請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張智芬(Zee-Fen Chang) | |
| dc.contributor.author | Shin-Mei Liu | en |
| dc.contributor.author | 劉炘莓 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:50:43Z | - |
| dc.date.available | 2025-08-06 | |
| dc.date.copyright | 2020-09-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-06 | |
| dc.identifier.citation | 1. Boissan, M., U. Schlattner, and M.L. Lacombe, The NDPK/NME superfamily: state of the art. Lab Invest, 2018. 98(2): p. 164-174. 2. Yu, H., X. Rao, and K. Zhang, Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiol Res, 2017. 205: p. 125-134. 3. Conery, A.R., S. Sever, and E. Harlow, Nucleoside diphosphate kinase Nm23-H1 regulates chromosomal stability by activating the GTPase dynamin during cytokinesis. Proceedings of the National Academy of Sciences, 2010. 107(35): p. 15461-15466. 4. Boissan, M., et al., Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science, 2014. 344(6191): p. 1510-1515. 5. Steeg, P.S., et al., Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst, 1988. 80(3): p. 200-4. 6. Kantor, J.D., et al., Inhibition of cell motility after nm23 transfection of human and murine tumor cells. Cancer Res, 1993. 53(9): p. 1971-3. 7. Lombardi, D., et al., The association of the Nm23-M1 protein and beta-tubulin correlates with cell differentiation. Exp Cell Res, 1995. 217(2): p. 267-71. 8. Roymans, D., et al., Nucleoside diphosphate kinase beta (Nm23-R1/NDPKbeta) is associated with intermediate filaments and becomes upregulated upon cAMP-induced differentiation of rat C6 glioma. Exp Cell Res, 2000. 261(1): p. 127-38. 9. Murakami, M., et al., Nm23-H1 modulates the activity of the guanine exchange factor Dbl-1. Int J Cancer, 2008. 123(3): p. 500-10. 10. Murakami, M., et al., The suppressor of metastasis Nm23-H1 interacts with the Cdc42 Rho family member and the pleckstrin homology domain of oncoprotein Dbl-1 to suppress cell migration. Cancer Biol Ther, 2008. 7(5): p. 677-88. 11. Otsuki, Y., et al., Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4385-90. 12. Khan, I., B. Gril, and P.S. Steeg, Metastasis Suppressors NME1 and NME2 Promote Dynamin 2 Oligomerization and Regulate Tumor Cell Endocytosis, Motility, and Metastasis. Cancer Res, 2019. 79(18): p. 4689-4702. 13. Tsao, N., et al., The direct interaction of NME3 with Tip60 in DNA repair. Biochem J, 2016. 473(9): p. 1237-45. 14. Chen, C.W., et al., Two separate functions of NME3 critical for cell survival underlie a neurodegenerative disorder. Proc Natl Acad Sci U S A, 2019. 116(2): p. 566-574. 15. Winograd-Katz, S.E., et al., Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown. J Cell Biol, 2009. 186(3): p. 423-36. 16. Qu, L., et al., Inhibitory effect of upregulated DR-nm23 expression on invasion and metastasis in colorectal cancer. Eur J Cancer Prev, 2013. 22(6): p. 512-22. 17. Bauer, H., et al., The nucleoside diphosphate kinase gene Nme3 acts as quantitative trait locus promoting non-Mendelian inheritance. PLoS Genet, 2012. 8(3): p. e1002567. 18. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108. 19. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52. 20. Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10869-74. 21. Dai, X., et al., Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res, 2015. 5(10): p. 2929-43. 22. Alluri, P. and L.A. Newman, Basal-like and triple-negative breast cancers: searching for positives among many negatives. Surgical oncology clinics of North America, 2014. 23(3): p. 567-577. 23. Bertucci, F., et al., How basal are triple-negative breast cancers? Int J Cancer, 2008. 123(1): p. 236-40. 24. Gupta, G.P. and J. Massagué, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95. 25. Weigelt, B., J.L. Peterse, and L.J. van 't Veer, Breast cancer metastasis: markers and models. Nat Rev Cancer, 2005. 5(8): p. 591-602. 26. Fallahpour, S., et al., Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. CMAJ Open, 2017. 5(3): p. E734-E739. 27. Rodrigues-Ferreira, S., et al., 8p22 MTUS1 gene product ATIP3 is a novel anti-mitotic protein underexpressed in invasive breast carcinoma of poor prognosis. PLoS One, 2009. 4(10): p. e7239. 28. Molina, A., et al., ATIP3, a novel prognostic marker of breast cancer patient survival, limits cancer cell migration and slows metastatic progression by regulating microtubule dynamics. Cancer Res, 2013. 73(9): p. 2905-15. 29. Iwaya, K., K. Norio, and K. Mukai, Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Modern Pathology, 2007. 20(3): p. 339-343. 30. Yamazaki, D., et al., A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading. Genes Cells, 2005. 10(5): p. 381-92. 31. Yamaguchi, H. and J. Condeelis, Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta, 2007. 1773(5): p. 642-52. 32. Pollard, T.D. and J.A. Cooper, Actin, a central player in cell shape and movement. Science, 2009. 326(5957): p. 1208-12. 33. Focusing on mitochondrial form and function. Nat Cell Biol, 2018. 20(7): p. 735. 34. Szabadkai, G. and M.R. Duchen, Mitochondria: the hub of cellular Ca2+ signaling. Physiology (Bethesda), 2008. 23: p. 84-94. 35. Detmer, S.A. and D.C. Chan, Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol, 2007. 8(11): p. 870-9. 36. Werth, J.L. and S.A. Thayer, Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J Neurosci, 1994. 14(1): p. 348-56. 37. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010. 11(12): p. 872-84. 38. Chan, D.C., Dissecting mitochondrial fusion. Dev Cell, 2006. 11(5): p. 592-4. 39. Zhang, J., et al., G-protein β2 subunit interacts with mitofusin 1 to regulate mitochondrial fusion. Nat Commun, 2010. 1: p. 101. 40. Sheridan, C. and S.J. Martin, Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion, 2010. 10(6): p. 640-8. 41. Campello, S., et al., Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med, 2006. 203(13): p. 2879-86. 42. Cunniff, B., et al., AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol Biol Cell, 2016. 27(17): p. 2662-74. 43. Zhao, J., et al., Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene, 2013. 32(40): p. 4814-4824. 44. Györffy, B., et al., An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat, 2010. 123(3): p. 725-31. 45. Flentie, K., et al., Nucleoside Diphosphate Kinase-3 (<em>NME3</em>) Enhances TLR5-Induced NF<strong>κ</strong>B Activation. Molecular Cancer Research, 2018. 16(6): p. 986-999. 46. Dai, X., et al., Breast Cancer Cell Line Classification and Its Relevance with Breast Tumor Subtyping. J Cancer, 2017. 8(16): p. 3131-3141. 47. Jacquemet, G., H. Hamidi, and J. Ivaska, Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol, 2015. 36: p. 23-31. 48. Liu, T.-L., et al., Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science, 2018. 360(6386): p. eaaq1392. 49. Desai, S.P., et al., Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophysical journal, 2013. 104(9): p. 2077-2088. 50. Schuler, M.-H., et al., Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Molecular biology of the cell, 2017. 28(16): p. 2159-2169. 51. Daniel, R., et al., Mitochondria tether to Focal Adhesions during cell migration and regulate their size. bioRxiv, 2019: p. 827998. 52. Betapudi, V., L.S. Licate, and T.T. Egelhoff, Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res, 2006. 66(9): p. 4725-33. 53. Rigor, R.R., et al., Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev, 2013. 33(5): p. 911-33. 54. Negroni, A., et al., Neuroblastoma specific effects of DR-nm23 and its mutant forms on differentiation and apoptosis. Cell Death Differ, 2000. 7(9): p. 843-50. 55. Rual, J.-F., et al., Towards a proteome-scale map of the human protein–protein interaction network. Nature, 2005. 437(7062): p. 1173-1178. 56. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 57. Shneyer, B.I., M. Ušaj, and A. Henn, Myo19 is an outer mitochondrial membrane motor and effector of starvation-induced filopodia. Journal of Cell Science, 2016. 129(3): p. 543-556. 58. Shneyer, B.I., et al., ROS induced distribution of mitochondria to filopodia by Myo19 depends on a class specific tryptophan in the motor domain. Scientific Reports, 2017. 7(1): p. 11577. 59. Altieri, D.C., Mitochondria on the move: emerging paradigms of organelle trafficking in tumour plasticity and metastasis. Br J Cancer, 2017. 117(3): p. 301-305. 60. Amano, M., et al., Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem, 1996. 271(34): p. 20246-9. 61. Wang, B., et al., A novel all-trans retinoid acid derivatives inhibits the migration of breast cancer cell lines MDA-MB-231 via myosin light chain kinase involving p38-MAPK pathway. Biomed Pharmacother, 2013. 67(5): p. 357-62. 62. Roberts, P.J., et al., Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. The Journal of biological chemistry, 2008. 283(37): p. 25150-25163. 63. van Unen, J., et al., Plasma membrane restricted RhoGEF activity is sufficient for RhoA-mediated actin polymerization. Scientific Reports, 2015. 5(1): p. 14693. 64. Etienne-Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature, 2002. 420(6916): p. 629-35. 65. Lang, P., et al., Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J, 1996. 15(3): p. 510-9. 66. Wirth, A., Rho kinase and hypertension. Biochim Biophys Acta, 2010. 1802(12): p. 1276-84. 67. Ward, Y., et al., The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J Cell Biol, 2002. 157(2): p. 291-302. 68. Abu-Taha, I.H., et al., Nucleoside Diphosphate Kinase-C Suppresses cAMP Formation in Human Heart Failure. Circulation, 2017. 135(9): p. 881-897. 69. Fuhs, S.R. and T. Hunter, pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol, 2017. 45: p. 8-16. 70. Boissan, M., et al., The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem, 2009. 329(1-2): p. 51-62. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78313 | - |
| dc.description.abstract | 核苷二磷酸激酶3(NME3) 是屬於苷二磷酸激酶 (NDPK) 家族的其中一員,已知 NME3存在粒線體外膜上,也是一個潛在的組氨酸激酶 (Histidinekinase)。從乳癌 患者臨床數據中發現核苷二磷酸激酶 3 的表現量與患者的預後呈負相關。我們發 現在高度轉移性乳癌細胞中,例如 MDA-MB-231 細胞,具有較低的 NME3 表現 量。在 MDA-MB-231 細胞中增加完整的 NME3 表現量,會抑制 MDA-MB-231 細 胞的移動、侵襲與轉移,然而增加 N 端去除的 NME3 表現量卻無效果。我們證明 了 NME3 會降低粒線體的短桿狀 (fragmentation)、絲狀偽足 (filopodia) 的生成 以及肌凝蛋白輕鏈 2 (MLCII) 的磷酸化。為了釐清 NME3 如何同時影響這些分子 事件,我們比較表現不同型的 NME3 在細胞中,包含野生型 (wild-type) NME3、 酵 素 活 性 抑 制 型 (catalytic-dead) NME3 oligomerization defective) NME3。在 MDA-MB-231 中,酵素活性抑制的 NME3 會 filopodia 的生成,但維持了 RhoA-ROCK 所調控的 MLCII 磷酸化。在 NME3 表現的細胞中,阻止粒線體融合 (fusion) 而干擾 NME3 調 控的粒線體延長可以恢復細胞的移動和侵襲能力,但在野生型 NME3 表現的細胞 中則無此現象。相反地, 組氨酸磷酸化 (histidine phosphorylation) 的 filopodia 的生 成和 MLCII 磷酸化皆下降,進而抑制細胞移動及侵襲的能力。根據這些結果,我 們推測 NME3 存在兩種不同的功能以抑制細胞移動及侵襲所需的 filopodia 的生 成,其一是藉由 NME3 的聚合促進粒線體的延長,另外則是藉由 NME3 的組氨酸 激酶功能抑制 RhoA-ROCK-MLC II 路徑。 | zh_TW |
| dc.description.abstract | NME3, termed as non-metastasis enzyme (NME), is a nucleoside diphosphate kinase (NDPK). Given the presence of high-energy-phosphate intermediate at the catalytic histidine residue, NME3 is also a potential histidine kinase located on mitochondrial outer membrane. Data mining from databases of clinical specimens of breast cancer patients demonstrated that the expression level of NME3 was correlated with poor prognosis. We found that highly metastatic breast cancer cell lines such as MDA-MB-231 cells express lower level of NME3. Increased expression of full-length of NME3 inhibited MDA-MB- 231 cells in migration, invasion and in vivo metastasis, while NME3 deleted of N- terminus region had no effect. We showed NME3-mediated reduction in mitochondrial fragmentation, filopodia formation, and myosin light chain II (MLCII) phosphorylation. Expression of wild-type, catalytic-dead, and oligomerization defective of NME3 all caused the loss of invasion capability in MDA-MB231. The expression of catalytic-dead mutant of NME3 led to mitochondrial elongation with decreased amount of filopodia while retaining RhoA-ROCK-mediated MLCII phosphorylation in MDA-MB-231 cells. Blocking mitochondrial fusion to interfere NME3-mediated mitochondrial elongation was able to restore migration and invasion in cells expressing catalytic-dead mutant but not wild-type. As for the cells expressing oligomerization mutant of NME3 defective in stimulation of mitochondrial elongation, the abilities in migration and invasion were still suppressed with reduction in filopodia formation and MLCII phosphorylation . According to these results, we proposed that NME3 exerts two different functions to suppress filopodia formation for migration and invasion, one by stimulating mitochondrial elongation via oligomerization and the other by suppressing RhoA-ROCK-MLCII pathway via the histidine kinase function. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:50:43Z (GMT). No. of bitstreams: 1 U0001-0508202017371200.pdf: 11372974 bytes, checksum: 65203ecdd923b4805024598edd0fac46 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書................................................................. i 謝誌.......................................................................... ii 論文摘要......................................................................iii Abstract .....................................................................iv Table of contents .............................................................1 Introduction ................................................................. 2 1.Nucleoside diphosphate kinase (NDPK, NME, Nm23) family ..................... 2 1.1 NME isoforms...............................................................2 1.2 NME1 and NME2 as metastasis suppressors....................................3 1.3 The function of NME3 in mitochondria.......................................4 1.4 The function of NME3 in cell motility .....................................5 Breast cancer ................................................................ 6 2.1 Breast cancer molecular subtype and treatments ............................6 2.2 Breast cancer metastasis...................................................8 2.3 Mitochondria dynamics regulate cancer cell metastasis .....................9 Materials and Methods.........................................................12 Result .......................................................................22 Increase expression of NME3 suppresses invasion process in MDA-MB-231 ....... 22 NME3 promotes mitochondrial elongation which is independent of catalytic function to suppress filopodia formation and invasion process in MDA-MB-231 ..24 Two separate routes in migration suppression by NME3..........................26 Enzymatic function of NME3 suppresses Myosin light chain phosphorylation .... 27 Total RhoA activity is not affected by NME3...................................28 NME3 locates on mitochondria and plasmamembrane via its N-terminal sequence ..29 Flag-NME3 interacts with NME1 ............................................... 30 Discussion....................................................................31 Figures ......................................................................36 Reference ....................................................................52 Appendix .................................................................... 61 | |
| dc.language.iso | en | |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 核苷二磷酸激酶3 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | ROCK | en |
| dc.subject | NME3 | en |
| dc.subject | Breast Cancer | en |
| dc.subject | Metastasis | en |
| dc.subject | mitochondria | en |
| dc.subject | RhoA | en |
| dc.title | 核苷二磷酸激酶 3 藉由雙重功能抑制乳癌細胞的轉移 | zh_TW |
| dc.title | The Dual Function of NME3 Suppresses Breast Cancer Metastasis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周祖述(Tzuu-Shuh Jou),蔡丰喬(Feng-Chiao Tsai),劉雅雯(Ya-Wen Liu),李曉暉(Hsiao-Hui Lee) | |
| dc.subject.keyword | 核苷二磷酸激酶3,乳癌,轉移,粒線體, | zh_TW |
| dc.subject.keyword | NME3,Breast Cancer,Metastasis,mitochondria,RhoA,ROCK, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202002489 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0508202017371200.pdf 未授權公開取用 | 11.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
