. Ronfani, S. Saxena, M. Sepehrimanesh, M.A. Shaikh, Z. Sharafi, M. Sharif, S. Siabani, A.R. Sima, J.A. Singh, A. Soheili, R. Sotoudehmanesh, H.A.R. Suleria, B.E. Tesfay, B. Tran, D. Tsoi, M. Vacante, A.B. Wondmieneh, A. Zarghi, Z.-J. Zhang, M. Dirac, R. Malekzadeh, M. Naghavi, The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017, The Lancet Gastroenterology Hepatology, 5 (2020) 17-30. [16] G.G. Kaplan, S.C. Ng, Understanding and preventing the global increase of inflammatory bowel disease, Gastroenterology, 152 (2017) 313-321.e312. [17] S.C. Ng, W. Tang, J.Y. Ching, M. Wong, C.M. Chow, A.J. Hui, T.C. Wong, V.K. Leung, S.W. Tsang, H.H. Yu, M.F. Li, K.K. Ng, M.A. Kamm, C. Studd, S. Bell, R. Leong, H.J. de Silva, A. Kasturiratne, M.N.F. Mufeena, K.L. Ling, C.J. Ooi, P.S. Tan, D. Ong, K.L. Goh, I. Hilmi, P. Pisespongsa, S. Manatsathit, R. Rerknimitr, S. Aniwan, Y.F. Wang, Q. Ouyang, Z. Zeng, Z. Zhu, M.H. Chen, P.J. Hu, K. Wu, X. Wang, M. Simadibrata, M. Abdullah, J.C. Wu, J.J.Y. Sung, F.K.L. Chan, Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn's and colitis epidemiology study, Gastroenterology, 145 (2013) 158-165.e152. [18] G.G. Kaplan, The global burden of IBD: from 2015 to 2025, Nature Reviews Gastroenterology Hepatology, 12 (2015) 720-727. [19] S.C. Ng, G.G. Kaplan, W. Tang, R. Banerjee, B. Adigopula, F.E. Underwood, D. Tanyingoh, S.C. Wei, W.C. Lin, H.H. Lin, J. Li, S. Bell, O. Niewiadomski, M.A. Kamm, Z. Zeng, M. Chen, P. Hu, D. Ong, C.J. Ooi, K.L. Ling, Y. Miao, J. Miao, H. Janaka de Silva, M. Niriella, S. Aniwan, J. Limsrivilai, P. Pisespongsa, K. Wu, H. Yang, K.K. Ng, H.H. Yu, Y. Wang, Q. Ouyang, M. Abdullah, M. Simadibrata, J. Gunawan, I. Hilmi, K. Lee Goh, Q. Cao, H. Sheng, A. Ong-Go, V.H. Chong, J.Y.L. Ching, J.C.Y. Wu, F.K.L. Chan, J.J.Y. Sung, Population density and risk of inflammatory bowel disease: a prospective population-based study in 13 countries or regions in Asia-Pacific, American Journal of Gastroenterology, 114 (2019) 107-115. [20] H.-H. Yen, M.-T. Weng, C.-C. Tung, Y.-T. Wang, Y.T. Chang, C.-H. Chang, M.-J. Shieh, J.-M. Wong, S.-C. Wei, Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: a nationwide populationbased study, Intest Res, 17 (2019) 54-62. [21] D. Turner, A.M. Griffiths, Acute severe ulcerative colitis in children: a systematic review, Inflamm Bowel Dis, 17 (2011) 440-449. [22] D. Turner, C.M. Walsh, A.H. Steinhart, A.M. Griffiths, Response to corticosteroids in severe ulcerative colitis: a systematic review of the literature and a meta-regression, Clinical Gastroenterology and Hepatology, 5 (2007) 103-110. [23] S.C. Wei, T.A. Chang, T.H. Chao, J.S. Chen, J.W. Chou, Y.H. Chou, C.H. Chuang, W.H. Hsu, T.Y. Huang, T.C. Hsu, C.C. Lin, H.H. Lin, J.K. Lin, W.C. Lin, Y.H. Ni, M.J. Shieh, I.L. Shih, C.T. Shun, Y.M. Tsang, C.Y. Wang, H.Y. Wang, M.T. Weng, D.C. Wu, W.C. Wu, H.H. Yen, J.M. Wong, Management of Crohn's disease in Taiwan: consensus guideline of the Taiwan society of inflammatory bowel disease, Intest Res, 15 (2017) 285-310. [24] S.C. Wei, T.A. Chang, T.H. Chao, J.S. Chen, J.W. Chou, Y.H. Chou, C.H. Chuang, W.H. Hsu, T.Y. Huang, T.C. Hsu, C.C. Lin, H.H. Lin, J.K. Lin, W.C. Lin, Y.H. Ni, M.J. Shieh, I.L. Shih, C.T. Shun, Y.M. Tsang, C.Y. Wang, H.Y. Wang, M.T. Weng, D.C. Wu, W.C. Wu, H.H. Yen, J.M. Wong, Management of ulcerative colitis in Taiwan: consensus guideline of the Taiwan Society of Inflammatory Bowel Disease, Intest Res, 15 (2017) 266-284. [25] B.A. Hemstreet, Chapter 21. Inflammatory Bowel Disease, in: J.T. DiPiro, R.L. Talbert, G.C. Yee, G.R. Matzke, B.G. Wells, L.M. Posey (Eds.) Pharmacotherapy: A Pathophysiologic Approach, 9e, The McGraw-Hill Companies, New York, NY, 2014. [26] K.T. Park, O.G. Ehrlich, J.I. Allen, P. Meadows, E.M. Szigethy, K. Henrichsen, S.C. Kim, R.C. Lawton, S.M. Murphy, M. Regueiro, D.T. Rubin, N.M. Engel-Nitz, C.A. Heller, The cost of inflammatory bowel disease: an initiative from the Crohn's Colitis foundation, Inflamm Bowel Dis, 26 (2020) 1-10. [27] D. Duricova, J. Burisch, T. Jess, C. Gower-Rousseau, P.L. Lakatos, O.B.o. ECCO-EpiCom, Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature, Journal of Crohn's and Colitis, 8 (2014) 1351-1361. [28] G. Fiorino, C. Correale, W. Fries, A. Repici, A. Malesci, S. Danese, Leukocyte traffic control: a novel therapeutic strategy for inflammatory bowel disease, Expert Review of Clinical Immunology, 6 (2010) 567-572. [29] K.N. Weaver, M. Gregory, G. Syal, P. Hoversten, S.B. Hicks, D. Patel, G. Christophi, P. Beniwal-Patel, K.L. Isaacs, L. Raffals, P. Deepak, H.H. Herfarth, E.L. Barnes, Ustekinumab is effective for the treatment of Crohn's disease of the pouch in a multicenter cohort, Inflamm Bowel Dis, 25 (2019) 767-774. [30] M.F. Neurath, Cytokines in inflammatory bowel disease, Nature Reviews Immunology, 14 (2014) 329-342. [31] S.H. Murch, C.P. Braegger, J.A. Walker-Smith, T.T. MacDonald, Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease, Gut, 34 (1993) 1705-1709. [32] B. Ruder, R. Atreya, C. Becker, Tumour necrosis factor alpha in intestinal homeostasis and gut related diseases, International journal of Molecular Sciences, 20 (2019) 1887. [33] O.H. Nielsen, M.A. Ainsworth, Tumor necrosis factor inhibitors for inflammatory bowel disease, New England Journal of Medicine, 369 (2013) 754-762. [34] A.D. Levin, M.E. Wildenberg, G.R. van den Brink, Mechanism of action of anti-TNF therapy in inflammatory bowel disease, Journal of Crohn's and Colitis, 10 (2016) 989-997. [35] S.R. Targan, S.B. Hanauer, S.J. van Deventer, L. Mayer, D.H. Present, T. Braakman, K.L. DeWoody, T.F. Schaible, P.J. Rutgeerts, A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn's disease. Crohn's Disease cA2 Study Group, New England Journal of Medicine, 337 (1997) 1029-1035. [36] S.B. Hanauer, B.G. Feagan, G.R. Lichtenstein, L.F. Mayer, S. Schreiber, J.F. Colombel, D. Rachmilewitz, D.C. Wolf, A. Olson, W. Bao, P. Rutgeerts, Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial, The Lancet, 359 (2002) 1541-1549. [37] P. Rutgeerts, W.J. Sandborn, B.G. Feagan, W. Reinisch, A. Olson, J. Johanns, S. Travers, D. Rachmilewitz, S.B. Hanauer, G.R. Lichtenstein, W.J.S. de Villiers, D. Present, B.E. Sands, J.F. Colombel, Infliximab for induction and maintenance therapy for ulcerative colitis, New England Journal of Medicine, 353 (2005) 2462-2476. [38] W.J. Sandborn, P. Rutgeerts, B.G. Feagan, W. Reinisch, A. Olson, J. Johanns, J. Lu, K. Horgan, D. Rachmilewitz, S.B. Hanauer, G.R. Lichtenstein, W.J.S. de Villiers, D. Present, B.E. Sands, J.F. Colombel, Colectomy rate comparison after treatment of ulcerative colitis with placebo or Infliximab, Gastroenterology, 137 (2009) 1250-1260. [39] H. Tajiri, S. Motoya, F. Kinjo, A. Maemoto, T. Matsumoto, N. Sato, H. Yamada, M. Nagano, Y. Susuta, K. Ozaki, K. Kondo, T. Hibi, Infliximab for pediatric patients with Crohn’s disease: A Phase 3, open-label, uncontrolled, multicenter trial in Japan, PLOS ONE, 13 (2018) e0201956. [40] J. Keane, S. Gershon, R.P. Wise, E. Mirabile-Levens, J. Kasznica, W.D. Schwieterman, J.N. Siegel, M.M. Braun, Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent, New England Journal of Medicine, 345 (2001) 1098-1104. [41] J. Kirchgesner, M. Lemaitre, F. Carrat, M. Zureik, F. Carbonnel, R. Dray-Spira, Risk of serious and opportunistic infections associated with treatment of inflammatory bowel diseases, Gastroenterology, 155 (2018) 337-346 e310. [42] S. Singh, A. Facciorusso, P.S. Dulai, V. Jairath, W.J. Sandborn, Comparative risk of serious infections with biologic and/or immunosuppressive therapy in patients with inflammatory bowel diseases: a systematic review and meta-analysis, Clinical Gastroenterology and Hepatology, 18 (2020) 69-81.e63. [43] M. Ozen, O. Keskin, O. Kucuksahin, U. Ilgen, P. Topcuoglu, M. Turgay, M. Toruner, G. Gurman, Tumor necrosis factor inhibitors and acute leukemia in two cases, Journal of Clinical Oncology, 31 (2013) e18010-e18010. [44] S.L. Brown, M.H. Greene, S.K. Gershon, E.T. Edwards, M.M. Braun, Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration, Arthritis Rheumatology, 46 (2002) 3151-3158. [45] P. Diak, J. Siegel, L. La Grenade, L. Choi, S. Lemery, A. McMahon, Tumor necrosis factor alpha blockers and malignancy in children: forty-eight cases reported to the Food and Drug Administration, Arthritis Rheumatology, 62 (2010) 2517-2524. [46] L.A. Checkley, L. Kristofek, S. Kile, W. Bolgar, Incidence and management of infusion reactions to Infliximab in an alternate care setting, Digestive Diseases and Sciences, 64 (2019) 855-862. [47] A. Papa, G. Mocci, M. Bonizzi, C. Felice, G. Andrisani, G. Papa, A. Gasbarrini, Biological therapies for inflammatory bowel disease: controversies and future options, Expert Review of Clinical Pharmacology, 2 (2009) 391-403. [48] J.M. Cyriac, E. James, Switch over from intravenous to oral therapy: A concise overview, J Pharmacol Pharmacother, 5 (2014) 83-87. [49] W.J. Sandborn, S. Travis, L. Moro, R. Jones, T. Gautille, R. Bagin, M. Huang, P. Yeung, E.D. Ballard, Once-daily Budesonide MMX® extended-release tablets induce remission in patients with mild to moderate ulcerative colitis: results from the CORE I study, Gastroenterology, 143 (2012) 1218-1226.e1212. [50] S.P. Travis, S. Danese, L. Kupcinskas, O. Alexeeva, G. D'Haens, P.R. Gibson, L. Moro, R. Jones, E.D. Ballard, J. Masure, M. Rossini, W.J. Sandborn, Once-daily budesonide MMX in active, mild-to-moderate ulcerative colitis: results from the randomised CORE II study, Gut, 63 (2014) 433-441. [51] G.R. Lichtenstein, Budesonide Multi-matrix for the Treatment of Patients with Ulcerative Colitis, Digestive Diseases and Sciences, 61 (2016) 358-370. [52] L. Biancone, M. Cretella, C. Tosti, G. Palmieri, C. Petruzziello, A. Geremia, E. Calabrese, F. Pallone, Local injection of infliximab in the postoperative recurrence of Crohn's disease, Gastrointestinal Endoscopy, 63 (2006) 486-492. [53] L.M. Coria, G.S. Risso, F.F. Guaimas, M.C. Ferrero, L. Bruno, K.A. Pasquevich, J. Cassataro, Oral co-administration of a bacterial protease inhibitor in the vaccine formulation increases antigen delivery at the intestinal epithelial barrier, Journal of Controlled Release, 293 (2019) 158-171. [54] J.S. Crowe, K.J. Roberts, T.M. Carlton, L. Maggiore, M.F. Cubitt, S. Clare, K. Harcourt, J. Reckless, T.T. MacDonald, K.P. Ray, A. Vossenkamper, M.R. West, Preclinical development of a novel, orally-administered anti-tumour necrosis factor domain antibody for the treatment of inflammatory bowel disease, Scientific Reports, 8 (2018) 4941. [55] M. Naeem, J. Bae, M.A. Oshi, M.S. Kim, H.R. Moon, B.L. Lee, E. Im, Y. Jung, J.W. Yoo, Colon-targeted delivery of cyclosporine A using dual-functional Eudragit(®) FS30D/PLGA nanoparticles ameliorates murine experimental colitis, International Journal of Nanomedicine, 13 (2018) 1225-1240. [56] K. Ling, H. Wu, A.S. Neish, J.A. Champion, Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles, Journal of Controlled Release, 295 (2019) 174-186. [57] J.M. Maurer, R.C. Schellekens, H.M. van Rieke, C. Wanke, V. Iordanov, F. Stellaard, K.D. Wutzke, G. Dijkstra, M. van der Zee, H.J. Woerdenbag, H.W. Frijlink, J.G. Kosterink, Gastrointestinal pH and transit time profiling in healthy volunteers using the IntelliCap system confirms ileo-colonic release of ColoPulse tablets, PLoS One, 10 (2015) e0129076. [58] J.M. Maurer, S. Hofman, R.C. Schellekens, W.F. Tonnis, A.O. Dubois, H.J. Woerdenbag, W.L. Hinrichs, J.G. Kosterink, H.W. Frijlink, Development and potential application of an oral ColoPulse infliximab tablet with colon specific release: A feasibility study, International Journal of Pharmaceutics, 505 (2016) 175-186. [59] B. Gareb, S. Posthumus, M. Beugeling, P. Koopmans, D.J. Touw, G. Dijkstra, J.G.W. Kosterink, H.W. Frijlink, Towards the oral treatment of ileo-colonic inflammatory bowel disease with Infliximab tablets: development and validation of the production process, Pharmaceutics, 11 (2019) 428. [60] J.L. Madara, Regulation of the movement of solutes across tight junctions, The Annual Review of Physiology, 60 (1998) 143-159. [61] K. Sonaje, E.-Y. Chuang, K.-J. Lin, T.-C. Yen, F.-Y. Su, M.T. Tseng, H.-W. Sung, Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations, Molecular Pharmaceutics, 9 (2012) 1271-1279. [62] C.Y. Wong, J. Martinez, R. Carnagarin, C.R. Dass, In-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor, Journal of Pharmacy and Pharmacology, 69 (2017) 285-294. [63] C. Chelakkot, J. Ghim, S.H. Ryu, Mechanisms regulating intestinal barrier integrity and its pathological implications, Experimental Molecular Medicine, 50 (2018) 103. [64] N. Amet, W. Wang, W.C. Shen, Human growth hormone-transferrin fusion protein for oral delivery in hypophysectomized rats, Journal of Controlled Release, 141 (2010) 177-182. [65] L. Zhang, Y. Shi, Y. Song, D. Duan, X. Zhang, K. Sun, Y. Li, Tf ligand-receptor-mediated exenatide-Zn2+ complex oral-delivery system for penetration enhancement of exenatide, Journal of Drug Targeting, 26 (2018) 931-940. [66] M. Green, P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, 55 (1988) 1179-1188. [67] J.F. Liang, V.C. Yang, Insulin-cell penetrating peptide hybrids with improved intestinal absorption efficiency, Biochemical and biophysical research communications, 335 (2005) 734-738. [68] S.R. Schwarze, A. Ho, A. Vocero-Akbani, S.F. Dowdy, In vivo protein transduction: delivery of a biologically active protein into the mouse, Science, 285 (1999) 1569-1572. [69] E.J. Nielsen, S. Yoshida, N. Kamei, R. Iwamae, S. Khafagy el, J. Olsen, U.L. Rahbek, B.L. Pedersen, K. Takayama, M. Takeda-Morishita, In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin, Journal of Controlled Release, 189 (2014) 19-24. [70] F. Guo, M. Zhang, Y. Gao, S. Zhu, S. Chen, W. Liu, H. Zhong, J. Liu, Modified nanoparticles with cell-penetrating peptide and amphipathic chitosan derivative for enhanced oral colon absorption of insulin: preparation and evaluation, Drug Delivery, 23 (2016) 2003-2014. [71] F. Guo, T. Ouyang, T. Peng, X. Zhang, B. Xie, X. Yang, D. Liang, H. Zhong, Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides, Biomaterials Science, 7 (2019) 1493-1506. [72] K. Pethe, S. Alonso, F. Biet, G. Delogu, M.J. Brennan, C. Locht, F.D. Menozzi, The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination, Nature, 412 (2001) 190-194. [73] G. Delogu, M.J. Brennan, Functional domains present in the mycobacterial hemagglutinin, HBHA, Journal of Bacteriology, 181 (1999) 7464-7469. [74] K. Pethe, M. Aumercier, E. Fort, C. Gatot, C. Locht, F.D. Menozzi, Characterization of the heparin-binding site of the mycobacterial heparin-binding hemagglutinin adhesin, Journal of Biological Chemistry, 275 (2000) 14273-14280. [75] F.D. Menozzi, V.M. Reddy, D. Cayet, D. Raze, A.S. Debrie, M.P. Dehouck, R. Cecchelli, C. Locht, Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions, Microbes and Infection, 8 (2006) 1-9. [76] P. Lebrun, D. Raze, B. Fritzinger, J.-M. Wieruszeski, F. Biet, A. Dose, M. Carpentier, D. Schwarzer, F. Allain, G. Lippens, C. Locht, Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis, PloS one, 7 (2012) e32421-e32421. [77] 鄭如辰, 研究肝素結合凝血附著素相關胜肽之穿胞運輸性質, in: 藥學研究所, 國立臺灣大學, 台北市, 2009, pp. 100. [78] F.L. Wu, T.H. Yeh, Y.L. Chen, Y.C. Chiu, J.C. Cheng, M.F. Wei, L.J. Shen, Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells, Molecular Pharmaceutics, 11 (2014) 2777-2786. [79] T.-H. Yeh, Y.-R. Chen, S.-Y. Chen, W.-C. Shen, D.K. Ann, J.L. Zaro, L.-J. Shen, Selective intracellular delivery of recombinant arginine deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells, Molecular Pharmaceutics, 13 (2016) 262-271. [80] P.C. Chiu, P.Y. Hsieh, J.W. Kang, P.H. Chang, L.J. Shen, Study of the intracellular delivery mechanism of a pH-sensitive peptide modified with enhanced green fluorescent protein, Journal of Drug Targeting, 28 (2020) 408-418. [81] P.C. Chiu, H.C. Liou, T.Y. Ling, L.J. Shen, Development of a neuroprotective erythropoietin modified with a novel carrier for the blood-brain barrier, Neurotherapeutics, (2020). [82] M.P. Miranda-Hernández, E.R. Valle-González, D. Ferreira-Gómez, N.O. Pérez, L.F. Flores-Ortiz, E. Medina-Rivero, Theoretical approximations and experimental extinction coefficients of biopharmaceuticals, Analytical and Bioanalytical Chemistry, 408 (2016) 1523-1530. [83] H. Rinderknecht, A new technique for the fluorescent labelling of proteins, Experientia, 16 (1960) 430-431. [84] L.C. Trost, J.J. Lemasters, A cytotoxicity assay for tumor necrosis factor employing a multiwell fluorescence scanner, Analytical Biochemistry, 220 (1994) 149-153. [85] Y. Shen, G. Li, C. Gu, B. Chen, A. Chen, H. Li, B. Gao, C. Liang, J. Wu, T. Yang, L. Jin, Y. Su, T0001, a variant of TNFR2-Fc fusion protein, exhibits improved Fc effector functions through increased binding to membrane-bound TNFalpha, PLoS One, 12 (2017) e0177891. [86] C. Metcalfe, T. Dougall, C. Bird, P. Rigsby, M.E. Behr-Gross, M. Wadhwa, P.O.T. Study, The first World Health Organization International Standard for infliximab products: A step towards maintaining harmonized biological activity, MAbs, 11 (2019) 13-25. [87] G.A. Efimov, J.M.H. Raats, R.G.S. Chirivi, J.W.G. van Rosmalen, S.A. Nedospasov, Humanization of murine monoclonal anti-hTNF antibody: The F10 story, Molecular Biology, 51 (2017) 921-926. [88] P.-C. Chiu, P.-Y. Hsieh, J.-W. Kang, P.-H. Chang, L.-J. Shen, Study of the intracellular delivery mechanism of a pH-sensitive peptide modified with enhanced green fluorescent protein, Journal of Drug Targeting, (2019) 1-11. [89] T. Lea, Caco-2 Cell Line, in: K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, H. Wichers (Eds.) The Impact of Food Bioactives on Health: in vitro and ex vivo models, Springer International Publishing, 2015, pp. 103-111. [90] Y. Sambuy, I. De Angelis, G. Ranaldi, M.L. Scarino, A. Stammati, F. Zucco, The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics, Cell Biology and Toxicology, 21 (2005) 1-26. [91] I. Hubatsch, E.G. Ragnarsson, P. Artursson, Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers, Nature Protocols, 2 (2007) 2111-2119. [92] A. Avdeef, Permeability: Caco-2/MDCK, in: Absorption and Drug Development, 2012, pp. 499-574. [93] B. Srinivasan, A.R. Kolli, M.B. Esch, H.E. Abaci, M.L. Shuler, J.J. Hickman, TEER measurement techniques for in vitro barrier model systems, J Lab Autom, 20 (2015) 107-126. [94] K. Sato, J. Nagai, N. Mitsui, Y. Ryoko, M. Takano, Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells, Life Sciences, 85 (2009) 800-807. [95] E.J. Israel, S. Taylor, Z. Wu, E. Mizoguchi, R.S. Blumberg, A. Bhan, N.E. Simister, Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells, Immunology, 92 (1997) 69-74. [96] F.W. Brambell, The transmission of immune globulins from the mother to the foetal and newborn young, Proceedings of the Nutrition Society, 28 (1969) 35-41. [97] U. Shah, B.L. Dickinson, R.S. Blumberg, N.E. Simister, W.I. Lencer, A.W. Walker, Distribution of the IgG Fc Receptor, FcRn, in the Human Fetal Intestine, Pediatric Research, 53 (2003) 295-301. [98] F. Leonard, E.-M. Collnot, C.-M. Lehr, A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro, Molecular Pharmaceutics, 7 (2010) 2103-2119. [99] T. Tanoue, Y. Nishitani, K. Kanazawa, T. Hashimoto, M. Mizuno, In vitro model to estimate gut inflammation using co-cultured Caco-2 and RAW264.7 cells, Biochemical and biophysical research communications, 374 (2008) 565-569. [100] M.S. Kim, J.Y. Kim, Intestinal anti-inflammatory effects of cinnamon extracts in a co-culture model of intestinal epithelial Caco-2 cells and RAW264.7 macrophages, Applied Biological Chemistry, 60 (2017) 553-561. [101] M.S. Kim, J.Y. Kim, Cinnamon subcritical water extract attenuates intestinal inflammation and enhances intestinal tight junction in a Caco-2 and RAW264.7 co-culture model, Food Function, 10 (2019) 4350-4360. [102] M.E. Lund, J. To, B.A. O'Brien, S. Donnelly, The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus, Journal of Immunological Methods, 430 (2016) 64-70. [103] A.A.M. Kämpfer, P. Urbán, S. Gioria, N. Kanase, V. Stone, A. Kinsner-Ovaskainen, Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state, Toxicology in Vitro, 45 (2017) 31-43. [104] S.M. Lee, N.H. Kim, S. Lee, Y.N. Kim, J.D. Heo, J.R. Rho, E.J. Jeong, (10Z)-debromohymenialdisine from marine sponge Stylissa sp. regulates intestinal inflammatory responses in co-culture model of epithelial Caco-2 cells and THP-1 macrophage cells, Molecules (Basel, Switzerland), 24 (2019). [105] K.Y.Y. Fung, G.D. Fairn, W.L. Lee, Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities, Traffic, 19 (2018) 5-18. [106] H.C. Christianson, M. Belting, Heparan sulfate proteoglycan as a cell-surface endocytosis receptor, Matrix Biology, 35 (2014) 51-55. [107] M. Belting, Heparan sulfate proteoglycan as a plasma membrane carrier, Trends in Biochemical Sciences, 28 (2003) 145-151. [108] P. Lajoie, I.R. Nabi, Regulation of raft-dependent endocytosis, J Cell Mol Med, 11 (2007) 644-653. [109] G.J. Doherty, H.T. McMahon, Mechanisms of endocytosis, Annual Review of Biochemistry, 78 (2009) 857-902. [110] A. Wittrup, S.-H. Zhang, K.J. Svensson, P. Kucharzewska, M.C. Johansson, M. Mörgelin, M. Belting, Magnetic nanoparticle-based isolation of endocytic vesicles reveals a role of the heat shock protein GRP75 in macromolecular delivery, Proceedings of the National Academy of Sciences, 107 (2010) 13342-13347. [111] C.K. Payne, S.A. Jones, C. Chen, X. Zhuang, Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands, Traffic, 8 (2007) 389-401. [112] H.C. Christianson, K.J. Svensson, T.H. van Kuppevelt, J.-P. Li, M. Belting, Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity, Proceedings of the National Academy of Sciences, 110 (2013) 17380-17385. [113] D. Raze, C. Verwaerde, G. Deloison, E. Werkmeister, B. Coupin, M. Loyens, P. Brodin, C. Rouanet, C. Locht, Heparin-binding hemagglutinin adhesin (HBHA) is involved in intracytosolic lipid inclusions formation in mycobacteria, Frontiers in Microbiology, 9 (2018). [114] N. Thapa, R.A. Anderson, PIP2 signaling, an integrator of cell polarity and vesicle trafficking in directionally migrating cells, Cell Adh Migr, 6 (2012) 409-412. [115] T.F.J. Martin, Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion, Subcell Biochem, 59 (2012) 111-130. [116] S. Lee, S. Park, M.T. Nguyen, E. Lee, J. Kim, S. Baek, C.J. Kim, Y.J. Jang, H. Choe, A chemical conjugate between HER2-targeting antibody fragment and Pseudomonas exotoxin A fragment demonstrates cytotoxic effects on HER2-expressing breast cancer cells, BMB Rep, 52 (2019) 496-501. [117] W. Suh, J.-K. Chung, S.-H. Park, S.W. Kim, Anti-JL1 antibody-conjugated poly (l-lysine) for targeted gene delivery to leukemia T cells, Journal of Controlled Release, 72 (2001) 171-178. [118] M.A. Fletcher, M.A. Kloczewiak, P.M. Loiselle, M. Ogata, M.W. Vermeulen, E.M. Zanzot, H.S. Warren, A novel peptide-IgG conjugate, CAP18(106-138)-IgG, that binds and neutralizes endotoxin and kills gram-negative bacteria, The Journal of Infectious Diseases, 175 (1997) 621-632. [119] J. Carlsson, H. Drevin, R. Axén, Protein thiolation and reversible protein-protein conjugation. N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent, Biochem J, 173 (1978) 723-737. [120] A.J. Cumber, J.A. Forrester, B.M. Foxwell, W.C. Ross, P.E. Thorpe, Preparation of antibody-toxin conjugates, Methods in Enzymology, 112 (1985) 207-225. [121] A.R. Neurath, N. Strick, Enzyme-linked fluorescence immunoassays using beta-galactosidase and antibodies covalently bound to polystyrene plates, Journal of Virological Methods, 3 (1981) 155-165. [122] B.Y.a.D. Liu, Gemtuzumab Ozogamicin in relapsed acute myeloid leukemia, Biomarker Research, 7 (2001) 1490-1496. [123] M. Källsten, R. Hartmann, K. Artemenko, S.B. Lind, F. Lehmann, J. Bergquist, Qualitative analysis of antibody-drug conjugates (ADCs): an experimental comparison of analytical techniques of cysteine-linked ADCs, Analyst, 143 (2018) 5487-5496. [124] M. Abedi, R. Ahangari Cohan, F. Mahboudi, M. Shafiee Ardestani, F. Davami, MALDI-MS: a rapid and reliable method for drug-to-antibody ratio determination of antibody-drug conjugates, Iran Biomed J, 23 (2019) 395-403. [125] F. Li, N. Vijayasankaran, A.Y. Shen, R. Kiss, A. Amanullah, Cell culture processes for monoclonal antibody production, mAbs, 2 (2010) 466-479. [126] R. Kunert, D. Reinhart, Advances in recombinant antibody manufacturing, Appl Microbiol Biotechnol, 100 (2016) 3451-3461. [127] L. Liu, Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins, Journal of Pharmaceutical Sciences, 104 (2015) 1866-1884. [128] M.-Y. Song, S.-K. Park, C.-S. Kim, T.H. Yoo, B. Kim, M.-S. Kim, Y.-S. Kim, W.J. Kwag, B.-K. Lee, K. Baek, Characterization of a novel anti-human TNF-α murine monoclonal antibody with high binding affinity and neutralizing activity, Experimental Molecular Medicine, 40 (2008) 35-42. [129] H. Mitoma, T. Horiuchi, H. Tsukamoto, Y. Tamimoto, Y. Kimoto, A. Uchino, K. To, S. Harashima, N. Hatta, M. Harada, Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab, Arthritis Rheumatology, 58 (2008) 1248-1257. [130] T. Horiuchi, H. Mitoma, S.-i. Harashima, H. Tsukamoto, T. Shimoda, Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents, Rheumatology, 49 (2010) 1215-1228. [131] L. Yan, R. Hu, S. Tu, W.-J. Cheng, Q. Zheng, J.-W. Wang, W.-S. Kan, Y.-J. Ren, Establishment of a cell model for screening antibody drugs against rheumatoid arthritis with ADCC and CDC, Int J Clin Exp Med, 8 (2015) 20065-20071. [132] M.R. Ruff, G.E. Gifford, Rabbit tumor necrosis factor: mechanism of action, Infection and Immunity, 31 (1981) 380-385. [133] L. Bersani, F. Colotta, A. Mantovani, Involvement of tumour necrosis factor in monocyte-mediated rapid killing of actinomycin D-pretreated WEHI 164 sarcoma cells, Immunology, 59 (1986) 323-325. [134] C. Lallemand, N. Kavrochorianou, C. Steenholdt, K. Bendtzen, M.A. Ainsworth, J.F. Meritet, B. Blanchard, P. Lebon, P. Taylor, P. Charles, S. Alzabin, M.G. Tovey, Reporter gene assay for the quantification of the activity and neutralizing antibody response to TNFα antagonists, Journal of Immunological Methods, 373 (2011) 229-239. [135] H. Lim, S.H. Lee, H.T. Lee, J.U. Lee, J.Y. Son, W. Shin, Y.S. Heo, Structural biology of the TNFα antagonists used in the treatment of rheumatoid arthritis, International Journal of Molecular Sciences, 19 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78321 | - |
| dc.description.abstract | 發炎性腸道疾病(inflammatory bowel disease, IBD)是一種持續性及反覆性的腸胃道發炎疾病,由於罹病率與發生率逐年上升、病人生活品質低,且需終生服藥,使發炎性腸道疾病亟需被重視。與發炎相關細胞素如腫瘤壞死因子-α(tumor necrosis factor, TNF-α)是由浸潤至固有層(lamina propria)的免疫細胞分泌,並於發炎性腸道疾病中扮演重要的角色。英利昔單抗(infliximab, IFX) 是第一個被食品藥物管理局(Food and Drug Administration, FDA)核准用於治療發炎性腸道疾病的抗TNF-α單株抗體,在臨床試驗中顯示其有效性。然而,由於需經由血管給藥,而產生的安全的疑慮需被考量,如增加病人感染風險、腫瘤風險、輸注時之反應等。以口服方式給予IFX似乎較佳,然而腸道生理障蔽將可能阻擋局部遞送至IBD病灶。肝素結合凝血附著素c (heparin-binding haemagglutinin adhesin C, HBHAc)在過去的研究中指出可協助大分子藥物胞內與穿胞遞送之載體。因此本研究欲探討HBHAc是否能夠增加IFX於腸道生理障蔽的穿透效果。 以兩步驟化學合成方式將HBHAc與IFX鍵結(IFX-HBHAc),第一步驟反應為3-(2-吡啶基二硫代)丙酸N-羥基琥珀醯亞胺酯(succinimidyl 3-(2-pyridyldithio) propionate, SPDP)上的N-羥基琥珀醯亞胺酯基團(N-hydroxysuccinimide, NHS)與IFX上的一級胺反應,而第二步驟為經半胱氨酸修飾的HBHAc取代IFX-SPDP上的2-吡啶基二硫代(2-pyridyldithio)基團。IFX-HBHAc 被合成並有1.6與2.6個HBHAc修飾的IFX(IFX-HBHAc(1.6)與IFX-HBHAc(2.6)),IFX-HBHAc(1.6)與IFX-HBHAc(2.6)中和TNF-α的活性(TNF-α neutralizing activity)與未修飾的IFX相比,保留了78.3% ± 22.9% 以及 79.6% ± 14.9%。化學鍵結反應所產生的混和物以粒徑篩析層析法(size exclusion chromatography, SEC)純化。螢光異硫氰酸鹽(fluorescein isothiocyanate, FITC)先鍵結於IFX再合成出經FITC修飾之IFX-HBHAc以進行內吞與穿胞實驗,相同莫耳濃度的經FITC修飾之IFX-HBHAc與IFX具有相似的任意螢光強度。以人類結腸腺癌細胞Caco-2細胞進行細胞內吞實驗,在劑量依賴性細胞內吞實驗(dose-dependent cellular uptake study)中,將FITC標定的IFX與IFX-HBHAc以10至100 nM的濃度給藥一小時;在時間依賴性細胞內吞實驗(time-dependent cellular uptake study)中,Caco-2細胞與濃度30 nM 的經FITC標定IFX與IFX-HBHAc培養1-4小時。與IFX相比,IFX-HBHAc具較高的細胞內吞量,且呈現劑量與時間依賴性。以Caco-2細胞建構的transwell system可以用來評估藥物的穿胞能力,經培養14-21天後,transwell system的跨上皮電阻值(transepithelial electrical resistance)皆可到達900 Ω*cm2以上,以模擬體外腸道生理障蔽。將經FITC 標定的抗體加入上室並計算下室累計螢光強度(accumulated fluorescence intensity),經過穿胞試驗6小時後,IFX-HBHAc的累計螢光強度隨時間增加有上升的趨勢且穿過至下室的螢光比例為34.8 ± 5.4 %,另於穿胞試驗24小時後,經8倍濃縮下室培養基以酵素免疫測定法(enzyme-linked immunosorbent assay)測定濃度,IFX-HBHAc(1.6)與IFX-HBHAc(2.6)組別所測到的濃度相較IFX組別高出2.5與3.2倍。除此之外,經過穿胞試驗24小時後,評估經4.5倍濃縮下室培養基的中和TNF-α的活性,IFX-HBHAc(1.6)與IFX-HBHAc(2.6)的細胞存活率顯著高於沒有給予抗體的組別(36.6 ± 4.2 %與38.4 ± 6.1 % v.s. 27.7 ± 2.5 %, p<0.001),顯示其保留了中和TNF-α的活性。 在本研究中,具有中和TNF-α活性的IFX-HBHAc成功以化學鍵結方式形成與純化,在體外試驗中,HBHAc可將IFX送入腸道上皮細胞以及穿過腸道障壁,穿過後亦保有中和TNF-α的活性。這些結果顯示HBHAc具有協助單株抗體藥物克服腸道生理障蔽的潛力,當治療性單株抗體藥物應用於IBD的口服遞送時,應在動物中有進一步的研究。 | zh_TW |
| dc.description.abstract | Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammation in gastrointestinal (GI) tract. The rising prevalence and incidence rate, low quality of life, and life-long treatment drive the burden of IBD. Inflammatory-related cytokines such as tumor necrosis factor-α (TNF-α) are produced by immune cells invading to laminar propria and play an important role in IBD. Infliximab (IFX) is the first anti-TNF-α monoclonal antibody approved from FDA to treat IBD and showed efficacy in clinical trials. However, due to the intravascular administration, the safety issue such as increased risk of infection, malignancy, and infusion reaction should be concerned. Oral administration seems a more favorable pathway to deliver IFX, while the physiological intestinal barrier would hinder the local delivery to IBD diseased tissues. HBHAc has shown the potential to be a macromolecular carrier for intracellular and transcytosis delivery in the previous studies. Thus, we would like to test if HBHAc can enhance the permeability of IFX through the intestinal barrier. HBHAc modified IFX (IFX-HBHAc) was synthesized with two steps chemical conjugation. Step 1 reaction is that the N-hydroxysuccinimide ester group on succinimidyl 3-(2-pyridyldithio) propionate (SPDP) conjugated to the primary amino group on IFX. Step 2 reaction is that the 2-pyridyldithio (P2S) group on IFX-SPDP was displaced by cysteine-modified HBHAc. IFX-HBHAc was synthesized with 1.6 and 2.6 HBHAc modification (IFX-HBHAc(1.6) and IFX-HBHAc(2.6)). The TNF-α neutralizing activity of IFX-HBHAc(1.6) and IFX-HBHAc(2.6) reserved 78.3% ± 22.9% and 79.6% ± 14.9% potency compared to unmodified IFX. The impurity produced after chemical conjugation was removed by size exclusion chromatography (SEC). FITC was first labeled on IFX to synthesize FITC labeded IFX-HBHAc for cellular uptake and transcytosis study. The arbitrary fluorescence intensity of FITC-IFX-HBHAc was similar to FITC-IFX at the same molarity. The cellular uptake study was accessed in human colon adenocarcinoma, Caco-2 cells. In dose-dependent cellular uptake study, FITC labeled IFX and IFX-HBHAc was dosed at the concentration of 10 to 100 nM for 1 hour. In time-dependent cellular uptake study, Caco-2 cells were incubated with FITC labeled IFX and IFX-HBHAc for 1 to 4 hours at the concentration of 30 nM. IFX-HBHAc showed the higher internalization compared to IFX in the dose- and time-dependent manner. Caco-2 transwell system was established for the transcytosis study. Transepithelial electrical resistance (TEER) value can reach above 900 Ω*cm2 after incubation for 14 to 21 days, suitable for mimicking the intestinal barrier in vitro. The FITC labeled IFX and IFX-HBHAc was added to the apical chamber and the accumulated fluorescence intensity in the basolateral chamber was calculated after transcytosis for 6 hours. The accumulated fluorescence intensity of IFX-HBHAc increased with time and proportion from apical to basolateral chamber was 34.8 ± 5.4 %. After transcytosis for 24 hours, the concentration of 8X concentrate from the basolateral chamber was measured by enzyme-linked immunosorbent assay (ELISA) kit. The concentration of IFX-HBHAc(1.6) and IFX-HBHAc(2.6) was 2.5 and 3.2-fold higher than IFX. Moreover, after transcytosis for 24 hours, the TNF-α neutralizing activity of 4.5X conditioned concentrate from the basolateral chamber was estimated. The cell viability of IFX-HBHAc(1.6) and IFX-HBHAc(2.6) was significantly higher than the group without dosing antibody (36.6 ± 4.2 % and 38.4 ± 6.1 % v.s. 27.7 ± 2.5 %, p<0.001), suggesting the TNF-α neutralizing activity was reserved. In summary, IFX-HBHAc with TNF-α neutralizing activity was successfully synthesized through chemical conjugation and purified. HBHAc can deliver the IFX to internalize into the epithelial cells and cross the intestinal barrier with the reservation of TNF-α neutralizing activity in vitro. These results suggested the potential of HBHAc as a monoclonal antibody carrier to overcome the physiological intestinal barrier. The study should be further investigated in animals when the therapeutic monoclonal antibody is applied in oral treatment to IBD. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:51:06Z (GMT). No. of bitstreams: 1 U0001-0408202016464300.pdf: 2820708 bytes, checksum: 35e0b651d1017e67592e79f271af655c (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Contents 摘要 I Abstract III List of Schemes and Figures IX List of Tables XI List of Abbreviations XII Chapter I : Introduction 1 1-1 General overview of inflammatory bowel disease (IBD) 1 1-2 Mechanisms and limitations of anti-tumor necrosis factor-α (TNF-α) monoclonal antibodies 2 1-3 Obstacles and approaches for oral delivery of protein drugs 4 1-4 Development of heparin-binding haemagglutinin adhesin C (HBHAc) 6 Chapter II : Aim and Objectives 8 Chapter III : Materials and Methods 9 3-1 Materials 9 3-1-1 Preparation of FITC labeled antibodies and IFX-HBHAc 9 3-1-2 The TNF-α neutralizing activity assay 10 3-1-3 Cell culture 10 3-1-4 Transcytosis study 11 3-2 Cell culture 11 3-3 Conjugation of FITC labeled IFX 11 3-4 Synthesis of IFX-HBHAc and FITC labeled IFX-HBHAc 12 3-4-1 Step 1 reaction 13 3-4-2 Step 2 reaction 13 3-4-3 Purification of IFX-HBHAc after chemical conjugation 14 3-5 Construction of the TNF-α neutralizing activity assay 15 3-5-1 The optimal concentration of actinomycin D and TNF-α in TNF-α neutralizing activity assay 15 3-5-2 The TNF-α neutralizing activity of IFX-HBHAc 16 3-6 Cellular uptake of IFX and IFX-HBHAc 16 3-6-1 Dose-dependent cellular uptake study 17 3-6-2 Time-dependent cellular uptake study 17 3-7 Transcytosis assay for IFX-HBHAc 18 3-7-1 Construction of Caco-2 transwell system 18 3-7-2 The quantity of IFX and IFX-HBHAc after transcytosis for 6 hours 18 3-7-3 The quantity of IFX and IFX-HBHAc after transcytosis for 24 hours 19 3-7-4 The TNF-α neutralizing activity of IFX-HBHAc after transcytosis for 24 hours 20 3-8 Statistics analysis 20 Chapter IV : Results 21 4-1 Synthesis of FITC labeled IFX-HBHAc 21 4-1-1 Conjugation of FITC labeled IFX and IFX-HBHAc 21 4-1-2 Purification and characterization of FITC-IFX-HBHAc 21 4-2 Synthesis of IFX-HBHAc 22 4-2-1 Conjugation of IFX-HBHAc 22 4-2-2 Purification and characterization of IFX-HBHAc 23 4-3 TNF-α neutralizing activity assay for IFX-HBHAc 23 4-3-1 The optimized concentration of actinomycin D and TNF-α for TNF-α neutralizing activity assay 23 4-3-2 The TNF-α neutralizing activity of IFX with HBHAc modification 24 4-4 Cellular uptake of FITC labeled IFX and IFX-HBHAc 24 4-4-1 Dose-dependent cellular uptake study 24 4-4-2 Time-dependent cellular uptake study 25 4-5 Transcytosis assay for IFX-HBHAc 25 4-5-1 Well-established Caco-2 transwell system 25 4-5-2 The quantity of FITC labeled IFX and IFX-HBHAc after transcytosis for 6 hours 25 4-5-3 The quantity of IFX and IFX-HBHAc after transcytosis for 24 hours 26 4-5-4 The TNF-α neutralizing activity of IFX-HBHAc after transcytosis for 24 hours 27 Chapter V : Discussion 28 5-1 The intracellular and transcytosis delivery of IFX-HBHAc and IFX 28 5-1-1 Cellular uptake of IFX-HBHAc and IFX 28 5-1-2 Transcytosis of IFX-HBHAc and IFX 29 5-1-3 The potential transcytosis mechanism of IFX-HBHAc 31 5-2 Chemical conjugation of IFX-HBHAc 32 5-3 in vitro bioactivity assays of anti-TNF-α monoclonal antibodies 35 Chapter VI : Conclusion and Future prospective 38 References 68 | |
| dc.language.iso | en | |
| dc.subject | 化學合成 | zh_TW |
| dc.subject | 細胞穿透胜肽 | zh_TW |
| dc.subject | 英利昔單抗 | zh_TW |
| dc.subject | 發炎性腸道疾病 | zh_TW |
| dc.subject | 穿胞 | zh_TW |
| dc.subject | Infliximab | en |
| dc.subject | inflammatory bowel disease | en |
| dc.subject | chemical conjugation | en |
| dc.subject | transcytosis | en |
| dc.subject | cell-penetrating peptide | en |
| dc.title | 經胜肽修飾之治療性單株抗體作為發炎性腸道疾病口服治療之研究 | zh_TW |
| dc.title | Study a peptide modified therapeutic monoclonal antibody as an oral treatment to inflammatory bowel disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁碧惠(Pi-Hui Liang),楊家榮(Chia-Ron Yang) | |
| dc.subject.keyword | 英利昔單抗,發炎性腸道疾病,化學合成,穿胞,細胞穿透胜肽, | zh_TW |
| dc.subject.keyword | Infliximab,inflammatory bowel disease,chemical conjugation,transcytosis,cell-penetrating peptide, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202002392 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-10 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202016464300.pdf 未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
