請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78290完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李秀香(Hsui-Hsiang Lee) | |
| dc.contributor.author | Yu-Ching Liao | en |
| dc.contributor.author | 廖昱晴 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:49:39Z | - |
| dc.date.available | 2025-08-01 | |
| dc.date.copyright | 2020-09-10 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | Anastas, J. N., Moon, R. T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nature reviews. Cancer, 13(1), 11–26. Behrens, J., von Kries, J. P., Kühl, M., Bruhn, L., Wedlich, D., Grosschedl, R., Birchmeier, W. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382(6592), 638–642. Benson, D. L., Colman, D. R., Huntley, G. W. (2001). Molecules, maps and synapse specificity. Nature reviews. Neuroscience, 2(12), 899–909. Berdnik, D., Favaloro, V., Luo, L. (2012). The SUMO protease Verloren regulates dendrite and axon targeting in olfactory projection neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(24), 8331–8340. Bhanot, P., Fish, M., Jemison, J. A., Nusse, R., Nathans, J., Cadigan, K. M. (1999). Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development (Cambridge, England), 126(18), 4175–4186. Bhat K. M. (1998). frizzled and frizzled 2 play a partially redundant role in wingless signaling and have similar requirements to wingless in neurogenesis. Cell, 95(7), 1027–1036. Butler, M. T., Wallingford, J. B. (2017). Planar cell polarity in development and disease. Nature reviews. Molecular cell biology, 18(6), 375–388. Cadigan, K. M., Waterman, M. L. (2012). TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harbor perspectives in biology, 4(11), a007906. Ciani, L., Salinas, P. C. (2005). WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nature reviews. Neuroscience, 6(5), 351–362. Clevers, H., Nusse, R. (2012). Wnt/β-catenin signaling and disease. Cell, 149(6), 1192–1205. Cowan, W. M., Fawcett, J. W., O'Leary, D. D., Stanfield, B. B. (1984). Regressive events in neurogenesis. Science (New York, N.Y.), 225(4668), 1258–1265. Crozatier, M., Vincent, A. (2008). Control of multidendritic neuron differentiation in Drosophila: the role of Collier. Developmental biology, 315(1), 232–242. Dalva, M. B., McClelland, A. C., Kayser, M. S. (2007). Cell adhesion molecules: signalling functions at the synapse. Nature reviews. Neuroscience, 8(3), 206–220. Feinberg I. (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?. Journal of psychiatric research, 17(4), 319–334. Florio, M., Huttner, W. B. (2014). Neural progenitors, neurogenesis and the evolution of the neocortex. Development (Cambridge, England), 141(11), 2182–2194. Gao, C., Chen, Y. G. (2010). Dishevelled: The hub of Wnt signaling. Cellular signalling, 22(5), 717–727. Grueber, W. B., Jan, L. Y., Jan, Y. N. (2002). Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development (Cambridge, England), 129(12), 2867–2878. Grueber, W. B., Ye, B., Yang, C. H., Younger, S., Borden, K., Jan, L. Y., Jan, Y. N. (2007). Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development (Cambridge, England), 134(1), 55–64. Guo, X., Ramirez, A., Waddell, D. S., Li, Z., Liu, X., Wang, X. F. (2008). Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling. Genes development, 22(1), 106–120. Hamada, F., Tomoyasu, Y., Takatsu, Y., Nakamura, M., Nagai, S., Suzuki, A., Fujita, F., Shibuya, H., Toyoshima, K., Ueno, N., Akiyama, T. (1999). Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science (New York, N.Y.), 283(5408), 1739–1742. Hattori, Y., Sugimura, K., Uemura, T. (2007). Selective expression of Knot/Collier, a transcriptional regulator of the EBF/Olf-1 family, endows the Drosophila sensory system with neuronal class-specific elaborated dendritic patterns. Genes to cells : devoted to molecular cellular mechanisms, 12(9), 1011–1022 Hayashi, Y., Hirotsu, T., Iwata, R., Kage-Nakadai, E., Kunitomo, H., Ishihara, T., Iino, Y., Kubo, T. (2009). A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nature neuroscience, 12(8), 981–987. Ho, H. Y., Susman, M. W., Bikoff, J. B., Ryu, Y. K., Jonas, A. M., Hu, L., Kuruvilla, R., Greenberg, M. E. (2012). Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4044–4051. Huang, H. C., Klein, P. S. (2004). The Frizzled family: receptors for multiple signal transduction pathways. Genome biology, 5(7), 234. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO journal, 17(5), 1371–1384. Kanamori, T., Kanai, M. I., Dairyo, Y., Yasunaga, K., Morikawa, R. K., Emoto, K. (2013). Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science (New York, N.Y.), 340(6139), 1475–1478. Kanamori, T., Yoshino, J., Yasunaga, K., Dairyo, Y., Emoto, K. (2015). Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons. Nature communications, 6, 6515. Kennerdell, J. R., Carthew, R. W. (1998). Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell, 95(7), 1017–1026. Kirilly, D., Gu, Y., Huang, Y., Wu, Z., Bashirullah, A., Low, B. C., Kolodkin, A. L., Wang, H., Yu, F. (2009). A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nature neuroscience, 12(12), 1497–1505. Kirilly, D., Wong, J. J., Lim, E. K., Wang, Y., Zhang, H., Wang, C., Liao, Q., Wang, H., Liou, Y. C., Wang, H., Yu, F. (2011). Intrinsic epigenetic factors cooperate with the steroid hormone ecdysone to govern dendrite pruning in Drosophila. Neuron, 72(1), 86–100. Klassen, M. P., Shen, K. (2007). Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C. elegans. Cell, 130(4), 704–716. Kormish, J. D., Sinner, D., Zorn, A. M. (2010). Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Developmental dynamics: an official publication of the American Association of Anatomists, 239(1), Kummer, T. T., Misgeld, T., Sanes, J. R. (2006). Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Current opinion in neurobiology, 16(1), 74–82. Kuroda, J., Nakamura, M., Yoshida, M., Yamamoto, H., Maeda, T., Taniguchi, K., Nakazawa, N., Hatori, R., Ishio, A., Ozaki, A., Shimaoka, S., Ito, T., Iida, H., Okumura, T., Maeda, R., Matsuno, K. (2012). Canonical Wnt signaling in the visceral muscle is required for left-right asymmetric development of the Drosophila midgut. Mechanisms of development, 128(11-12), 625–639. Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M. Q., Holstein, T. W. (2005). Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 433(7022), 156–160. Lee, H. H., Jan, L. Y., Jan, Y. N. (2009). Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6363–6368. Li, F., Wang, T., Tang, S. (2015). SOX14 promotes proliferation and invasion of cervical cancer cells through Wnt/β-catenin pathway. International journal of clinical and experimental pathology, 8(2), 1698–1704. Li, H., Li, S. H., Yu, Z. X., Shelbourne, P., Li, X. J. (2001). Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. The Journal of neuroscience: the official journal of the Society for Neuroscience, 21(21), 8473–8481. Lin, T., Kao, H. H., Chou, C. H., Chou, C. Y., Liao, Y. C., Lee, H. H. (2020). Rab11 activation by Ik2 kinase is required for dendrite pruning in Drosophila sensory neurons. PLoS genetics, 16(2), e1008626. Lin, T., Pan, P. Y., Lai, Y. T., Chiang, K. W., Hsieh, H. L., Wu, Y. P., Ke, J. M., Lee, M. C., Liao, S. S., Shih, H. T., Tang, C. Y., Yang, S. B., Cheng, H. C., Wu, J. T., Jan, Y. N., Lee, H. H. (2015). Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons. PLoS genetics, 11(11), e1005642. Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., Zhang, Z., Lin, X., He, X. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108(6), 837–847. Llimargas, M., Lawrence, P. A. (2001). Seven Wnt homologues in Drosophila: a case study of the developing tracheae. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14487–14492. Loncle, N., Williams, D. W. (2012). An interaction screen identifies headcase as a regulator of large-scale pruning. The Journal of neuroscience: the official journal of the Society for Neuroscience, 32(48), 17086–17096. Low, L. K., Cheng, H. J. (2006). Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 361(1473), 1531–1544. Lu, M., Mizumoto, K. (2019). Gradient-independent Wnt signaling instructs asymmetric neurite pruning in C. elegans. eLife, 8, e50583. Luo, L., O'Leary, D. D. (2005). Axon retraction and degeneration in development and disease. Annual review of neuroscience, 28, 127–156. Mao, J., Wang, J., Liu, B., Pan, W., Farr, G. H., 3rd, Flynn, C., Yuan, H., Takada, S., Kimelman, D., Li, L., Wu, D. (2001). Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Molecular cell, 7(4), 801–809. Massagué J. (2012). TGFβ signalling in context. Nature reviews. Molecular cell biology, 13(10), 616–630. McGuire, S. E., Mao, Z., Davis, R. L. (2004). Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Science's STKE: signal transduction knowledge environment, 2004(220), pl6. McQuate, A., Latorre-Esteves, E., Barria, A. (2017). A Wnt/Calcium Signaling Cascade Regulates Neuronal Excitability and Trafficking of NMDARs. Cell reports, 21(1), 60–69. Mikels, A. J., Nusse, R. (2006). Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS biology, 4(4), e115. Molenaar, M., van de Wetering, M., Oosterwegel, M., Peterson-Maduro, J., Godsave, S., Korinek, V., Roose, J., Destrée, O., Clevers, H. (1996). XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell, 86(3), 391–399. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5(9):691-701. Naito, Y., Yamada, T., Matsumiya, T., Ui-Tei, K., Saigo, K., Morishita, S. (2005). dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic acids research, 33(Web Server issue), W589–W591. Nelson, W. J., Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science (New York, N.Y.), 303(5663), 1483–1487. Noordermeer, J., Klingensmith, J., Perrimon, N., Nusse, R. (1994). dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature, 367(6458), 80–83. Nusse, R., Varmus, H. E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31(1), 99–109. Nüsslein-Volhard, C., Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785), 795–801. Orgogozo, V., Schweisguth, F., Bellaïche, Y. (2004). Slit-Robo signalling prevents sensory cells from crossing the midline in Drosophila. Mechanisms of development, 121(5), 427–436. Pai, L. M., Orsulic, S., Bejsovec, A., Peifer, M. (1997). Negative regulation of Armadillo, a Wingless effector in Drosophila. Development Petersen, C. P., Reddien, P. W. (2009). Wnt signaling and the polarity of the primary body axis. Cell, 139(6), 1056–1068. Philippakis, A. A., Busser, B. W., Gisselbrecht, S. S., He, F. S., Estrada, B., Michelson, A. M., Bulyk, M. L. (2006). Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila muscle founder cells. PLoS computational biology, 2(5), e53. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 50(4), 649–657. Rosso, S. B., Inestrosa, N. C. (2013). WNT signaling in neuronal maturation and synaptogenesis. Frontiers in cellular neuroscience, 7, 103. Rui, M., Ng, K. S., Tang, Q., Bu, S., Yu, F. (2020). Protein phosphatase PP2A regulates microtubule orientation and dendrite pruning in Drosophila. EMBO reports, 21(5), e48843. Sakanaka, C., Weiss, J. B., Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3020–3023. Schuldiner, O., Yaron, A. (2015). Mechanisms of developmental neurite pruning. Cellular and molecular life sciences : CMLS, 72(1), 101–119. Semenov, M. V., Habas, R., Macdonald, B. T., He, X. (2007). SnapShot: Noncanonical Wnt Signaling Pathways. Cell, 131(7), 1378. Takemaru, K. I., Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. The Journal of cell biology, 149(2), 249–254. Tang, Q., Rui, M., Bu, S., Wang, Y., Chew, L. Y., Yu, F. (2020). A microtubule polymerase is required for microtubule orientation and dendrite pruning in Drosophila. The EMBO journal, 39(10), e103549. Tessier-Lavigne, M., Goodman, C. S. (1996). The molecular biology of axon guidance. Science (New York, N.Y.), 274(5290), 1123–1133. Tsai, J., Grutzendler, J., Duff, K., Gan, W. B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature neuroscience, 7(11), 1181–1183. Viale, B., Song, L., Petrenko, V., Wenger Combremont, A. L., Contestabile, A., Bocchi, R., Salmon, P., Carleton, A., An, L., Vutskits, L., Kiss, J. Z. (2019). Transient Deregulation of Canonical Wnt Signaling in Developing Pyramidal Neurons Leads to Dendritic Defects and Impaired Behavior. Cell reports, 27(5), 1487–1502.e6. Wallingford, J. B., Habas, R. (2005). The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development (Cambridge, England), 132(20), 4421–4436. Wehrli, M., Dougan, S. T., Caldwell, K., O'Keefe, L., Schwartz, S., Vaizel-Ohayon, D., Schejter, E., Tomlinson, A., DiNardo, S. (2000). arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407(6803), 527–530. Williams, D. W., Truman, J. W. (2005). Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development (Cambridge, England), 132(16), 3631–3642. Wolterhoff, N., Gigengack, U., Rumpf, S. (2020). PP2A phosphatase is required for dendrite pruning via actin regulation in Drosophila. EMBO reports, 21(5), e48870. Xu, W., Kimelman, D. (2007). Mechanistic insights from structural studies of beta-catenin and its binding partners. Journal of cell science, 120(Pt 19), 3337–3344. Yamaguchi, Y., Miura, M. (2015). Programmed cell death in neurodevelopment. Developmental cell, 32(4), 478–490. Yang, G. Y., Liang, B., Zhu, J., Luo, Z. G. (2011). Calpain activation by Wingless-type murine mammary tumor virus integration site family, member 5A (Wnt5a) promotes axonal growth. The Journal of biological chemistry, 286(8), 6566–6576. Yoshikawa, S., McKinnon, R. D., Kokel, M., Thomas, J. B. (2003). Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature, 422(6932), 583–588. Yu, F., Schuldiner, O. (2014). Axon and dendrite pruning in Drosophila. Current opinion in neurobiology, 27, 192–198. Yu, X., Malenka, R. C. (2003). Beta-catenin is critical for dendritic morphogenesis. Nature neuroscience, 6(11), 1169–1177. Zhu, S., Chen, R., Soba, P., Jan, Y. N. (2019). JNK signaling coordinates with ecdysone signaling to promote pruning of Drosophila sensory neuron dendrites. Development (Cambridge, England), 146(8), dev163592. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78290 | - |
| dc.description.abstract | 樹突修剪為演化保留中一項神經重塑過程,神經元會藉此消除原先的突觸以完善新的神經迴路,此現象亦發生在果蠅變態過程的感覺神經元。先前的 RNA 干擾篩選中,我們發現當果蠅感覺神經元表現 dishevelled (dsh)雙股 RNA 時,會產生 樹突修剪的缺陷。而 dsh 是多個 Wnt 傳導路徑上中心分子,對於發育、再生、抑 或是神經發生而言皆不可或缺;然而 Wnt 傳導路徑是否參與在樹突修剪的調控仍屬未知。 dTCF 為特定存在 Wnt 經典傳導路徑下游的轉錄因子,藉由顯性抑制突變的 dTCF 的表現,我們證實了果蠅感覺神經元的樹突發育及修剪皆需要 dTCF 的作用。 在其他突變檢測中,我們認為 Frizzled 及 Arrow 是作為果蠅感覺神經元上 Wnt 傳導路徑的受體,以調控其樹突修剪。此外,當 Wnt 經典傳導路徑的負調控者 Axin 過度表現時,神經元的樹突修剪亦受到干擾。以持續表現活性之 β-catenin 救援神經細胞後,持續激活 Wnt 經典傳導路徑,受到 dsh 雙股 RNA 或 Axin 過度表現擾動的果蠅感覺神經元因而成功完成樹突修剪。以上,證實了Wnt 經典傳導路徑在 神經樹突修剪中扮演不可或缺的腳色。 | zh_TW |
| dc.description.abstract | Dendrite pruning is a conserved neuronal remodeling process, during which neurons would eliminate their dendrites to rectify neural connectivity. From our previous RNAi screening for the regulators of dendrite pruning in Drosophila sensory neurons, we observed pruning defects in the expression of dishevelled (dsh) double-stranded RNA. Dsh is the center molecule in multiple Wnt signaling essential for development and tissue regeneration, as well as neurogenesis; however, whether Wnt signaling modulates dendrite pruning remains unknown. By overexpressing the truncated transcription factor specific in Wnt canonical pathway, dTCF-∆N, we demonstrate that dTCF is essential to dendrite pruning and morphogenesis. In our mutational analysis, we propose that Frizzled and Arrow are the receptors for Wnt signaling in Drosophila sensory neurons regulating dendritic severing. Additionally, Axin, Wnt repressor, perturbs dendrite pruning in examined cells. After rescuing these neurons with constitutively-active β-catenin, which continuously activates Wnt canonical pathway, we ameliorate pruning phenotypes in neurons resulted from dsh RNAi or Axin overexpression. In conclusion, Wnt canonical pathway is required for dendrite pruning in Drosophila da neurons. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:49:39Z (GMT). No. of bitstreams: 1 U0001-0908202018540800.pdf: 22707058 bytes, checksum: d405c8de45d6c930af774122bbbc0c00 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝......................................................................................................................................................ii 摘要....................................................................................................................................................iii Abstract...........................................................................................................................iv Contents............................................................................................................................v List of Figures.................................................................................................................vii List of Tables.................................................................................................................viii Introduction.....................................................................................................................1 Neural Development..................................................................................................1 Neurite Pruning..........................................................................................................2 Wnt Signaling Pathways............................................................................................3 Wnt Signaling in Neuronal Development..................................................................5 Dendrite Pruning in Drosophila Sensory Neurons.....................................................6 Methods............................................................................................................................8 Results.............................................................................................................................12 dsh is required for dendrite pruning in C4da neurons...............................................12 dTCF is essential to dendrite pruning and morphogenesis.......................................12 Knot cannot rescue dendrite morphogenesis in dTCF-∆N expression.....................15 The roles of Frizzled and Arrow in dendrite severing...............................................16 Mutational analysis of Dsh ......................................................................................18 The knockdown efficiency of dsh-RNAi lines.........................................................19 The off-target effects of dsh dsRNA(R2) on dendrite pruning..................................20 Axin functions as a negative regulator in neuronal pruning of C4da neurons...........21 The role of β-Catenin/Arm in dendrite pruning .......................................................22 Constitutively-active Armadillo could rescue pruning defects in C4da neurons with impaired Wnt signaling............................................................................................23 The roles of Wg, Wnt2, and Wnt4 in dendrite pruning.............................................24 Discussion.......................................................................................................................26 Reference........................................................................................................................35 Figures............................................................................................................................49 Tables..............................................................................................................................82 | |
| dc.language.iso | en | |
| dc.subject | Wnt 經典傳導路徑 | zh_TW |
| dc.subject | 神經重塑 | zh_TW |
| dc.subject | 樹突修剪 | zh_TW |
| dc.subject | Wnt canonical signaling | en |
| dc.subject | neuronal remodeling | en |
| dc.subject | dendrite pruning | en |
| dc.title | Wnt 傳導路徑在果蠅神經元樹突修剪之調控 | zh_TW |
| dc.title | The Role of Wnt Signaling in Dendrite Pruning of Drosophila Sensory Neurons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐立中(Li-Chung Hsu),鄭旭辰(Hsu-Chen Cheng) | |
| dc.subject.keyword | 神經重塑,樹突修剪,Wnt 經典傳導路徑, | zh_TW |
| dc.subject.keyword | neuronal remodeling,dendrite pruning,Wnt canonical signaling, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU202002727 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-08-01 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0908202018540800.pdf 未授權公開取用 | 22.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
