Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78289
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳青周(Ching-Chow Chen)
dc.contributor.authorHSIEN -YAO LINen
dc.contributor.author林賢曜zh_TW
dc.date.accessioned2021-07-11T14:49:36Z-
dc.date.available2025-08-10
dc.date.copyright2020-09-10
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citationArany, Zoltàn, William R. Sellers, David M. Livingston, and Richard Eckner. 1994. 'E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators', Cell, 77: 799-800.
Berg, Kaja C. G., Peter W. Eide, Ina A. Eilertsen, Bjarne Johannessen, Jarle Bruun, Stine A. Danielsen, Merete Bjørnslett, Leonardo A. Meza-Zepeda, Mette Eknæs, Guro E. Lind, Ola Myklebost, Rolf I. Skotheim, Anita Sveen, and Ragnhild A. Lothe. 2017. 'Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies', Molecular cancer, 16: 116-16.
Bieging, Kathryn T., Stephano Spano Mello, and Laura D. Attardi. 2014. 'Unravelling mechanisms of p53-mediated tumour suppression', Nature Reviews Cancer, 14: 359-70.
Bordonaro, Michael, and Darina L. Lazarova. 2015. 'CREB-binding protein, p300,butyrate, and Wnt signaling in colorectal cancer', World journal of gastroenterology, 21: 8238-48.
Brattain, M. G., M. E. Marks, J. McCombs, W. Finely, and D. E. Brattain. 1983. 'Characterization of human colon carcinoma cell lines isolated from a single primary tumour', British journal of cancer, 47: 373-81.
Bray, Freddie, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L. Siegel, Lindsey A. Torre, and Ahmedin Jemal. 2018. 'Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries', CA: A Cancer Journal for Clinicians, 68: 394-424.
Carethers, John M., and Barbara H. Jung. 2015. 'Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer', Gastroenterology, 149: 1177-90.e3.
Castillo, Joseph, Esther Wu, Christopher Lowe, Shrividhya Srinivasan, Ron McCord, Marie-Claire Wagle, Sangeeta Jayakar, Melissa Gonzalez Edick, Jeffrey Eastham-Anderson, Bonnie Liu, Katherine E. Hutchinson, Wendell Jones, Matthew P. Stokes, Somayeh S. Tarighat, Thomas Holcomb, Andrew Glibicky, F. Anthony Romero, Steven Magnuson, Shih-Min A. Huang, Vicki Plaks, Jennifer M. Giltnane, Mark R. Lackner, and Zineb Mounir. 2019. 'CBP/p300 Drives the Differentiation of Regulatory T Cells through Transcriptional and Non-Transcriptional Mechanisms', Cancer Research, 79: 3916.
Chan, Ho Man, and Nicholas B. La Thangue. 2001. 'p300/CBP proteins: HATs for transcriptional bridges and scaffolds', Journal of Cell Science, 114: 2363.
Cho, Judy H. 2008. 'The genetics and immunopathogenesis of inflammatory bowel disease', Nature Reviews Immunology, 8: 458-66.
Dow, Lukas E., Kevin P. O'Rourke, Janelle Simon, Darjus F. Tschaharganeh, Johan H. van Es, Hans Clevers, and Scott W. Lowe. 2015. 'Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer', Cell, 161: 1539-52.
Eslaminejad, Mohamadreza Baghaban, Nesa Fani, and Maryam Shahhoseini. 2013. 'Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture', Cell journal, 15: 1-10.
Graff, Rebecca E., Sören Möller, Michael N. Passarelli, John S. Witte, Axel Skytthe, Kaare Christensen, Qihua Tan, Hans-Olov Adami, Kamila Czene, Jennifer R. Harris, Eero Pukkala, Jaakko Kaprio, Edward L. Giovannucci, Lorelei A. Mucci, and Jacob B. Hjelmborg. 2017. 'Familial Risk and Heritability of Colorectal Cancer in the Nordic Twin Study of Cancer', Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association, 15: 1256-64.
Greten, Florian R., and Sergei I. Grivennikov. 2019. 'Inflammation and Cancer: Triggers, Mechanisms, and Consequences', Immunity, 51: 27-41.
Huang, Emina H., and Max S. Wicha. 2008. 'Colon cancer stem cells: implications for prevention and therapy', Trends in molecular medicine, 14: 503-09.
Huang, Wei-Chien, Tsai-Kai Ju, Mien-Chie Hung, and Ching-Chow Chen. 2007. 'Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB', Molecular cell, 26: 75-87.
Itzkowitz, Steven H., and Xianyang Yio. 2004. 'Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation', American Journal of Physiology-Gastrointestinal and Liver Physiology, 287: G7-G17.
Jess, Tine, Christine Rungoe, and Laurent Peyrin–Biroulet. 2012. 'Risk of Colorectal Cancer in Patients With Ulcerative Colitis: A Meta-analysis of Population-Based Cohort Studies', Clinical Gastroenterology and Hepatology, 10: 639-45.
Kaser, Arthur, Sebastian Zeissig, and Richard S. Blumberg. 2010. 'Inflammatory bowel disease', Annual review of immunology, 28: 573-621.
Kastan, Michael B., and Jiri Bartek. 2004. 'Cell-cycle checkpoints and cancer', Nature, 432: 316-23.
Kedrin, Dmitriy, and Manish K. Gala. 2015. 'Genetics of the serrated pathway to colorectal cancer', Clinical and translational gastroenterology, 6: e84-e84.
Keum, NaNa, and Edward Giovannucci. 2019. 'Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies', Nature Reviews Gastroenterology Hepatology, 16: 713-32.
Kim, Sewoon, and Sunjoo Jeong. 2019. 'Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases', Molecules and cells, 42: 8-16.
Kouzarides, T. 2000. 'Acetylation: a regulatory modification to rival phosphorylation?', The EMBO journal, 19: 1176-79.
Kunitomi, Haruko, Kouji Banno, Megumi Yanokura, Takashi Takeda, Moito Iijima, Kanako Nakamura, Miho Iida, Masataka Adachi, Keiko Watanabe, Yusuke Matoba, Yusuke Kobayashi, Eiichiro Tominaga, and Daisuke Aoki. 2017. 'New use of microsatellite instability analysis in endometrial cancer', Oncology letters, 14: 3297-301.
Lee, Kenneth K., and Jerry L. Workman. 2007. 'Histone acetyltransferase complexes: one size doesn't fit all', Nature Reviews Molecular Cell Biology, 8: 284-95.
Lenz, Heinz-Josef, and Michael Kahn. 2014. 'Safely targeting cancer stem cells via selective catenin coactivator antagonism', Cancer science, 105: 1087-92.
Lopez-Serra, P., and M. Esteller. 2012. 'DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer', Oncogene, 31: 1609-22.
Mousavi, Seyed Mohsen, Mahdi Fallah, Kristina Sundquist, and Kari Hemminki. 2012. 'Age- and time-dependent changes in cancer incidence among immigrants to Sweden: colorectal, lung, breast and prostate cancers', International Journal of Cancer, 131: E122-E28.
Pino, Maria S., and Daniel C. Chung. 2010. 'The chromosomal instability pathway in colon cancer', Gastroenterology, 138: 2059-72.
Pitot, Henry C. 1993. 'The molecular biology of carcinogenesis', Cancer, 72: 962-70.
Richter, M., D. Jurek, F. Wrba, K. Kaserer, G. Wurzer, J. Karner-Hanusch, and B. Marian. 2002. 'Cells obtained from colorectal microadenomas mirror early premalignant growth patterns in vitro', European Journal of Cancer, 38: 1937-45.
Siekmann, Wiebke, Elisabet Tina, Anita Koskela Von Sydow, and Anil Gupta. 2019. 'Effect of lidocaine and ropivacaine on primary (SW480) and metastatic (SW620) colon cancer cell lines', Oncology letters, 18: 395-401.
Vargas-Rondón, Natalia, Victoria E. Villegas, and Milena Rondón-Lagos. 2017. 'The Role of Chromosomal Instability in Cancer and Therapeutic Responses', Cancers, 10: 4.
Yang, Xiang-Jiao. 2004. 'The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases', Nucleic acids research, 32: 959-76.
Zhan, T., N. Rindtorff, and M. Boutros. 2017. 'Wnt signaling in cancer', Oncogene, 36: 1461-73.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78289-
dc.description.abstract大腸直腸癌(CRC)是致死率全球第二大的惡性腫瘤。2018年,全球約有90萬人死於該疾病。而inflammatory bowel disease (IBD)病人得到CRC的機率會高出2.4倍。CREB-binding protein (CBP)具有histone acetyltransferase的功能,使它可以乙烯化(acetylate) histone tail,促進基因表達。在我們先前的研究發現,IKKα磷酸化CBP Ser1382/1386會抑制p53-mediated gene的表達,同時促進NF-κB signaling。CBP Ser1383/1387Ala knockin mice(AA-mice) ( Ser1383/1387無法被IKK α磷酸化) (對應人類CBP Ser1382/1386)會有自發性的腸發炎;給予colitogenic chemical (Dextran sulfate sodium, DSS)後,會引起更嚴重的發炎反應。但對於colitis-associated cancer (CAC)的影響仍然未知。
AOM/DSS實驗中, AA小鼠大腸發炎比WT嚴重,且AA小鼠大腸內adenomas的生長較WT嚴重。在cohoused AOM/DSS的實驗中,WT與AA小鼠發炎沒有差異;AA大腸組織的dysplasia較WT嚴重,但AA小鼠的adenoma卻占了較少的比例,表示AA Colorectal cancers (CRC)的進展大多停留在早期(dysplasia)階段。腸組織western blot與IHC的結果中, AA小鼠的大腸組織含有較多beta-catenin與beta-catenin下游基因(MMP9 and c-Myc),有利於adenomas的生成。但AA也表達較高的apoptosis相關蛋白(caspase3 and Bax)。在in vitro的實驗中,給予TNF-α後,transfected AA-CBP plasmid的HCT116 (AA-HCT116)會大幅表現apoptosis相關蛋白(caspase3 and Bax)與p53下游基因(p21, Bax),但AA-CBP抑制腫瘤生長的原因仍需進一步的探討。綜合以上結論,當小鼠的CBP Ser1383/1387無法被磷酸化,會提高發炎和Wnt/beta-catenin signaling,促進adenomas的生成;但阻礙adenomas進展的原因還有待研究。
zh_TW
dc.description.abstractColorectal cancer (CRC) is the second leading cause of death globally, accounting for almost 9 hundred thousand deaths annually. It is associated with a 2.4-fold higher risk in patients with inflammatory bowel disease (IBD), especially ulcerative colitis patients. CREB-binding protein (CBP) belongs to the family of histone acetyltransferases regulating the accessibility of DNA for the transcription factors. Phosphorylation of human CBP by IKKa at Ser1382/1386 plays a critical role in the regulation of cell fate by suppressing p53-mediated gene expression. Our previous study demonstrated that CBP-AA-knockin mice(AA-mice) replacing CBP Ser1383/1387 with alanines exhibit a spontaneous colitis phenotype instigated by impaired phosphorylation of CBP in non-hematopoietic cells origin. In addition, AA mice caused exacerbated colon inflammation upon colitogenic chemical (DSS) induction. Whether initiation and progression of inflammation in AA mice drives colitis-associated cancer (CAC) was investigated by AOM/DSS model.
Both WT and AA mice showed dysplasia and adenoma after AOM/DSS treatment, while two types of results were shown. The first one was higher extent of inflammation in AA mice with higher adenomas burden. The second one was no difference in the extent of inflammation between both mice. H E staining revealed AA-mice showed more dysplasia (early stage of adenoma) but fewer adenomas than WT-mice. Higher expression of Wnt/beta-catenin and its target genes in AA-mice was found in both non-polyps and polyps (adenoma), indicating the initiation of dysplasia by beta-catenin. HCT116 cells overexpressing WT CBP (WT-HCT116) and S1382A/S1386A mutant CBP (AA-HCT116) treatment with TNF-α showed more caspase3, Bax, and p21 in AA HCT116cells, indicating over activation of apoptosis and p53 signaling in AA-HCT116. The underlying mechanism will be discussed.
en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:49:36Z (GMT). No. of bitstreams: 1
U0001-0908202021070500.pdf: 4133122 bytes, checksum: fe18980731f5f957543dda3f80e900ad (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 iii
縮寫表 v
中文摘要 vii
英文摘要 viii
第一章 緒論(Introduction): 2
1.1發炎性腸道疾病 (Inflammation bowel disease, IBD) 2
1.2 IBD的治療 2
1.3大腸直腸癌 (Colorectal cancer, CRC) 3
1.4外在刺激可能為誘導大腸直腸癌的主因 3
1.5常見的CRC基因與表觀遺傳特徵 (Genetic and epigenetic aberrations of CRC) 3
1.6大腸直腸癌的進展 4
1.7 Histone acetyltransferase (Castillo et al.)的功能與原理 5
1.8 CREB-binding protein (CBP)的結構與功能 5
1.9 p53的功能與機轉 6
1.10 CBP Ser1382/1386的磷酸化在人類細胞生理中扮演的角色 6
1.11 Wnt/beta-catenin signaling 6
第二章 實驗方法與材料(Materials and Methods): 25
第三章 實驗結果(Results): 31
3.1 AA-mutation會促進小鼠大腸的發炎 31
3.2 AA小鼠的發炎會促進腫瘤的生長 31
3.3 當發炎沒有差異,AA小鼠大腸adenomas的進展較WT小鼠差 31
3.4 AA小鼠的genetic background有利於adenomas早期的形成,但不利於adenomas後期的進展 32
3.5 in vitro中,transfected AA-CBP plasmid的HCT116會增加apoptosis與p53 signaling 32
3.6 Transfected AA-CBP plasmid會抑制Xenograft之生長 33
3.7 AA-CBP在adenoma生長期間同時具有刺激與抑制腫瘤生長的功能 33
補充資料(supplementary data) 48
第四章 結論(Conclusion ): 50
第五章 討論(Discussion): 52
第六章 參考資料(Reference): 55
dc.language.isozh-TW
dc.subject癌症zh_TW
dc.subject磷酸化zh_TW
dc.subject大腸直腸癌zh_TW
dc.subjectcreb-binding proteinen
dc.subjectcolon canceren
dc.subjectphosphorylationen
dc.subjectapoptosisen
dc.subjectTP53en
dc.title探討CBP磷酸化缺失對AOM/DSS誘發結腸癌之作用zh_TW
dc.titleEffect of impaired CBP phosphorylation on AOM/DSS-induced colon tumorigenesisen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳明賢(Ming-Shiang Wu),黃偉謙(Wei-Chien Huang),魏子堂(Tzu-Tang Wei)
dc.subject.keyword癌症,大腸直腸癌,磷酸化,zh_TW
dc.subject.keywordcolon cancer,creb-binding protein,phosphorylation,apoptosis,TP53,en
dc.relation.page57
dc.identifier.doi10.6342/NTU202002729
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
dc.date.embargo-lift2025-08-10-
Appears in Collections:藥理學科所

Files in This Item:
File SizeFormat 
U0001-0908202021070500.pdf
  Restricted Access
4.04 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved