Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78304
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗卿(Lih-Ching Hsu)
dc.contributor.authorYi-Ning Dengen
dc.contributor.author鄧依寧zh_TW
dc.date.accessioned2021-07-11T14:50:17Z-
dc.date.available2025-08-07
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-07
dc.identifier.citationReferences
1. American Cancer Society. Breast Cancer.
https://www.cancer.org/cancer/breast-cancer.html.
Accessed on 1 April , 2020.
2. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D., Piñeros, M. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer, 2019, 144, 1941-1953.
3. Ahmad, A. Sarkar, F. Breast cancer metastasis and drug resistance. Progress and Prospect, 2013.
4. Mubarik, S., Wang, F., Fawad, M., Wang, Y., Ahmad, I. Yu, C. trends and projections in Breast cancer Mortality among four Asian countries (1990–2017): Evidence from five Stochastic Mortality Models. Scientific reports, 2020, 10, 1-12.
5. Ministry of Health and Welfare. 2018 Statistics of Causes of Death. https://www.mohw.gov.tw/cp-3961-42866-2.html.
Accessed on 20 April, 2020.
6. All About Breast Cancer: Symptoms, Causes, Types, Signs Treatment. https://www.medlife.com/web/all-about-breast-cancer-symptoms-causes-types-signs-treatment/.
Accessed on 6 April, 2020.
7. Kelsey, J. L., Gammon, M. D. John, E. M. Reproductive factors and breast cancer. Epidemiologic reviews, 1993, 15, 36.
8. McDonald, E. S., Clark, A. S., Tchou, J., Zhang, P. Freedman, G. M. Clinical diagnosis and management of breast cancer. Journal of Nuclear Medicine, 2016, 57, 9S-16S.
9. Holliday, D. L. Speirs, V. Choosing the right cell line for breast cancer research. Breast cancer research, 2011, 13, 1-7.
10. Leroy, B., Girard, L., Hollestelle, A., Minna, J. D., Gazdar, A. F. Soussi, T. Analysis of TP 53 Mutation Status in Human Cancer Cell Lines: A Reassessment. Human mutation, 2014, 35, 756-765.
11. Bachman, K. E., Argani, P., Samuels, Y., Silliman, N., Ptak, J., Szabo, S. et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer biology therapy, 2004, 3, 772-775.
12. Stemke-Hale, K., Gonzalez-Angulo, A. M., Lluch, A., Neve, R. M., Kuo, W.-L., Davies, M. et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer research, 2008, 68, 6084-6091.
13. Dai, X., Cheng, H., Bai, Z. Li, J. Breast cancer cell line classification and its relevance with breast tumor subtyping. Journal of Cancer, 2017, 8, 3131.
14. Efferth, T. in Seminars in cancer biology. 65-83 (Elsevier).
15. Osonwa, U. E. Hu, M. Bioavailability and Pharmacokinetics of Dihydroartemisinin (DHA) and its Analogs—Mechanistic Studies on its ADME. Current Pharmacology Reports, 2018, 4, 33-44.
16. Li, Y., Zhou, X., Liu, J., Gao, N., Yang, R., Wang, Q. et al. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life sciences, 2020, 248, 117454.
17. Wang, D., Zhong, B., Li, Y. Liu, X. Dihydroartemisinin increases apoptosis of colon cancer cells through targeting Janus kinase 2/signal transducer and activator of transcription 3 signaling. Oncology letters, 2018, 15, 1949-1954.
18. Qin, G., Zhao, C., Zhang, L., Liu, H., Quan, Y., Chai, L. et al. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells. Apoptosis, 2015, 20, 1072-1086.
19. Kong, R., Jia, G., Cheng, Z.-x., Wang, Y.-w., Mu, M., Wang, S.-j. et al. Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5. PLoS One, 2012, 7, e37222.
20. Du, J., Wang, T., Li, Y., Zhou, Y., Wang, X., Yu, X. et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radical Biology and Medicine, 2019, 131, 356-369.
21. Zang, M., Zhu, F., Zhao, L., Yang, A., Li, X., Liu, H. et al. The effect of UGTs polymorphism on the auto-induction phase II metabolism-mediated pharmacokinetics of dihydroartemisinin in healthy Chinese subjects after oral administration of a fixed combination of dihydroartemisinin-piperaquine. Malaria journal, 2014, 13, 478.
22. Kumar, R., Singh, M., Meena, J., Singhvi, P., Thiyagarajan, D., Saneja, A. et al. Hyaluronic acid-dihydroartemisinin conjugate: synthesis, characterization and in vitro evaluation in lung cancer cells. International journal of biological macromolecules, 2019, 133, 495-502.
23. Yu, H., Hou, Z., Tian, Y., Mou, Y. Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. European journal of medicinal chemistry, 2018, 151, 434-449.
24. Yao, Z., Bhandari, A., Wang, Y., Pan, Y., Yang, F., Chen, R. et al. Dihydroartemisinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line. Biochemical and biophysical research communications, 2018, 501, 636-642.
25. Tai, X., Cai, X. B., Zhang, Z. Wei, R. In vitro and in vivo inhibition of tumor cell viability by combined dihydroartemisinin and doxorubicin treatment, and the underlying mechanism. Oncology letters, 2016, 12, 3701-3706.
26. Barrasa, J. I., Olmo, N., Lizarbe, M. A. Turnay, J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicology in Vitro, 2013, 27, 964-977.
27. Fang, Y., Han, S. I., Mitchell, C., Gupta, S., Studer, E., Grant, S. et al. Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes. Hepatology, 2004, 40, 961-971.
28. Marin, J. J., Hernandez, A., Revuelta, I. E., Gonzalez-Sanchez, E., Gonzalez-Buitrago, J. M. Perez, M. J. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: Role of the Akt/mTOR survival pathway and Bcl-2 family proteins. Free Radical Biology and Medicine, 2013, 61, 218-228.
29. Sreekanth, V., Bansal, S., Motiani, R. K., Kundu, S., Muppu, S. K., Majumdar, T. D. et al. Design, synthesis, and mechanistic investigations of bile acid–tamoxifen conjugates for breast cancer therapy. Bioconjugate chemistry, 2013, 24, 1468-1484.
30. Chen, D.-q., Wang, X., Chen, L., He, J.-x., Miao, Z.-h. Shen, J.-k. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization. Acta Pharmacologica Sinica, 2011, 32, 664-672.
31. Nabel, E. G. CDKs and CKIs: molecular targets for tissue remodelling. Nature Reviews Drug Discovery, 2002, 1, 587-598.
32. Girard, F., Strausfeld, U., Fernandez, A. Lamb, N. J. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell, 1991, 67, 1169-1179.
33. Gautier, J., Minshull, J., Lohka, M., Glotzer, M., Hunt, T. Maller, J. L. Cyclin is a component of maturation-promoting factor from Xenopus. Cell, 1990, 60, 487-494.
34. Otto, T. Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nature Reviews Cancer, 2017, 17, 93.
35. Baldin, V., Lukas, J., Marcote, M. J., Pagano, M. Draetta, G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes development, 1993, 7, 812-821.
36. Koff, A., Cross, F., Fisher, A., Schumacher, J., Leguellec, K., Philippe, M. et al. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell, 1991, 66, 1217-1228.
37. LaBaer, J., Garrett, M. D., Stevenson, L. F., Slingerland, J. M., Sandhu, C., Chou, H. S. et al. New functional activities for the p21 family of CDK inhibitors. Genes development, 1997, 11, 847-862.
38. Liou, G.-Y. Storz, P. Reactive oxygen species in cancer. Free radical research, 2010, 44, 479-496.
39. Prasad, S., Gupta, S. C. Tyagi, A. K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer letters, 2017, 387, 95-105.
40. Halasi, M., Wang, M., Chavan, T. S., Gaponenko, V., Hay, N. Gartel, A. L. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochemical Journal, 2013, 454, 201-208.
41. Su, Z., Yang, Z., Xu, Y., Chen, Y. Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular cancer, 2015, 14, 48.
42. D’Arcy, M. S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell biology international, 2019, 43, 582-592.
43. Elmore, S. Apoptosis: a review of programmed cell death. Toxicologic pathology, 2007, 35, 495-516.
44. McIlwain, D. R., Berger, T. Mak, T. W. Caspase functions in cell death and disease. Cold Spring Harbor perspectives in biology, 2013, 5, a008656.
45. Chaitanya, G. V., Alexander, J. S. Babu, P. P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Communication and Signaling, 2010, 8, 31.
46. Ashkenazi, A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature Reviews Drug Discovery, 2008, 7, 1001-1012.
47. Lin, L. Baehrecke, E. H. Autophagy, cell death, and cancer. Molecular cellular oncology, 2015, 2, e985913.
48. Chatterjee, N. Walker, G. C. Mechanisms of DNA damage, repair, and mutagenesis. Environmental and molecular mutagenesis, 2017, 58, 235-263.
49. Ronco, C., Martin, A. R., Demange, L. Benhida, R. ATM, ATR, CHK1, CHK2 and WEE1 inhibitors in cancer and cancer stem cells. Medchemcomm, 2017, 8, 295-319.
50. Palma, S. C., Grassi, M. L., Thome, C. H., Ferreira, G. A., Albuquerque, D., Pinto, M. T. et al. Proteomic Analysis of Epithelial to Mesenchymal Transition (EMT) Reveals Cross-talk between SNAIL and HDAC1 Proteins in Breast Cancer Cells. Molecular cellular proteomics: MCP, 2016, 15, 906-917.
51. Zhang, W. Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell research, 2002, 12, 9-18.
52. Liu, F., Yang, X., Geng, M. Huang, M. Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy. Acta pharmaceutica sinica B, 2018, 8, 552-562.
53. Zhao, Y., Hu, X., Liu, Y., Dong, S., Wen, Z., He, W. et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Molecular cancer, 2017, 16, 1-12.
54. Huang, H. Tindall, D. J. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2011, 1813, 1961-1964.
55. Zhang, X., Tang, N., Hadden, T. J. Rishi, A. K. Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2011, 1813, 1978-1986.
56. Lin, Y.-H., Chen, B. Y.-H., Lai, W.-T., Wu, S.-F., Guh, J.-H., Cheng, A.-L. et al. The Akt inhibitor MK-2206 enhances the cytotoxicity of paclitaxel (Taxol) and cisplatin in ovarian cancer cells. Naunyn-Schmiedeberg's archives of pharmacology, 2015, 388, 19-31.
57. Hsu, L.-C., Li, Y.-L., Weng, H.-C., Hsu, J.-L., Lin, S.-W. Guh, J.-H. The combination of MK-2206 and WZB117 exerts a synergistic cytotoxic effect against breast cancer cells. Frontiers in pharmacology, 2019, 10, 1311.
58. Clarke, A. J. Simon, A. K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nature Reviews Immunology, 2019, 19, 170-183.
59. Sulli, G., Di Micco, R. di Fagagna, F. d. A. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nature Reviews Cancer, 2012, 12, 709-720.
60. Kauffman, M. E., Kauffman, M. K., Traore, K., Zhu, H., Trush, M. A., Jia, Z. et al. MitoSOX-based flow cytometry for detecting mitochondrial ROS. Reactive oxygen species (Apex, NC), 2016, 2, 361.
61. Pereyra-Vergara, F., Olivares-Corichi, I. M., Perez-Ruiz, A. G., Luna-Arias, J. P. García-Sánchez, J. R. Apoptosis induced by (−)-epicatechin in human breast cancer cells is mediated by reactive oxygen species. Molecules, 2020, 25, 1020.
62. Wang, L., Duan, Q., Wang, T., Ahmed, M., Zhang, N., Li, Y. et al. Mitochondrial respiratory chain inhibitors involved in ROS production induced by acute high concentrations of iodide and the effects of SOD as a protective factor. Oxidative medicine and cellular longevity, 2015, 2015.
63. Pattanawongsa, A., Chau, N., Rowland, A. Miners, J. O. Inhibition of human UDP-glucuronosyltransferase enzymes by canagliflozin and dapagliflozin: implications for drug-drug interactions. Drug Metabolism and Disposition, 2015, 43, 1468-1476.
64. Ježek, J., Cooper, K. F. Strich, R. Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants, 2018, 7, 13.
65. Zou, J., Ma, Q., Sun, R., Cai, J., Liao, H., Xu, L. et al. Dihydroartemisinin inhibits HepG2. 2.15 proliferation by inducing cellular senescence and autophagy. BMB reports, 2019, 52, 520.
66. Cobb, M. H. MAP kinase pathways. Progress in biophysics and molecular biology, 1999, 71, 479-500.
67. Firestone, G. L. Sundar, S. N. Anticancer activities of artemisinin and its bioactive derivatives. Expert reviews in molecular medicine, 2009, 11.
68. Buommino, E., Baroni, A., Canozo, N., Petrazzuolo, M., Nicoletti, R., Vozza, A. et al. Artemisinin reduces human melanoma cell migration by down-regulating αvβ3 integrin and reducing metalloproteinase 2 production. Investigational new drugs, 2009, 27, 412-418.
69. Marchesi, E., Chinaglia, N., Capobianco, M. L., Marchetti, P., Huang, T. E., Weng, H. C. et al. Dihydroartemisinin–Bile Acid Hybridization as an Effective Approach to Enhance Dihydroartemisinin Anticancer Activity. ChemMedChem, 2019, 14, 779-787.
70. Dyakova, L., Leventieva-Necheva, E., Zhivkova, T., Marinescu, G., Culita, D., Patron, L. et al. Effect of ursodeoxycholic acid on viability and proliferation of human tumor cells. Trakia J Sci, 2010, 5, 78À83.
71. St-Pierre, M. V., Kullak-Ublick, G. A., Hagenbuch, B. Meier, P. J. Transport of bile acids in hepatic and non-hepatic tissues. Journal of Experimental Biology, 2001, 204, 1673-1686.
72. Briz, O., Serrano, M. A., Rebollo, N., Hagenbuch, B., Meier, P. J., Koepsell, H. et al. Carriers Involved in Targeting the Cytostatic Bile Acid-Cisplatin Derivativescis-Diammine-chloro-cholylglycinate-platinum (II) andcis-Diammine-bisursodeoxycholate-platinum (II) toward Liver Cells. Molecular pharmacology, 2002, 61, 853-860.
73. Parapini, S., Olliaro, P., Navaratnam, V., Taramelli, D. Basilico, N. Stability of the antimalarial drug dihydroartemisinin under physiologically relevant conditions: implications for clinical treatment and pharmacokinetic and in vitro assays. Antimicrobial Agents and Chemotherapy, 2015, 59, 4046-4052.
74. Hanioka, N., Iwabu, H., Hanafusa, H., Nakada, S. Narimatsu, S. Expression and Inducibility of UDP‐glucuronosyltransferase 1As in MCF‐7 Human Breast Carcinoma Cells. Basic clinical pharmacology toxicology, 2012, 110, 253-258.
75. Dates, C. R., Fahmi, T., Pyrek, S. J., Yao-Borengasser, A., Borowa-Mazgaj, B., Bratton, S. M. et al. Human UDP-glucuronosyltransferases: effects of altered expression in breast and pancreatic cancer cell lines. Cancer biology therapy, 2015, 16, 714-723.
76. Chen, H., Sun, B., Pan, S., Jiang, H. Sun, X. Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo. Anti-cancer drugs, 2009, 20, 131-140.
77. Jiao, Y., GE, C. m., MENG, Q. h., CAO, J. p., Tong, J. FAN, S. j. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth 1. Acta Pharmacologica Sinica, 2007, 28, 1045-1056.
78. Martins, W. K., Santos, N. F., Rocha, C. d. S., Bacellar, I. O., Tsubone, T. M., Viotto, A. C. et al. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy, 2019, 15, 259-279.
79. Feng, M.-X., Hong, J.-X., Wang, Q., Fan, Y.-Y., Yuan, C.-T., Lei, X.-H. et al. Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast cancer cells and osteoclasts. Scientific reports, 2016, 6, 19074.
80. Im, E., Yeo, C., Lee, H.-J. Lee, E.-O. Dihydroartemisinin induced caspase-dependent apoptosis through inhibiting the specificity protein 1 pathway in hepatocellular carcinoma SK-Hep-1 cells. Life sciences, 2018, 192, 286-292.
81. Coloff, J. L., Mason, E. F., Altman, B. J., Gerriets, V. A., Liu, T., Nichols, A. N. et al. Akt requires glucose metabolism to suppress puma expression and prevent apoptosis of leukemic T cells. Journal of Biological Chemistry, 2011, 286, 5921-5933.
82. Gao, M., Liang, J., Lu, Y., Guo, H., German, P., Bai, S. et al. Site-specific activation of AKT protects cells from death induced by glucose deprivation. Oncogene, 2014, 33, 745-755.
83. Ren, Y. Shen, H.-M. Critical role of AMPK in redox regulation under glucose starvation. Redox biology, 2019, 25, 101154.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78304-
dc.description.abstract乳癌是全世界女性中最常見的惡性腫瘤,其發生率或致死率都居高不下。雙氫青蒿素 (Dihydroartemisinin, DHA) 是青蒿素衍生物主要的活性代謝物,也是用於治療瘧疾的著名藥物。先前文獻研究,DHA對多種人類癌症具有抗腫瘤作用,但其化學不穩定性以及葡萄醣醛酸化作用可將其迅速消除,導致半衰期短。為了解決穩定性不好的問題,且增加對癌細胞的細胞毒性作用,合成了一系列的膽酸與雙氫青蒿素混成化合物 (bile acid-dihydroartemisinin, BA-DHA)。我們先前研究發現在膽酸與雙氫青蒿素混成化合物中,UDC-DHA、HDC-DHA 和N3UDC-DHA在HepG2及HL-60效用最好。在這篇研究,我們針對乳癌細胞株也可觀察到此結果。DHA對MCF-7 細胞的 IC50 值約為40μM; UDC-DHA、HDC-DHA 和N3UDC-DHA的 IC50 值約為2 μM,為DHA 20倍的功效。針對MDA-MB-231細胞,DHA的 IC50 值約為100 μM; HDC-DHA 和N3UDC-DHA的 IC50 值分別約為20 μM及40 μM,為DHA 2.5-5倍的功效。雙氫青蒿素混成化合物比 DHA和相對應膽酸以 1:1 莫爾比率的合併使用更有效。探討在MCF-7中,DHA、HDC-DHA 和N3UDC-DHA之作用機轉,並使用相等功效的濃度進行實驗。在培養液及細胞中,可以發現UDC-DHA、HDC-DHA 和N3UDC-DHA較 DHA穩定,而DHA相較HDC-DHA 和N3UDC-DHA更快展現細胞毒性。可以觀察到HDC-DHA及N3UDC-DHA引起細胞停滯於 G0/G1 期和增加代表細胞凋亡的 subG1 細胞群,並發現可降低cyclin D、cyclin B、cyclin E的表達及提高p21、p27的表達。DHA、HDC-DHA及N3UDC-DHA在MCF-7細胞中通過內在凋亡途徑在MCF-7細胞中發揮細胞毒性作用。DHA、HDC-DHA及N3UDC-DHA誘導粒線體活性含氧物 (reactive oxygen species, ROS)並誘發細胞質ROS,隨後導致粒線體膜電位去極化。結果更進一步顯示ROS 的誘發及粒線體膜電位去極化皆可被抗氧化劑 N-acetylcysteine (NAC) 抑制,因此說明此ROS促成 DHA、HDC-DHA及N3UDC-DHA的抗癌作用。在處理DHA、HDC-DHA及N3UDC-DHA後可以使Chk2 磷酸化及g-H2AX上升且增加 p53 表現及活化以及Rad51代表的HR修復途徑下降,顯示出DNA 破壞性。在處理DHA、HDC-DHA及N3UDC-DHA後,可提升AMPK/ autophagy途徑。此外,DHA、HDC-DHA及N3UDC-DHA可抑制細胞遷移。Akt/mTOR 訊息傳遞路徑與細胞生長有相關性,此路徑在一般抗癌情況會被抑制,意外地是,在加藥處理後DHA、HDC-DHA及N3UDC-DHA誘導該路徑。因此將Akt抑製劑MK-2206與膽DHA、HDC-DHA及N3UDC-DHA做合併,顯示出協同作用。綜合以上所述,HDC-DHA及N3UDC-DHA可做為對抗乳癌的候選藥物。zh_TW
dc.description.abstractBreast cancer is the most common malignancy in women worldwide, in which incidence and the lethal rate remain high. Dihydroartemisinin (DHA) is the main active metabolite of artemisinin derivatives and also a well-known anti-malaria drug. Previous studies have shown that DHA has antitumor effects in a variety of human cancers, but it can be rapidly eliminated by glucuronidation and it is highly chemically fragile, resulting in a short half-life. To solve the problem of poor stability and increase the cytotoxic effect on cancer cells, a series of bile acid-dihydroartemisinin (BA-DHA) compounds were synthesized.
Our previous studies have found that UDC-DHA, HDC-DHA and N3UDC-DHA are the most effective compounds in HepG2 and in HL-60 cells. In this study, we also observed anticancer activity against breast cancer cells. The IC50 value of DHA for MCF-7 cells was ~40 μM; and the IC50 value of HDC-DHA and N3UDC-DHA was ~2 μM, which was 20 times more potent than DHA. The IC50 value of DHA for MDA-MB-231 cells was 100 μM; and the IC50 values of HDC-DHA and N3UDC-DHA were 20 μM and 40 μM, respectively, which were 2.5-5 times more potent than DHA. The BA-DHA hybrids were more effective than the combination of DHA with the corresponding bile acid at a 1:1 molar ratio. The mechanism of action of DHA, HDC-DHA, and N3UDC-DHA was investigated using concentrations of equal efficacy in MCF-7 cells. In the medium and cells, UDC-DHA, HDC-DHA and N3UDC-DHA were more stable than DHA, while DHA showed cytotoxicity faster than HDC-DHA and N3UDC-DHA. HDC-DHA and N3UDC-DHA caused G0/G1 arrest and increased subG1 cell population that represents apoptosis., These compounds reduced the expression of cyclin D, cyclin B, cyclin E and increased the p21 and p27 levels. DHA, HDC-DHA and N3UDC-DHA exerted cytotoxicity in MCF-7 cells through the intrinsic apoptotic pathway. DHA, HDC-DHA and N3UDC-DHA induced mitochondrial reactive oxygen species (ROS) and subsequently cellular ROS, finally led to mitochondrial membrane potential loss. The induction of ROS and MMP loss was attenuated by an antioxidant N-acetylcysteine (NAC), suggesting that ROS contributed to the anticancer effects of DHA, HDC-DHA and N3UDC-DHA. After treatment with DHA, HDC-DHA and N3UDC-DHA, p-Chk2, g-H2AX and p53 were upregulated, and Rad51 involved in HR repair was downregulated, indicative of DNA damage response. The AMPK/autophagy pathway was also activated by DHA, HDC-DHA and N3UDC-DHA. Furthermore, DHA, HDC-DHA and N3UDC-DHA inhibited cell migration. The Akt/mTOR signaling pathway is related to cell growth. This pathway is usually inhibited in general anti-cancer treatment. Unexpectedly, DHA, HDC-DHA and N3UDC-DHA induced this pathway. Therefore, an Akt inhibitor MK-2206 was combined with DHA, HDC-DHA and N3UDC-DHA and displayed a synergistic effect. All in all, HDC-DHA and N3UDC-DHA can be used as drug candidates against breast cancer.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:50:17Z (GMT). No. of bitstreams: 1
U0001-0708202013361900.pdf: 7651998 bytes, checksum: ccd34c892481ebd393b44c417c92637f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
誌謝 ii
中文摘要 iii
Abstract v
Contents vii
List of Figures xii
List of Tables xv
List of Abbreviations xvi
Aim of the study 1
Chapter 1. Introduction 2
1.1. Breast cancer 2
1.1.1 Incidence and mortality rates 2
1.1.2 Risk factors 2
1.1.3 Symptoms 3
1.1.4 Staging and the corresponding 5-year survival rates 3
1.1.5 Treatment 4
1.2. Human breast cancer cell lines 6
1.3. Dihydroartemisinin (DHA) 7
1.4. Bile acid-dihydroartemisinin (BA-DHA) hybrids 8
1.5. Cell cycle 9
1.6. Oxidative stress 10
1.7. Programmed cell death 11
1.7.1. Apoptosis 11
1.7.2. Autophagy 13
1.7.3. Necroptosis 14
1.8. DNA damage signaling and DNA double-strand breaks repairs 14
1.9. Epithelial-mesenchymal transition (EMT) 15
1.10. The MAPK pathways 16
1.11. The Akt/mTOR pathway 17
Chapter 2. Materials and Methods 24
2.1. Materials 24
2.2. Methods 25
2.2.1. Cell culture 25
2.2.2. Cell viability assay 25
2.2.3. Propidium iodide staining 26
2.2.4. Annexin V-FITC/PI double staining 27
2.2.5. DCFH-DA assay 27
2.2.6. MitoSOX assay 28
2.2.7. JC-1 assay 28
2.2.8. Wound healing assay 29
2.2.9. Western blotting 29
2.2.10. Data analysis 31
Chapter 3. Results 32
3.1. Effects of DHA and BA-DHA hybrids UDC-DHA, HDC-DHA and N3UDC-DHA on cell viability of MCF-7 and MDA-MB-231 cells 32
3.2. Comparing the cytotoxicity of BA-DHA hybrids to the combination of DHA with the respective BA. 33
3.3. Effects of an excess amount of bile acids on the growth inhibitory effect of HDC-DHA and N3UDC-DHA in MCF-7 cells. 33
3.4. Stability of DHA, UDC-DHA, HDC-DHA and N3UDC-DHA in the culture medium and in MCF-7 cells. 34
3.5. Effect of DHA, HDC-DHA and N3UDC-DHA on cell viability over time and clonogenicity of MCF-7 cells. 35
3.6. The impact of UGT inhibition on the growth inhibitory effect of DHA, HDC-DHA and N3UDC-DHA in MCF-7 cells. 36
3.7. Effects of DHA, HDC-DHA and N3UDC-DHA on cell cycle progression and apoptosis in MCF-7 cells 37
3.8. Effects of DHA, HDC-DHA and N3UDC-DHA on cellular and mitochondrial ROS production in MCF-7 cells 37
3.9. Effects of DHA, HDC-DHA and N3UDC-DHA on depolarization of MMP in MCF-7 cells 39
3.10. Effects of DHA, HDC-DHA and N3UDC-DHA on apoptosis induction in MCF-7 cells 40
3.11. Effects of DHA, HDC-DHA and N3UDC-DHA on DNA damage response in MCF-7 cells 41
3.12. Effects of DHA, HDC-DHA, and N3UDC-DHA on the AMPK/autophagy signaling pathways in MCF-7 cells 41
3.13. Inhibitory effects of DHA, HDC-DHA and N3UDC-DHA on MCF-7 cell migration. 42
3.14. Effects of DHA, HDC-DHA, and N3UDC-DHA on the MAPK signaling pathway in MCF-7 cells 43
3.15. Effects of DHA, HDC-DHA, and N3UDC-DHA on the Akt/mTOR signaling pathways in MCF-7 cells 44
3.16. An Akt inhibitor MK-2206 enhanced the anticancer activity of DHA, HDC-DHA, and N3UDC-DHA in MCF-7 cells and MDA-MB-231 cells 44
Chapter 4. Discussion 82
4.1. Anticancer activity of DHA, HDC-DHA and N3UDC-DHA against breast cancer cells. 82
4.2. BA-DHA hybrids is more potent than the combination of DHA with the respective BA in MCF-7 cells. 83
4.3. BA-DHA hybrids may not enter MCF-7 cells via bile acid transporters or receptors in MCF-7 cells. 83
4.4. UDC-DHA, HDC-DHA and N3UDC-DHA are more stable in the medium and cells. 84
4.5. Inhibition of UGT1A9 activity by 20 μM canagliflozin more effectively enhanced the anticancer effect of DHA than that of HDC-DHA and N3UDC-DHA in MCF-7 cells. 85
4.6. DHA, HDC-DHA, and N3UDC-DHA induced the cell cycle G0/G1 arrest in MCF-7 cells. 85
4.7. Induction of cellular and mitochondria ROS by DHA, HDC-DHA and N3UDC-DHA is correlated with drug stability. 86
4.8. MMP loss induced by DHA, HDC-DHA and N3UDC-DHA in MCF-7 cells is correlated with ROS. 87
4.9. DHA, HDC-DHA and N3UDC-DHA enhanced apoptosis via the intrinsic pathway in MCF-7 cells. 88
4.10. DHA, HDC-DHA and N3UDC-DHA activated DNA damage response and downregulated the HR repair system in MCF-7 cells. 89
4.11. DHA, HDC-DHA, and N3UDC-DHA upregulated AMPK mediated autophagy in MCF-7 cells. 89
4.12. DHA, HDC-DHA and N3UDC-DHA inhibited cell migration via downregulation of snail and upregulation of E-cadherin in MCF-7 cells. 90
4.13. DHA might hinder cell proliferation through the inactivation of the ERK signaling pathway 91
4.14. DHA, HDC-DHA and N3UDC-DHA may increase cellular stresses in MCF-7 cells, which led to Akt activation 91
4.15. The role of the Akt signaling pathway in DHA, HDC-DHA and N3UDC-DHA treatment 92
Chapter 5. Conclusion 93
References 96
dc.language.isozh-TW
dc.subject膽酸與雙氫青蒿素混成化合物zh_TW
dc.subject乳癌zh_TW
dc.subjectDNA 損傷zh_TW
dc.subject粒線體膜電位去極化zh_TW
dc.subject氧化壓力zh_TW
dc.subject細胞凋亡zh_TW
dc.subject細胞自噬zh_TW
dc.subjectapoptosisen
dc.subjectdepolarization of MMPen
dc.subjectDNA damageen
dc.subjectbreast canceren
dc.subjectbile acid-dihydroartemisinin hybridsen
dc.subjectautophagyen
dc.subjectoxidative stressen
dc.title膽酸與雙氫青蒿素混成化合物於乳癌細胞株之抗癌活性評估
zh_TW
dc.titleEvaluation of anticancer activity of bile acid-dihydroartemisinin hybrids in breast cancer cellsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顧記華(Jih-Hwa Guh),孔繁璐(Fan-Lu Kung)
dc.subject.keyword乳癌,膽酸與雙氫青蒿素混成化合物,細胞凋亡,氧化壓力,粒線體膜電位去極化,DNA 損傷,細胞自噬,zh_TW
dc.subject.keywordbreast cancer,bile acid-dihydroartemisinin hybrids,apoptosis,oxidative stress,depolarization of MMP,DNA damage,autophagy,en
dc.relation.page106
dc.identifier.doi10.6342/NTU202002623
dc.rights.note有償授權
dc.date.accepted2020-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
dc.date.embargo-lift2025-08-07-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
U0001-0708202013361900.pdf
  未授權公開取用
7.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved