Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78283
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorCheng-Yi Chenen
dc.contributor.author陳成奕zh_TW
dc.date.accessioned2021-07-11T14:49:20Z-
dc.date.available2025-08-31
dc.date.copyright2020-09-23
dc.date.issued2020
dc.date.submitted2020-08-31
dc.identifier.citation1. Garavito, M.F., H.Y. Narvaez-Ortiz, and B.H. Zimmermann, Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development. J Genet Genomics, 2015. 42(5): p. 195-205.
2. Jones, M.E., Pyrimidine Nucleotide Biosynthesis in Animals: Genes, Enzymes, and Regulation of UMP Biosynthesis. Annu. Rev. Biochem, 1980. 49(1): p. 253-279.
3. Mainguet, S.E., et al., Uracil salvage is necessary for early Arabidopsis development. Plant J, 2009. 60(2): p. 280-91.
4. Ng, S.B., et al., Exome sequencing identifies the cause of a mendelian disorder. Nat Genet, 2010. 42(1): p. 30-5.
5. Bailey, C.J., Orotic aciduria and uridine monophosphate synthase: a reappraisal. J Inherit Metab Dis, 2009. 32 Suppl 1: p. S227-33.
6. Webster, D.R., et al., Hereditary Orotic Aciduria and Other Disorders of Pyrimidine Metabolism, in The Online Metabolic and Molecular Bases of Inherited Disease, D.L. Valle, et al., Editors. 2019, McGraw-Hill Education: New York, NY.
7. Traut, T.W. and M.E. Jones, Uracil Metabolism—UMP Synthesis from Orotic Acid or Uridine and Conversion of Uracil to β-Alanine: Enzymes and cDNAs. 1996. p. 1-78.
8. Balasubramaniam, S., J.A. Duley, and J. Christodoulou, Inborn errors of pyrimidine metabolism: clinical update and therapy. J. Inherit. Metab. Dis., 2014. 37(5): p. 687-698.
9. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
10. Kerr, J.F.R., C.M. Winterford, and B.V. Harmon, Apoptosis. Its significance in cancer and cancer Therapy. Cancer, 1994. 73(8): p. 2013-2026.
11. Wong, R.S., Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res, 2011. 30(1): p. 87.
12. Sulston, J.E. and H.R. Horvitz, Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol., 1977. 56(1): p. 110-156.
13. Conradt, B., Y.C. Wu, and D. Xue, Programmed Cell Death During Caenorhabditis elegans Development. Genetics, 2016. 203(4): p. 1533-62.
14. Horvitz, H.R., Worms, Life, and Death (Nobel Lecture). ChemBioChem, 2003. 4(8): p. 697-711.
15. Hatzold, J. and B. Conradt, Control of apoptosis by asymmetric cell division. PLoS Biol, 2008. 6(4): p. e84.
16. Teuliere, J., et al., Asymmetric Neuroblast Divisions Producing Apoptotic Cells Require the Cytohesin GRP-1 in lt;em gt;Caenorhabditis elegans lt;/em gt. Genetics, 2014. 198(1): p. 229.
17. Huang, M., et al., Caspase-dependent cleavage of carbamoyl phosphate synthetase II during apoptosis. Mol Pharmacol, 2002. 61(3): p. 569-77.
18. Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003. 3(5): p. 330-338.
19. Zhang, C. and M. Chu, Leflunomide: A promising drug with good antitumor potential. BIOCHEM BIOPH RES CO, 2018. 496(2): p. 726-730.
20. Ren, A., et al., Leflunomide inhibits proliferation and tumorigenesis of oral squamous cell carcinoma. Mol Med Rep, 2017. 16(6): p. 9125-9130.
21. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11.
22. Dokshin, G.A., et al., Robust Genome Editing with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors in Caenorhabditis elegans. Genetics, 2018. 210(3): p. 781-787.
23. Xie, C.Y., et al., Dietary supplement with nucleotides in the form of uridine monophosphate or uridine stimulate intestinal development and promote nucleotide transport in weaned piglets. J Sci Food Agric, 2019. 99(13): p. 6108-6113.
24. Blackwell, T.K., et al., TOR Signaling in lt;em gt;Caenorhabditis elegans Development, Metabolism, and Aging. Genetics, 2019. 213(2): p. 329.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78283-
dc.description.abstract計畫性細胞凋亡在生物的發育上扮演著重要的角色。在線蟲當中,主要有四個核心基因執行細胞凋亡,分別為: egl-1, ced-9, ced-4 以及 ced-3。 線蟲細胞凋亡的基因與人類的細胞凋亡基因具有高度保留性,到目前為止,我們對調控細胞凋亡仍所知有限,例如特定的細胞是否有不同的基因調控其凋亡。 在我們實驗室先前的研究中發現了,在不對稱分裂基因 grp-1 的突變株中,如果細胞凋亡核心基因同時發生變異,則會高機率在尾部產生多餘的表皮細胞 hyp8/9,並且會導致線蟲的尾部產生球狀突起,我們把這個性狀稱之為:「突出尾巴」 (bulged tail)。在grp-1 突變株的背景下,我們進行了基因篩選,來找出新的可以調控細胞凋亡的基因。我們發現新的可以調控細胞凋亡的基因:pyr-1,也就是人類的 CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) 同源基因,PYR-1 為一嘧啶合成酶,負責催化嘧啶生合成途徑的前三個步驟,而嘧啶在生物體內中參與了許多重要的生理反應,例如:DNA 或RNA 的合成;磷脂質及尿苷二磷酸葡萄糖(UDP-sugar)的合成。在此篇研究中,我們進一步證明了在嘧啶合成途徑中,pyr-1 下游基因dhod-1 和 umps-1 同樣是進行細胞凋亡的必要基因,然而,在umps-1之後的嘧啶合成基因並不是細胞凋亡所需要的基因。此外,藉由額外的嘧啶補充劑及調控其在線蟲體內的代謝,我們發現UMP含量是造成hyp8/9細胞凋亡的成因。 更重要的是,在人類的子宮頸癌細胞株HeLa中抑制CAD 的表現同樣的保護了HeLa 細胞免於紫外線照射誘發的細胞凋亡。 總結來說,我們的實驗結果證實了 UMP可以引起細胞凋亡並且指出UMP引起細胞凋亡的能力可能在不同生物間是共有的。zh_TW
dc.description.abstractProgrammed cell death (PCD) is important for animal development. In Caenorhabditis elegans (C. elegans), the execution of PCD is controlled by four genes, egl-1, ced-9, ced-4, and ced-3, and this core PCD pathway is highly conserved from nematodes to humans. Despite of extensive studies in PCD, how different cells may be differentially regulated to undergo PCDs is not yet clear. Previous studies in our lab found that mutations in the core PCD pathway caused extra hypodermal hyp8/9 cells in a sensitized mutant background and resulted in a bulged tail phenotype. In a sensitized genetic screen, a pyr-1 mutant was isolated with a bulged tail. pyr-1 is an ortholog of human CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) that catalyzes the first three steps of the de novo pyrimidine synthesis pathway. This pyrimidine synthesis pathway is important for DNA and RNA synthesis as well as the formation of phospholipids and UDP-sugars. In this thesis, we show that like pyr-1, dhod-1 and umps-1, two genes acting downstream of pyr-1 in the pyrimidine synthesis pathway, are required for normal PCD. Using genetic manipulation and metabolite supplementation, we show that the appropriate level of UMP, the end product produced by DHOD-1 and UMPS-1, is necessary for the cells to undergo PCD normally in the hyp8/9 lineage. Similar to the pro-apoptotic activity of pyr-1, knockdown of CAD in HeLa cells by RNA interference protects the cells from death under the UV treatment. These data show an unexpected role of UMP in regulation of programmed cell death and suggest evolutionary conservation of the pro-apoptotic function of UMP in C. elegans and humans.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:49:20Z (GMT). No. of bitstreams: 1
U0001-1008202012280600.pdf: 2198483 bytes, checksum: a664c5c1094af6041266be30f0dc9e76 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsTable of content
摘要 i
Abstract iii
Introduction 1
Material and Method 8
C. elegans strain and maintenance 8
Cell culture 8
RNA interference 9
CRISPR genome editing 9
Supplement assay 10
DHOD-1 inhibition assay 10
UV irradiation-induced cell death assay 10
LC-MS sample preparation 11
Statistical analysis 11
Results 12
Knockdown of dhod-1 causes the bugled tail in the grp-1 mutant 12
Knockdown of umps-1 causes the bulged tail and extra hyp8/9 in the grp-1 mutant 13
Knockdown of genes downstream of umps-1 in the de novo pyrimidine synthesis pathway or degradation pathway did not cause the bulged tail in the grp-1 mutant 14
The normal level of UMP, but not OMP, is required for normal cell death during development 15
Disruption of the salvage pathway is insufficient to induce bulged tail in the grp-1 mutant 16
Uracil and uridine supplementation can recover the bulged tail of the pyr-1; grp-1 mutant 17
Uracil needs to be converted to UMP to rescue the bulged tail of the pyr-1; grp-1 mutant 18
The UMP level is reduced in the pyr-1 mutant 19
The uracil supplementation failed to rescue the bulged tail of the grp-1; ced-3 mutant 19
The DHOD-1 inhibitors cause bulged tail in the grp-1 background 20
Knockdown of mitochondrial UMP transporters does not cause the bulged tail 20
HeLa cell shows decreased percentage of apoptotic cell, after its CAD is knocked down 21
Discussions 23
UMP induced cell death 23
The R12E2.11 RNAi failed to induced the bulged tail in grp-1 mutant 24
The UMP synthesis preference during the embryonic stage 24
The uracil supplementation in NGM or in agar has different efficiency 25
The mitochondrial UMP level is not relevant to PCD 26
The mechanism of UMP caused cell death 26
Figures 27
Figure 1. The scheme of the pyrimidine metabolism. 28
Figure 2. The dhod-1 RNAi caused the bulged tail in the grp-1 mutant 29
Figure 3. The knockdown of ump-1 but not R12E2.11 caused the bulged tail in grp-1 mutant 31
Figure 4. Knockdown of the genes downstream of UMP in de novo pyrimidine synthesis and genes of UMP degradation pathway did not cause the bulged tail in the grp-1 mutant 33
Figure 5. umps-1(ΔOMPDC) caused bulged tail in grp-1 background 34
Figure 6. Knockdown of gene of pyrimidine salvage pathway did not caused the bulged tail in the grp-1 background. 35
Figure 7. Uracil and uridine supplementation rescued the bulged tail of the pyr-1; grp-1 mutant 36
Figure 8. The uracil depletion was not the cause of the ectopic hyp8/9 cell survival 37
Figure 9. The uridine depletion was not the cause of the ectopic hyp8/9 cell survival 38
Figure 10. The UMP level is reduced in the pyr-1 mutant by LC-MS spectrometry 39
Figure 11. The uracil supplementation failed to recue the bulged tail of the grp-1; ced-3 mutant 40
Figure 12. DHOD-1 inhibitor induced the bulged tail in grp-1 mutant 41
Figure 13. Impaired mitochondrial UMP transporter did not cause the bulged tail 43
Figure 14. HeLaCADKD showed less apoptotic cell after exposed to UV irradiation than HeLaScrambled did. 44
References 45
dc.language.isoen
dc.subject嘧啶生合成zh_TW
dc.subject尿苷單磷酸zh_TW
dc.subject紫外線照射zh_TW
dc.subject代謝物zh_TW
dc.subject計畫性細胞凋亡zh_TW
dc.subjectUV-irradiationen
dc.subjectmetaboliteen
dc.subjectpyrimidine de novo synthesisen
dc.subjectprogrammed cell deathen
dc.subjecturidine-5′-monophosphateen
dc.title單磷酸尿苷缺乏造成線蟲細胞不正常存活之研究zh_TW
dc.titleDeficiency of UMP causes inappropriate cell survival in C. elegansen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖秀娟(Hsiu-Chuan Liao),陳昌熙(Chang-Shi Chen)
dc.subject.keyword代謝物,嘧啶生合成,計畫性細胞凋亡,尿苷單磷酸,紫外線照射,zh_TW
dc.subject.keywordmetabolite,pyrimidine de novo synthesis,programmed cell death,uridine-5′-monophosphate,UV-irradiation,en
dc.relation.page46
dc.identifier.doi10.6342/NTU202002782
dc.rights.note有償授權
dc.date.accepted2020-08-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
dc.date.embargo-lift2025-08-31-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202012280600.pdf
  未授權公開取用
2.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved