請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭錦樺(Ching-Hua Kuo) | |
| dc.contributor.author | Wan-Hui Lu | en |
| dc.contributor.author | 路婉慧 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:50:40Z | - |
| dc.date.available | 2025-08-13 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | 1. Zhu, W.; Gregory, J. C.; Org, E.; Buffa, J. A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; Sartor, R. B.; McIntyre, T. M.; Silverstein, R. L.; Tang, W. H. W.; DiDonato, J. A.; Brown, J. M.; Lusis, A. J.; Hazen, S. L., Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165 (1), 111-124. 2. Jonsson, A. L.; Backhed, F., Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 2017, 14 (2), 79-87. 3. Li, X. S.; Obeid, S.; Klingenberg, R.; Gencer, B.; Mach, F.; Raber, L.; Windecker, S.; Rodondi, N.; Nanchen, D.; Muller, O.; Miranda, M. X.; Matter, C. M.; Wu, Y.; Li, L.; Wang, Z.; Alamri, H. S.; Gogonea, V.; Chung, Y. M.; Tang, W. H.; Hazen, S. L.; Luscher, T. F., Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2017, 38 (11), 814-824. 4. Velasquez, M. T.; Ramezani, A.; Manal, A.; Raj, D. S., Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel) 2016, 8 (11). 5. Vernetti, L.; Gough, A.; Baetz, N.; Blutt, S.; Broughman, J. R.; Brown, J. A.; Foulke-Abel, J.; Hasan, N.; In, J.; Kelly, E.; Kovbasnjuk, O.; Repper, J.; Senutovitch, N.; Stabb, J.; Yeung, C.; Zachos, N. C.; Donowitz, M.; Estes, M.; Himmelfarb, J.; Truskey, G.; Wikswo, J. P.; Taylor, D. L., Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. Sci Rep 2017, 7, 42296. 6. Tang, W. H.; Wang, Z.; Li, X. S.; Fan, Y.; Li, D. S.; Wu, Y.; Hazen, S. L., Increased Trimethylamine N-Oxide Portends High Mortality Risk Independent of Glycemic Control in Patients with Type 2 Diabetes Mellitus. Clin Chem 2017, 63 (1), 297-306. 7. Tang, W. H.; Kitai, T.; Hazen, S. L., Gut Microbiota in Cardiovascular Health and Disease. Circ Res 2017, 120 (7), 1183-1196. 8. Wu, C. J.; Xue, F.; Lian, Y. J.; Zhang, J.; Wu, D.; Xie, N. C.; Chang, W. S.; Chen, F.; Wang, L. J.; Wei, W. J.; Yang, K.; Zhao, W. B.; Wu, L.; Song, H. Q.; Ma, Q. F.; Ji, X. M., Relationship between elevated plasma trimethylamine N-oxide levels and increased stroke injury. Neurology 2020, 94 (7), E667-E677. 9. Yu, L. L.; Meng, G. N.; Huang, B.; Zhou, X. Y.; Stavrakis, S.; Wang, M. L.; Li, X. F.; Zhou, L. P.; Wang, Y. H.; Wang, M.; Wang, Z. Y.; Deng, J. L.; Po, S. S.; Jiang, H., A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int. J. Cardiol. 2018, 255, 92-98. 10. Li, Z. H.; Wu, Z. Y.; Yan, J. Y.; Liu, H. L.; Liu, Q. C.; Deng, Y.; Ou, C. W.; Chen, M. S., Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab. Invest. 2019, 99 (3), 346-357. 11. Tang, W. H. W.; Wang, Z. N.; Kennedy, D. J.; Wu, Y. P.; Buffa, J. A.; Agatisa-Boyle, B.; Li, X. M. S.; Levison, B. S.; Hazen, S. L., Gut Microbiota-Dependent Trimethylamine N-Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circ.Res. 2015, 116 (3), 448-455. 12. Geers, L. M.; Cohen, D.; Wehkamp, L. M.; van Hateren, K.; Koster, R. A.; Fedorenko, O. Y.; Semke, A. V.; Bokhan, N.; Ivanova, S. A.; Kosterink, J. G. W.; Loonen, A. J. M.; Touw, D. J., Dried Blood Spot Analysis for Therapeutic Drug Monitoring of Clozapine. J Clin Psychiatry 2017, 78 (9), e1211-e1218. 13. Martial, L. C.; Aarnoutse, R. E.; Mulder, M.; Schellekens, A.; Bruggemann, R. J. M.; Burger, D. M.; Schene, A. H.; Batalla, A., Dried Blood Spot sampling in psychiatry: Perspectives for improving therapeutic drug monitoring. Eur Neuropsychopharmacol 2017, 27 (3), 205-216. 14. Knapen, L. M.; Beer, Y.; Bruggemann, R. J. M.; Stolk, L. M.; Vries, F.; Tjan-Heijnen, V. C. G.; Erp, N. P. V.; Croes, S., Development and validation of an analytical method using UPLC-MS/MS to quantify everolimus in dried blood spots in the oncology setting. J Pharm Biomed Anal 2018, 149, 106-113. 15. Zhang, Y.; Zhang, R., Recent advances in analytical methods for the therapeutic drug monitoring of immunosuppressive drugs. Drug Test Anal 2018, 10 (1), 81-94. 16. Petrick, L.; Edmands, W.; Schiffman, C.; Grigoryan, H.; Perttula, K.; Yano, Y.; Dudoit, S.; Whitehead, T.; Metayer, C.; Rappaport, S., An untargeted metabolomics method for archived newborn dried blood spots in epidemiologic studies. Metabolomics 2017, 13 (3). 17. Nys, G.; Kok, M. G. M.; Servais, A. C.; Fillet, M., Beyond dried blood spot: Current microsampling techniques in the context of biomedical applications. Trac-Trends Anal. Chem. 2017, 97, 326-332. 18. Wang, Q. J.; Sun, T.; Cao, Y. F.; Gao, P.; Dong, J.; Fang, Y. H.; Fang, Z. Z.; Sun, X. Y.; Zhu, Z. T., A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. OncoTargets Ther. 2016, 9, 1389-+. 19. de Sain-van der Velden, M. G. M.; van der Ham, M.; Gerrits, J.; Prinsen, H.; Willemsen, M.; Pras-Raves, M. L.; Jans, J. J.; Verhoeven-Duif, N. M., Quantification of metabolites in dried blood spots by direct infusion high resolution mass spectrometry. Anal. Chim. Acta 2017, 979, 45-50. 20. Huang, M.; Li, H. Y.; Liao, H. W.; Lin, C. H.; Wang, C. Y.; Kuo, W. H.; Kuo, C. H., Using post-column infused internal standard assisted quantitative metabolomics for establishing prediction models for breast cancer detection. Rapid Commun. Mass Spectrom., 10. 21. Kirwan, J. A.; Brennan, L.; Broadhurst, D.; Fiehn, O.; Cascante, M.; Dunn, W. B.; Schmidt, M. A.; Velagapudi, V., Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for 'Precision Medicine and Pharmacometabolomics Task Group'-The Metabolomics Society Initiative). Clin. Chem. 2018, 64 (8), 1158-1182. 22. Cho, H. D.; Kim, J.; Lee, J. Y.; Kim, Y. Y.; Lee, Y.; Jo, E.; Suh, J. H.; Lee, J.; Cha, S.; Han, S. B., A novel dried blood spots analysis combined with on-spot reaction for determination of trimethylamine N-oxide and its related compounds. Talanta 2020, 210, 9. 23. Xie, I.; Xu, Y.; Anderson, M.; Wang, M.; Xue, L.; Breidinger, S.; Goykhman, D.; Woolf, E. J.; Bateman, K. P., Extractability-mediated stability bias and hematocrit impact: High extraction recovery is critical to feasibility of volumetric adsorptive microsampling (VAMS) in regulated bioanalysis. J Pharm Biomed Anal 2018, 156, 58-66. 24. Volani, C.; Caprioli, G.; Calderisi, G.; Sigurdsson, B. B.; Rainer, J.; Gentilini, I.; Hicks, A. A.; Pramstaller, P. P.; Weiss, G.; Smarason, S. V.; Paglia, G., Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow. Anal Bioanal Chem 2017, 409 (26), 6263-6276. 25. Spooner, N.; Olatunji, A.; Webbley, K., Investigation of the effect of blood hematocrit and lipid content on the blood volume deposited by a disposable dried blood spot collection device. J. Pharm. Biomed. Anal. 2018, 149, 419-424. 26. Lenk, G.; Ullah, S.; Stemme, G.; Beck, O.; Roxhed, N., Evaluation of a Volumetric Dried Blood Spot Card Using a Gravimetric Method and a Bioanalytical Method with Capillary Blood from 44 Volunteers. Anal Chem 2019, 91 (9), 5558-5565. 27. Lenk, G.; Sandkvist, S.; Pohanka, A.; Stemme, G.; Beck, O.; Roxhed, N., A disposable sampling device to collect volume-measured DBS directly from a fingerprick onto DBS paper. Bioanalysis 2015, 7 (16), 2085-2094. 28. Nakahara, T.; Otani, N.; Ueno, T.; Hashimoto, K., Development of a hematocrit-insensitive device to collect accurate volumes of dried blood spots without specialized skills for measuring clozapine and its metabolites as model analytes. J. Chromatogr. B 2018, 1087, 70-79. 29. Liao, H. W.; Lin, S. W.; Chen, G. Y.; Kuo, C. H., Estimation and Correction of the Blood Volume Variations of Dried Blood Spots Using a Postcolumn Infused-Internal Standard Strategy with LC-Electrospray Ionization-MS. Anal Chem 2016, 88 (12), 6457-64. 30. Chen, G. Y.; Liao, H. W.; Tsai, I. L.; Tseng, Y. J.; Kuo, C. H., Using the matrix-induced ion suppression method for concentration normalization in cellular metabolomics studies. Anal Chem 2015, 87 (19), 9731-9. 31. Chen, G. Y.; Liao, H. W.; Tseng, Y. J.; Tsai, I. L.; Kuo, C. H., A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry. Anal Chim Acta 2015, 864, 21-9. 32. Steuer, C.; Schutz, P.; Bernasconi, L.; Huber, A. R., Simultaneous determination of phosphatidylcholine-derived quaternary ammonium compounds by a LC-MS/MS method in human blood plasma, serum and urine samples. J. Chromatogr. B 2016, 1008, 206-211. 33. Mi, S.; Zhao, Y. Y.; Jacobs, R. L.; Curtis, J. M., Simultaneous determination of trimethylamine and trimethylamine N-oxide in mouse plasma samples by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J Sep Sci 2017, 40 (3), 688-696. 34. Chaleckis, R.; Murakami, I.; Takada, J.; Kondoh, H.; Yanagida, M., Individual variability in human blood metabolites identifies age-related differences. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (16), 4252-4259. 35. Yue, B. F.; Pattison, E.; Roberts, W. L.; Rockwood, A. L.; Danne, O.; Lueders, C.; Mockel, M., Choline in whole blood and plasma: Sample preparation and stability. Clin. Chem. 2008, 54 (3), 590-593. 36. de Sain-van der Velden, M. G. M.; Diekman, E. F.; Jans, J. J.; van der Ham, M.; Prinsen, B.; Visser, G.; Verhoeven-Duif, N. M., Differences between acylcarnitine profiles in plasma and bloodspots. Mol. Genet. Metab. 2013, 110 (1-2), 116-121. 37. Awwad, H. M.; Kirsch, S. H.; Geisel, J.; Obeid, R., Measurement of concentrations of whole blood levels of choline, betaine, and dimethylglycine and their relations to plasma levels. J. Chromatogr. B 2014, 957, 41-45. 38. Theil, P. K.; Pedersen, L. J.; Jensen, M. B.; Yde, C. C.; Knudsen, K. E. B., Blood sampling and hemolysis affect concentration of plasma metabolites. J. Anim. Sci. 2012, 90, 412-414. 39. Kamlage, B.; Maldonado, S. G.; Bethan, B.; Peter, E.; Schmitz, O.; Liebenberg, V.; Schatz, P., Quality Markers Addressing Preanalytical Variations of Blood and Plasma Processing Identified by Broad and Targeted Metabolite Profiling. Clin. Chem. 2014, 60 (2), 399-412. 40. Tsai, I. L.; Kuo, C. H.; Sun, H. Y.; Chuang, Y. C.; Chepyala, D.; Lin, S. W.; Tsai, Y. J., An on-spot internal standard addition approach for accurately determining colistin A and colistin B in dried blood spots using ultra high-performance liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2017, 145, 783-793. 41. van der Elst, K. C. M.; Span, L. F. R.; van Hateren, K.; Vermeulen, K. M.; van der Werf, T. S.; Greijdanus, B.; Kosterink, J. G. W.; Uges, D. R. A.; Alffenaar, J. W. C., Dried Blood Spot Analysis Suitable for Therapeutic Drug Monitoring of Voriconazole, Fluconazole, and Posaconazole. Antimicrob. Agents Chemother. 2013, 57 (10), 4999-5004. 42. Foerster, K. I.; Huppertz, A.; Meid, A. D.; Muller, O. J.; Rizos, T.; Tilemann, L.; Haefeli, W. E.; Burhenne, J., Dried-Blood-Spot Technique to Monitor Direct Oral Anticoagulants: Clinical Validation of a UPLC-MS/MS-Based Assay. Anal. Chem. 2018, 90 (15), 9395-9402. 43. Jhang, R. S.; Lin, S. Y.; Peng, Y. F.; Chao, H. C.; Tsai, I. L.; Lin, Y. T.; Liao, H. W.; Tang, S. C.; Kuo, C. H.; Jeng, J. S., Using the PCI-IS Method to Simultaneously Estimate Blood Volume and Quantify Nonvitamin K Antagonist Oral Anticoagulant Concentrations in Dried Blood Spots. Anal. Chem. 2020, 92 (3), 2511-2518. 44. Nicholson, J. K.; Lindon, J. C.; Holmes, E., 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29 (11), 1181-1189. 45. Dettmer, K.; Aronov, P. A.; Hammock, B. D., Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26 (1), 51-78. 46. Bian, X. Q.; Li, N.; Tan, B. B.; Sun, B. Q.; Guo, M. Q.; Huang, G. X.; Fu, L.; Hsiao, W. L. W.; Liu, L.; Wu, J. L., Polarity-Tuning Derivatization-LC-MS Approach for Probing Global Carboxyl-Containing Metabolites in Colorectal Cancer. Anal. Chem. 2018, 90 (19), 11210-11215. 47. Villani, G. R. D.; Gallo, G.; Scolamiero, E.; Salvatore, F.; Ruoppolo, M., 'Classical organic acidurias': diagnosis and pathogenesis. Clin. Exper. Med. 2017, 17 (3), 305-323. 48. Schiller, S.; Rosewich, H.; Grunewald, S.; Gartner, J., Inborn errors of metabolism leading to neuronal migration defects. J. Inherit. Metab. Dis. 2020, 43 (1), 145-155. 49. El Fotoh, W.; Abd el Naby, S. A.; Abd El Hady, N. M. S., Autism Spectrum Disorders: The Association with Inherited Metabolic Disorders and Some Trace Elements. A Retrospective Study. CNS Neurol. Disord.-Drug Targets 2019, 18 (5), 413-420. 50. Huang, T.; Cao, Y. F.; Zeng, J.; Dong, J.; Sun, X. Y.; Chen, J. X.; Gao, P., Tandem mass spectrometry-based newborn screening strategy could be used to facilitate rapid and sensitive lung cancer diagnosis. OncoTargets Ther. 2016, 9, 2479-2487. 51. Zhu, B. J.; Li, L.; Wei, H.; Zhou, W. B.; Zhou, W. T.; Li, F. G.; Lin, P. Y.; Sheng, J. Q.; Wang, Q. J.; Yan, C.; Cheng, Y., A simultaneously quantitative profiling method for 40 endogenous amino acids and derivatives in cell lines using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Talanta 2020, 207, 11. 52. Rooks, M. G.; Garrett, W. S., Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016, 16 (6), 341-352. 53. Castells, A. A.; Gueraldi, D.; Balada, R.; Tristan-Noguero, A.; Cortes-Saladelafont, E.; Ramos, F.; Meavilla, S.; De Los Santos, M.; Garcia-Volpe, C.; Colome, R.; Couce, M. L.; Sierra, C.; Ormazabal, A.; BatIlori, M.; Artuch, R.; Armstrong, J.; Alcantara, S.; Garcia-Cazorla, A., Discovery of Biomarker Panels for Neural Dysfunction in Inborn Errors of Amino Acid Metabolism. Scientific Reports 2019, 9, 14. 54. Fowler, B.; Leonard, J. V.; Baumgartner, M. R., Causes of and diagnostic approach to methylmalonic acidurias. J. Inherit. Metab. Dis. 2008, 31 (3), 350-360. 55. Echeverri, O. Y.; Guevara, J. M.; Espejo-Mojica, A. J.; Ardila, A.; Pulido, N.; Reyes, M.; Rodriguez-Lopez, A.; Almeciga-Diaz, C. J.; Barrera, L. A., Research, diagnosis and education in inborn errors of metabolism in Colombia: 20 years' experience from a reference center. Orphanet J. Rare Dis. 2018, 13, 12. 56. Sarker, S. K.; Islam, M. T.; Biswas, A.; Bhuyan, G. S.; Sultana, R.; Sultana, N.; Rakhshanda, S.; Begum, M. N.; Rahat, A.; Yeasmin, S.; Khanam, M.; Saha, A. K.; Noor, F. A.; Sajib, A.; Islam, A.; Qadri, S. K.; Shahidullah, M.; Mannan, M. A.; Muraduzzaman, A. K. M.; Shirin, T.; Rahman, S. M.; Qadri, S. S.; Saha, N.; Akhteruzzaman, S.; Qadri, F.; Mannoor, K., Age-Specific Cut-off Values of Amino Acids and Acylcarnitines for Diagnosis of Inborn Errors of Metabolism Using Liquid Chromatography Tandem Mass Spectrometry. Biomed Res. Int. 2019, 2019, 11. 57. Reddy, N.; Calloni, S. F.; Vernon, H. J.; Boltshauser, E.; Huisman, T.; Soares, B. P., Neuroimaging Findings of Organic Acidemias and Aminoacidopathies. Radiographics 2018, 38 (3), 912-931. 58. Baertling, F.; Mayatepek, E.; Thimm, E.; Schlune, A.; Kovacevic, A.; Distelmaier, F.; Salomons, G. S.; Meissner, T., Malonic aciduria: long-term follow-up of new patients detected by newborn screening. Eur. J. Pediatr. 2014, 173 (12), 1719-1722. 59. Ozben, T., Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry. Clin. Chem. Lab. Med. 2013, 51 (1), 157-176. 60. Koek, M. M.; Jellema, R. H.; van der Greef, J.; Tas, A. C.; Hankemeier, T., Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 2011, 7 (3), 307-328. 61. Hagen, T.; Korson, M. S.; Sakamoto, M.; Evans, J. E., A GC/MS/MS screening method for multiple organic acidemias from urine specimens. Clin. Chim. Acta 1999, 283 (1-2), 77-88. 62. Klupczynska, A.; Plewa, S.; Sytek, N.; Sawicki, W.; Derezinski, P.; Matysiak, J.; Kokot, Z. J., A study of low-molecular-weight organic acid urinary profiles in prostate cancer by a new liquid chromatography-tandem mass spectrometry method. J. Pharm. Biomed. Anal. 2018, 159, 229-236. 63. Korver-Keularts, I.; Wang, P.; Waterval, H.; Kluijtmans, L. A. J.; Wevers, R. A.; Langhans, C. D.; Scott, C.; Habets, D. D. J.; Bierau, J., Fast and accurate quantitative organic acid analysis with LC-QTOF/MS facilitates screening of patients for inborn errors of metabolism. J. Inherit. Metab. Dis. 2018, 41 (3), 415-424. 64. Luo, B.; Groenke, K.; Takors, R.; Wandrey, C.; Oldiges, M., Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J. Chromatogr. A 2007, 1147 (2), 153-164. 65. Buescher, J. M.; Moco, S.; Sauer, U.; Zamboni, N., Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Method for Fast and Robust Quantification of Anionic and Aromatic Metabolites. Anal. Chem. 2010, 82 (11), 4403-4412. 66. Gomez-Gomez, A.; Soldevila, A.; Pizarro, N.; Andreu-Fernandez, V.; Pozo, O. J., Improving liquid chromatography-tandem mass spectrometry determination of polycarboxylic acids in human urine by chemical derivatization. Comparison of o-benzyl hydroxylamine and 2-picolyl amine. J. Pharm. Biomed. Anal. 2019, 164, 382-394. 67. Uutela, P.; Ketola, R. A.; Piepponen, P.; Kostiainen, R., Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry. Anal. Chim. Acta 2009, 633 (2), 223-231. 68. Kushnir, M. M.; Komaromy-Hiller, G.; Shushan, B.; Urry, F. M.; Roberts, W. L., Analysis of dicarboxylic acids by tandem mass spectrometry. High-throughput quantitative measurement of methylmalonic acid in serum, plasma, and urine. Clin. Chem. 2001, 47 (11), 1993-2002. 69. Moles, E.; Marcos, J.; Imperial, S.; Pozo, O. J.; Fernandez-Busquets, X., 2-picolylamine derivatization for high sensitivity detection of abscisic acid in apicomplexan blood-infecting parasites. Talanta 2017, 168, 130-135. 70. Kloos, D.; Derks, R. J. E.; Wijtmans, M.; Lingeman, H.; Mayboroda, O. A.; Deelder, A. M.; Niessen, W. M. A.; Giera, M., Derivatization of the tricarboxylic acid cycle intermediates and analysis by online solid-phase extraction-liquid chromatography-mass spectrometry with positive-ion electrospray ionization. J. Chromatogr. A 2012, 1232, 19-26. 71. Marquis, B. J.; Louks, H. P.; Bose, C.; Wolfe, R. R.; Singh, S. P., A New Derivatization Reagent for HPLC-MS Analysis of Biological Organic Acids. Chromatographia 2017, 80 (12), 1723-1732. 72. Ye, M. W.; Zhang, L. J.; Xu, P. P.; Zhang, R. T.; Xu, J. L.; Wu, X. K.; Chen, J. J.; Zhou, C. X.; Yan, X. J., Simultaneous analysis of ten low-molecular-mass organic acids in the tricarboxylic acid cycle and photorespiration pathway in Thalassiosira pseudonana at different growth stages. J. Sep. Sci. 2017, 40 (3), 635-645. 73. Deng, P.; Zhan, Y.; Chen, X. Y.; Zhong, D. F., Derivatization methods for quantitative bioanalysis by LC-MS/MS. Bioanalysis 2012, 4 (1), 49-69. 74. Simon, G. A.; Wierenga, A., Quantitation of plasma and urine 3-hydroxyglutaric acid, after separation from 2-hydroxyglutaric acid and other compounds of similar ion transition, by liquid chromatography-tandem mass spectrometry for the confirmation of glutaric aciduria type 1. J. Chromatogr. B 2018, 1097, 101-110. 75. Chen, G. Y.; Chiu, H. H.; Lin, S. W.; Tseng, Y. J.; Tsai, S. J.; Kuo, C. H., Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity. Clin. Chim. Acta 2015, 438, 126-134. 76. Huang, Y. Z.; Jiao, Y.; Gao, Y. Q.; Zhang, P.; Huang, W. Q.; Liu, Y.; Huang, Y.; Tian, Y.; Wan, J. B.; Zhang, Z. J.; Hao, K.; Xu, F. G., An extendable all-in-one injection twin derivatization LC-MS/MS strategy for the absolute quantification of multiple chemical-group-based submetabolomes. Anal. Chim. Acta 2019, 1063, 99-109. 77. Zhao, S.; Li, H.; Han, W.; Chan, W.; Li, L., Metabolomic Coverage of Chemical-Group-Submetabolome Analysis: Group Classification and Four-Channel Chemical Isotope Labeling LC-MS. Anal. Chem. 2019, 91 (18), 12108-12115. 78. Thompson, A.; Wolmer, N.; Koncarevic, S.; Selzer, S.; Bohm, G.; Legner, H.; Schmid, P.; Kienle, S.; Penning, P.; Hohle, C.; Berfelde, A.; Martinez-Pinna, R.; Farztdinov, V.; Jung, S.; Kuhn, K.; Pike, I., TMTpro: Design, Synthesis, and Initial Evaluation of a Proline-Based Isobaric 16-Plex Tandem Mass Tag Reagent Set. Anal. Chem. 2019, 91 (24), 15941-15950. 79. Thompson, A.; Schaefer, J.; Kuhn, K.; Kienle, S.; Schwarz, J.; Schmidt, G.; Neumann, T.; Johnstone, R. A. W.; Mohammed, A. K. A.; Hamon, C., Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS (vol 75, pg 1895, 2003). Anal. Chem. 2006, 78 (12), 4235-4235. 80. Murphy, J. P.; Everley, R. A.; Coloff, J. L.; Gygi, S. P., Combining Amine Metabolomics and Quantitative Proteomics of Cancer Cells Using Derivatization with Isobaric Tags. Anal. Chem. 2014, 86 (7), 3585-3593. 81. Pena-Quintana, L.; Llarena, M.; Reyes-Suarez, D.; Aldamiz-Echevarria, L., Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives. Patient Prefer. Adherence 2017, 11, 1489-1496. 82. Laryea, M. D.; Herebian, D.; Meissner, T.; Mayatepek, E., Simultaneous LC-MS/MS determination of phenylbutyrate, phenylacetate benzoate and their corresponding metabolites phenylacetylglutamine and hippurate in blood and urine. J. Inherit. Metab. Dis. 2010, 33, S321-S328. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78312 | - |
| dc.description.abstract | 代謝組學為細胞、組織和體液中的代謝物廣泛性研究。透過代謝組學的研究,可瞭解個體的基因型態、飲食模式、受環境和腸道微生物影響之因子。代謝體量化分析提供了研究從正常生理到多種疾病狀態的機制資訊。因此有效率的分析方法對闡述代謝物的功能和人體健康非常重要。 本論文第一部分欲建立一個定量方法以分析採血卡上的TMAO與其前驅物質和衍生物,近年來人們對於腸道菌對許多疾病如心血管疾病和代謝異常的影響深感興趣,而氧化三甲胺(Trimethylamine-N-oxide,TMAO)被認為是影響心血管疾病的重要因子。採血卡是一種新型的採樣技術,被應用於許多臨床研究,且具有許多優點。藉由分析整體血點樣品可以降低血比容造成的定量誤差,但需要測量血液體積藉以校正濃度。我們開發了運用液相層析質譜儀結合基質效應導致的離子抑制現象(matrix-induced ion suppression,MIIS)測量血點體積並定量採血卡上的TMAO、膽鹼(choline)、肉鹼 (carnitine)和乙醯肉鹼 (acetylcarnitine)。MIIS方法為測量不同血點體積對離子抑制指示劑(ion suppression indicator,ISI)造成的訊號抑制程度。結果顯示利用MIIS的方法評估血點體積之準確度介於91.7~109.7 %。我們將MIIS方法結合液相層析串聯質譜儀做定量方法確校,包含線性、精準度與準確度評估。每個分析物的最低定量極限濃度之準確度小於119 %﹔方法確校之定量準確度均介於91.2~113.2 %之間,且精密度的相對標準差皆小於8.0 %。安定性實驗中,採血卡檢體中之分析物在所有測試的溫度下均穩定至少30天。最後我們將確校後的方法用於定量60個採血卡檢體。此方法可有效地運用在測量採血卡上的代謝物濃度,並有助於了解腸胃菌在人體中扮演的角色。 生物體內廣泛存在著大量的含有羧酸的代謝產物,包括有機酸、氨基酸和三羧酸循環產物。有機酸的變化與先天性代謝異常疾病(inborn errors of metabolism,IEM)相關,未及時治療可能會導致腦損傷,甚至死亡。觀察代謝物濃度在不同時間的變化有益於追蹤病程。利用多重分析的策略,除了改善層析分離還能達到高通量的分析方法。多重化學衍生法過去已用於代謝組學研究,但仍存在一些限制,例如需要昂貴的標記試劑與高解析儀器。因此,本論第二部分為利用多重標記法衍生尿液中之羧酸代謝物,並利用液相層析串聯質譜定量丁基衍生物D0-、D3-、D5-、D7-和D9-羧酸丁酯(carboxylic acid butyl ester,CABE)。結果顯示多重標記法之準確度在85.22~115.16 %之間。接著將此分析方法進行確校,包含線性、精密度和準確性。結果顯示除了兩種分析物外,其它分析物的定量準確度均在79.1~116.6 %之間,且精確度小於15 %。最後利用已確校的多重標記法定量四個尿液樣本中的羧酸代謝物,研究不同時間的羧酸代謝產物之變化。此創新的多重標記法被認為有助於IEM的研究並縮短臨床診斷時間,有益於未來之臨床研究。 總結本論文開發的分析方法可準確定量採血卡上的TMAO與其前驅物質和衍生物,以及同時定量不同時間點的尿液中羧酸代謝物。預期此兩種定量方法可廣泛被運用至許多臨床研究。 | zh_TW |
| dc.description.abstract | Metabolomics is the comprehensive study of the metabolome in cells, tissues, and body fluids. The metabolome reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides a quantifiable result from normal physiology to diverse disease status. Effective analytical methods are essential to delineate the function of metabolites and human health. In the first part of this thesis, we have developed a quantitative method to measure TMAO and its precursors and derivatives in DBS samples. Recently, there has been significant interest in the influences of the human gut microbiota on many diseases, such as cardiovascular disease (CVD) and metabolic disorders. Trimethylamine N-oxide (TMAO) is one of the most frequently discussed gut-derived metabolites. Dried blood spot (DBS) sampling has been regarded as an attractive alternative sampling strategy for clinical studies and offers many advantages. For DBS sample processing, whole-spot analysis could minimize hematocrit-related bias, but it requires blood volume calibration. This study developed a method combining matrix-induced ion suppression (MIIS) with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) to estimate blood volume and quantify TMAO and its precursors and derivatives, including choline, carnitine and acetylcarnitine, in DBSs. The MIIS method used an ion suppression indicator (ISI) to measure the extent of ion suppression caused by the blood matrix, which was related to the blood volume. The results showed that the volume estimation accuracy of the MIIS method was within 91.7-109.7%. The combined MIIS and LC-MS/MS method for quantifying TMAO, choline, carnitine and acetylcarnitine was validated in terms of linearity, precision and accuracy. The quantification accuracy was within 91.2-113.2% (with LLOQ <119%), and the precision was below 8.0% for all analytes. A stability study showed that the analytes in DBSs were stable at all evaluated temperatures for at least 30 days. The validated method was applied to quantify DBS samples (n=60). Successful application of the new method demonstrated the potential of this method for real-world DBS samples and to facilitate our understanding of the gut microbiota in human health. In the second part, a vast number of metabolites containing carboxyl moieties exist widely in living organism including organic acids, amino acids, and TCA cycle intermediates. Changes in these carboxylic acid profiles are sometimes associated with inborn errors of metabolism (IEM), which could cause severe damages and be lethal without treatment in time. As a result, the follow-up on relevant carboxylic acids with time-series analysis will be beneficial to study the disease progression. However, it is challenging to speed up analytical procedure with chromatographic techniques to achieve high-throughput analysis, unless innovative multiplex strategy is utilized. Chemical derivatization for multiplex approach has been used in studying metabolomics, but there are still some limitations such as expensive labeling tag and requiring high-resolution instruments. This study developed a multiplex method combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method to quantify essential carboxylic acids with different butanol isotopes to form butyl-derivatives D0-, D3-, D5-, D7- and D9- carboxylic acid butyl ester (CABE) in urine. The results show the differential mixture estimation accuracy of the multiplex method was within 85.22% to 115.16%. The LC-MS/MS for quantified the carboxylic acids was validated in terms of linearity, precision and accuracy. The quantification accuracies for all analytes were ranged from 79.1-116.6%, and precisions were below 15%, except for two compounds. The validated multiplex method was applied to quantified analytes in four urine samples for simulated time-series study. In summary, the innovative multiplex approach is believed to contribute for studying IEM and shorten time for clinical diagnosis that would be greatly benefit clinical researches in the near future. In conclusion, the developed analytical methods were demonstrated to be accurate and precise. These two efficient methods are anticipated to broaden their applications to various clinical studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:50:40Z (GMT). No. of bitstreams: 1 U0001-0608202010321000.pdf: 5552782 bytes, checksum: 503210dfe33dfccba07df73e59b653b2 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II Abstract IV Part Ⅰ: Using matrix-induced ion suppression combined with LC-MS/MS for quantification of trimethylamine-N-oxide, choline, carnitine and acetylcarnitine in dried blood spot samples 1 1. Introduction 2 2. Experimental section 4 2.1 Chemicals and reagents 4 2.2 Using LC-ESI-MS/MS for quantification of TMAO, carnitine, choline and acetylcarnitine 5 2.3 Standard and sample preparation 6 2.4 Using the MIIS method for blood volume estimation on DBS cards 8 2.5 Method validation 9 2.6 Clinical application 11 2.7 Data analysis 11 3. Results and discussion 12 3.1 Development of the combined MIIS and LC-ESI-MS/MS method 12 3.2 Optimization of the DBS extraction solvent 14 3.3 Method validation 15 3.4 Clinical sample analysis 18 4. Discussion 18 5. Conclusion 20 6. Figures 22 7.Tables 28 Part Ⅱ: Method development for multiplex analysis of endogenous carboxylic acids in urine 32 1. Introduction 33 1.1 Carboxylomics 33 1.2 Carboxylic acids in inborn error metabolism (IEM) 34 1.3 Current method for carboxylic acids 36 1.4 Multiplex isotope labeling method 38 1.5 Research aim 39 2. Material and Method 40 2.1 Chemicals and reagents 40 2.2 Using LC-ESI-MS/MS for quantifying carboxylic acids 41 2.3 Preparation of standard solutions 42 2.4 Sample preparations and multiplex derivatization 42 2.5 Method validation 43 3. Results and discussion 45 3.1 Method development 45 3.2 Multiplex analysis with butanol isotopes 49 3.3 Method validation 51 3.4 Clinical sample analysis 52 4. Conclusion 54 5. Figures 55 6. Tables 67 References 73 Figure contents Figure 1. MRM chromatograms of target analytes in DBS samples obtained by the optimized LC-ESI-MS/MS method. 22 Figure 2. Effect of drying gas temperature on MIIS performance. MIIS analysis of samples with different blood volumes at drying gas temperatures of (a) 100, (b) 200, (c) 300, and (d) 350 °C. 23 Figure 3. Calibration curve of the peak area of the HKP standard divided by the reduced HKP peak area caused by blood volume-proportional ion suppression versus blood volume (5-25 μL). 24 Figure 4. Effect of extraction solution on the signal intensities of four target analytes. (n=5). 24 Figure 5 . Effect of formic acid in the sample solution on MIIS performance. (a) 0.1% FA in 70% MeOH, (b) 70% MeOH. 25 Figure 6. Evaluation of the Hct variation effect on target analytes. 25 Figure 7. The stability of four analytes in the DBS sample at RT, 4°C, and -20 °C within 30 days: (a) acetylcarnitine, (b) carnitine, (c) TMAO, and (d) choline. Data were normalized to the concentrations at day 0 and expressed as recoveries (%) (n=4). 26 Figure 8. Correlations of (a) TMAO, (b) acetylcarnitine, (c) carnitine and (d) choline concentrations in paired DBS and plasma samples. 27 Figure 9. Metabolic pathways in IEM (inborn error of metabolism). 55 Figure 10. Representative structure of carboxylic acid containing compounds for method optimization. 56 Figure 11. Effects of the derivatization. a) types and amounts of acid catalysts, b) types and amounts of reagents, c) reaction temperature and 57 Figure 12. LC gradient optimization. 58 Figure 13. The LC chromatogram for isomer separation. 59 Figure 14. Effect of reconstitution solution. a) Histidine, b) lysine, c) arginine. 60 Figure 15. Representative extracted ion chromatograms in A) standard solution and B) urine specimen. 61 Figure 16. The workflow of the multiplex analysis of carboxylic acid containing compounds. 62 Figure 17. Multiplex analysis of carboxylic acids. 63 Figure 18. Validation results of alanine butanol isotope differential labeling method. 64 Figure 19. Evaluation of time-series accuracy. 65 Figure 20. Individual and quantitative analysis of spiked CAP urine specimen. 65 Figure 21. Multiplex analysis (all-in-one) of spiked CAP urine specimen. 66 Table contents Table 1. Retention time and mass spectrometric parameters of four analytes and the internal standards. aFragmentor voltage (FV), bcollision energy (CE) 28 Table 2. Blood volume estimation accuracy of the MIIS method. 29 Table 3. Calibration curves, limits of detection (LODs) and lower limits of quantification (LLOQs) for quantification of target analytes in DBS samples. 30 Table 4. Intra- and interday accuracy and precision and extraction recovery and matrix effect of target analytes in DBS samples. 31 Table 5. The optimized MS parameter for each D0-butyl derivatives. 67 Table 6. The preparation of differential labeling ratio for validation. 70 Table 7. Linearity, range, LOD, LOQ and precision and accuracy for carboxylic acids containing metabolites. 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 羧酸代謝物 | zh_TW |
| dc.subject | 多重標記法 | zh_TW |
| dc.subject | 質譜 | zh_TW |
| dc.subject | 氧化三甲胺 | zh_TW |
| dc.subject | 採血卡 | zh_TW |
| dc.subject | 基質效應導致的離子抑制現象 | zh_TW |
| dc.subject | mass spectrometry | en |
| dc.subject | dried blood spot (DBS) | en |
| dc.subject | trimethylamine N-oxide (TMAO) | en |
| dc.subject | matrix induced ion suppression (MIIS) | en |
| dc.subject | multiplex method | en |
| dc.subject | carboxylic acids containing metabolites | en |
| dc.title | 第一部分:以液相層析質譜儀結合基質校正定量採血卡上的TMAO以及其前驅物和衍生物 第二部分:建立多重標記衍生法以分析尿液中之羧酸代謝物 | zh_TW |
| dc.title | Part Ⅰ: Using matrix-induced ion suppression combined with LC-MS/MS for quantification of trimethylamine-N-oxide, choline, carnitine and acetylcarnitine in dried blood spot samples Part II: Method development for multiplex analysis of endogenous carboxylic acids in urine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳冠元(Guan-Yuan Chen) | |
| dc.contributor.oralexamcommittee | 陳家揚(Chia-Yang Chen) | |
| dc.subject.keyword | 採血卡,氧化三甲胺,基質效應導致的離子抑制現象,多重標記法,羧酸代謝物,質譜, | zh_TW |
| dc.subject.keyword | dried blood spot (DBS),trimethylamine N-oxide (TMAO),matrix induced ion suppression (MIIS),multiplex method,carboxylic acids containing metabolites,mass spectrometry, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU202002513 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-13 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0608202010321000.pdf 未授權公開取用 | 5.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
