請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78282完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李弘文(Hung-Wen Li) | |
| dc.contributor.author | Xing-Yu Li | en |
| dc.contributor.author | 李星諭 | zh_TW |
| dc.date.accessioned | 2021-07-11T14:49:17Z | - |
| dc.date.available | 2022-08-31 | |
| dc.date.copyright | 2020-08-28 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | 1 Haldenby, S., White, Malcolm F. Allers, T. RecA family proteins in archaea: RadA and its cousins. Biochem. Soc. Trans. 37, 102-107 (2009). 2 Sancar, A., Stachelek, C., Konigsberg, W. Rupp, W. D. Sequences of the recA gene and protein. Proc. Natl. Acad. Sci. 77, 2611-2615 (1980). 3 Karlin, S. Brocchieri, L. Evolutionary conservation of RecA genes in relation to protein structure and function. J. Bacteriol 178, 1881-1894 (1996). 4 Roca, A. I. Cox, M. M. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56, 129-223 (1997). 5 Lusetti, S. L. Cox, M. M. The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu. Rev. Biochem. 71, 71-100 (2002). 6 Story, R. M., Weber, I. T. Steitz, T. A. The structure of the E. coli recA protein monomer and polymer. Nature 355, 318-325 (1992). 7 Story, R. M. Steitz, T. A. Structure of the recA protein-ADP complex. Nature 355, 374-376 (1992). 8 Zaitsev, E. N. Kowalczykowski, S. C. Essential monomer-monomer contacts define the minimal length for the N-terminus of RecA protein. Mol. Microbiol. 29, 1317-1318 (1998). 9 Zlotnick, A. Brenner, S. L. An alpha-helical peptide model for electrostatic interactions of proteins with DNA. The N terminus of RecA. J. Mol. Biol. 209, 447-457 (1989). 10 Lee, C. D. Wang, T. F. The N-terminal domain of Escherichia coli RecA have multiple functions in promoting homologous recombination. J. Biomed. Sci. 16, 37 (2009). 11 Malkov, V. A. Camerini-Otero, R. D. Photocross-links between single-stranded DNA and Escherichia coli RecA protein map to loops L1 (amino acid residues 157-164) and L2 (amino acid residues 195-209). J. Biol. Chem. 270 (1995). 12 Kurumizaka, H. et al. A possible role of the C-terminal domain of the RecA protein. A gateway model for double-stranded DNA binding. J. Biol. Chem. 271, 33515-33524 (1996). 13 Aihara, H. et al. An interaction between a specified surface of the C-terminal domain of RecA protein and double-stranded DNA for homologous pairing11Edited by A. R. Fersht. J. Mol. Biol. 274, 213-221 (1997). 14 Lusetti, S. L., Shaw, J. J. Cox, M. M. Magnesium ion-dependent activation of the RecA protein involves the C terminus. J. Biol. Chem. 278, 16381-16388 (2003). 15 Horii, T., Ogawa, T. Ogawa, H. Organization of the recA gene of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 77, 313-317 (1980). 16 Horii, T. et al. Regulation of SOS functions: Purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein. Cell 27, 515-522 (1981). 17 Goodman, M. F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem. 71, 17-50 (2002). 18 Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401-465 (1994). 19 Moore, J. K. Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164-2173 (1996). 20 Wyman, C., Ristic, D. Kanaar, R. Homologous recombination-mediated double-strand break repair. DNA Repair 3, 827-833 (2004). 21 Galletto, R., Amitani, I., Baskin, R. J. Kowalczykowski, S. C. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443, 875-878 (2006). 22 Joo, C. et al. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126, 515-527 (2006). 23 Register, J. C., 3rd Griffith, J. The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J. Biol. Chem. 260, 12308-12312 (1985). 24 Ramreddy, T., Sen, S., Rao, B. J. Krishnamoorthy, G. DNA dynamics in RecA-DNA filaments: ATP hydrolysis-related flexibility in DNA. Biochemistry 42, 12085-12094 (2003). 25 Cox, J. M., Tsodikov, O. V. Cox, M. M. Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biol. 3, e52 (2005). 26 Egelman, E. H. Stasiak, A. Structure of helical RecA-DNA complexes. II. Local conformational changes visualized in bundles of RecA-ATP gamma S filaments. J. Mol. Biol. 200, 329-349 (1988). 27 Bar-Ziv, R. Libchaber, A. Effects of DNA sequence and structure on binding of RecA to single-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 98, 9068-9073 (2001). 28 Stasiak, A. Di Capua, E. The helicity of DNA in complexes with recA protein. Nature 299, 185-186 (1982). 29 McEntee, K., Weinstock, G. M. Lehman, I. R. Binding of the recA protein of Escherichia coli to single- and double-stranded DNA. J. Biol. Chem. 256, 8835-8844 (1981). 30 Stasiak, A., Di Capua, E. Koller, T. Elongation of duplex DNA by recA protein. J. Mol. Biol. 151, 557-564 (1981). 31 Takahashi, M. Nordén, B. Structure of RecA-DNA complex and mechanism of DNA strand exchange reaction in homologous recombination. Adv. Biophys. 30, 1-35 (1994). 32 Chen, Z., Yang, H. Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489-494 (2008). 33 Prentiss, M., Prévost, C. Danilowicz, C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit. Rev. Biochem. Mol. Biol. 50, 453-476 (2015). 34 Howard-Flanders, P., West, S. C., Rusche, J. R. Egelman, E. H. Molecular mechanisms of general genetic recombination: the DNA-binding sites of RecA protein. Cold Spring Harb. Symp. Quant. Biol. 49, 571-580 (1984). 35 Kowalczykowski, S. C. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb. Perspect. Biol. 7, a016410 (2015). 36 Mazin, A. V. Kowalczykowski, S. C. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange. Proc. Natl. Acad. Sci. U.S.A. 93, 10673-10678 (1996). 37 Peacock-Villada, A. et al. Complementary strand relocation may play vital roles in RecA-based homology recognition. Nucleic Acids Res 40, 10441-10451 (2012). 38 Conway, A. B. et al. Crystal structure of a Rad51 filament. Nat. Struct. Mol. Biol. 11, 791-796 (2004). 39 Wu, Y., Qian, X., He, Y., Moya, I. A. Luo, Y. Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence. J. Biol. Chem. 280, 722-728 (2005). 40 Kurumizaka, H., Ikawa, S., Sarai, A. Shibata, T. The mutant RecA proteins, RecAR243Q and RecAK245N, exhibit defective DNA binding in homologous pairing. Arch. Biochem. Biophys. 365, 83-91 (1999). 41 Kurumizaka, H., Ikawa, S., Sarai, A. Shibata, T. The Mutant RecA Proteins, RecAR243Q and RecAK245N, Exhibit Defective DNA Binding in Homologous Pairing. Arch. Biochem. Biophys. 365, 83-91 (1999). 42 Mazin, A. V. Kowalczykowski, S. C. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange. EMBO. J. 17, 1161-1168 (1998). 43 Leger, J. F., Robert, J., Bourdieu, L., Chatenay, D. Marko, J. F. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc. Natl. Acad. Sci. U.S.A. 95, 12295-12299 (1998). 44 Kunkel, T. A. Bebenek, K. DNA Replication Fidelity. Annu. Rev. Biochem. 69, 497-529 (2000). 45 Pellegrini, L. The Pol α-primase complex. Subcell. Biochem. 62, 157-169 (2012). 46 Westover, K. D., Bushnell, D. A. Kornberg, R. D. Structural Basis of Transcription: Separation of RNA from DNA by RNA Polymerase II. Science 303, 1014-1016 (2004). 47 Aguilera, A. García-Muse, T. R Loops: From Transcription Byproducts to Threats to Genome Stability. Mol. Cell 46, 115-124 (2012). 48 Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T. E. Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442-451 (2003). 49 Roberts, R. W. Crothers, D. M. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463-1466 (1992). 50 Shaw, N. N. Arya, D. P. Recognition of the unique structure of DNA:RNA hybrids. Biochimie 90, 1026-1039 (2008). 51 Conn, G. L., Brown, T. Leonard, G. A. The crystal structure of the RNA/DNA hybrid r(GAAGAGAAGC). d(GCTTCTCTTC) shows significant differences to that found in solution. Nucleic Acids Res. 27, 555-561 (1999). 52 Xiong, Y. Sundaralingam, M. Crystal structure of a DNA.RNA hybrid duplex with a polypurine RNA r(gaagaagag) and a complementary polypyrimidine DNA d(CTCTTCTTC). Nucleic Acids Res. 28, 2171-2176 (2000). 53 Han, G. W. Direct-methods determination of an RNA/DNA hybrid decamer at 1.15 A resolution. Acta Crystallographica. 57, 213-218 (2001). 54 Huertas, P. Aguilera, A. Cotranscriptionally Formed DNA:RNA Hybrids Mediate Transcription Elongation Impairment and Transcription-Associated Recombination. Mol. Cell 12, 711-721 (2003). 55 Li, X. Manley, J. L. Inactivation of the SR Protein Splicing Factor ASF/SF2 Results in Genomic Instability. Cell 122, 365-378 (2005). 56 Paulsen, R. D. et al. A Genome-wide siRNA Screen Reveals Diverse Cellular Processes and Pathways that Mediate Genome Stability. Mol. Cell 35, 228-239 (2009). 57 Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041-2056 (2011). 58 Wellinger, R. E., Prado, F. Aguilera, A. Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol. Cell Biol. 26, 3327-3334 (2006). 59 Gómez-González, B. et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO. J. 30, 3106-3119 (2011). 60 Perego, M. G. L., Taiana, M., Bresolin, N., Comi, G. P. Corti, S. R-Loops in Motor Neuron Diseases. Mol. Neurobiol. 56, 2579-2589 (2019). 61 Richard, P. Manley, J. L. R Loops and Links to Human Disease. J. Mol. Biol. 429, 3168-3180 (2017). 62 Sarkar, K. et al. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. J. Allergy Clin. Immunol. 142, 219-234 (2018). 63 Lim, Y. W., Sanz, L. A., Xu, X., Hartono, S. R. Chédin, F. Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome. eLife 4, e08007 (2015). 64 Li, L., Matsui, M. Corey, D. R. Activating frataxin expression by repeat-targeted nucleic acids. Nat. Commun. 7, 10606 (2016). 65 Powell, W. T. et al. R-loop formation at Snord116 mediates topotecan inhibition of Ube3a-antisense and allele-specific chromatin decondensation. Proc. Natl. Acad. Sci. U.S.A. 110, 13938-13943 (2013). 66 García-Muse, T. Aguilera, A. R Loops: From Physiological to Pathological Roles. Cell 179, 604-618 (2019). 67 Kirkpatrick, D. P., Rao, B. J. Radding, C. M. RNA-DNA hybridization promoted by E. coli RecA protein. Nucleic Acids Res. 20, 4339-4346 (1992). 68 Kasahara, M., Clikeman, J. A., Bates, D. B. Kogoma, T. RecA protein-dependent R-loop formation in vitro. Genes Dev. 14, 360-365 (2000). 69 Zaitsev, E. N. Kowalczykowski, S. C. A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange. Genes Dev. 14, 740-749 (2000). 70 Wahba, L., Gore, S. K. Koshland, D. The homologous recombination machinery modulates the formation of RNA–DNA hybrids and associated chromosome instability. eLife 2, e00505 (2013). 71 Lu, C.-H. Li, H.-W. DNA with Different Local Torsional States Affects RecA-Mediated Recombination Progression. ChemPhysChem 18, 584-590 (2017). 72 Ishikawa-Ankerhold, H. C., Ankerhold, R. Drummen, G. P. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17, 4047-4132 (2012). 73 Kowalczykowski, S. C., Clow, J. Krupp, R. A. Properties of the duplex DNA-dependent ATPase activity of Escherichia coli RecA protein and its role in branch migration. Proc. Natl. Acad. Sci. U.S.A. 84, 3127-3131 (1987). 74 Pugh, B. F. Cox, M. M. General mechanism for RecA protein binding to duplex DNA. J. Mol. Biol. 203, 479-493 (1988). 75 Pugh, B. F. Cox, M. M. Stable binding of recA protein to duplex DNA. Unraveling a paradox. J. Biol. Chem. 262, 1326-1336 (1987). 76 Bazemore, L. R., Takahashi, M. Radding, C. M. Kinetic analysis of pairing and strand exchange catalyzed by RecA. Detection by fluorescence energy transfer. J. Biol. Chem. 272, 14672-14682 (1997). 77 Lin, Y.-H. et al. A 5'-to-3' strand exchange polarity is intrinsic to RecA nucleoprotein filaments in the absence of ATP hydrolysis. Nucleic Acids Res. 47, 5126-5140 (2019). 78 Nishinaka, T., Ito, Y., Yokoyama, S. Shibata, T. An extended DNA structure through deoxyribose-base stacking induced by RecA protein. Proc. Natl. Acad. Sci. U.S.A. 94, 6623-6628 (1997). 79 Nishinaka, T., Shinohara, A., Ito, Y., Yokoyama, S. Shibata, T. Base pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA-family: a model for homology search in homologous genetic recombination. Proc. Natl. Acad. Sci. U.S.A. 95, 11071-11076 (1998). 80 Ito, K., Murayama, Y., Takahashi, M. Iwasaki, H. Two three-strand intermediates are processed during Rad51-driven DNA strand exchange. Nat. Struct. Mol. Biol. 25, 29-36 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/78282 | - |
| dc.description.abstract | 大腸桿菌的同源重組酶RecA在DNA雙股斷裂的修復過程中扮演重要角色。在同源重組的修復過程中,RecA蛋白需先與單股DNA結合形成核蛋白絲,隨後尋找完整且同源互補的雙股DNA進行股交換反應。在這過程中,RecA蛋白與入侵股、離去股和互補股皆有不同程度的交互作用。近期的研究裡發現,同源重組蛋白可以調控DNA-RNA複合體的生成與代謝過程,但RecA與RNA的交互作用及其機制尚未被釐清。這篇論文利用生化分析方法與兩種單分子技術研究RecA蛋白與單股RNA (RecA-ssRNA) 的交互作用,發現RecA與ssRNA親和性與穩定性比RecA與ssDNA低,以致於RNA作為入侵股進行股交換的低反應效率。我們也利用螢光共振能量轉移實驗觀察RNA做為互補股與離去股在動力學上的差異,發現RecA蛋白分別與RNA股的低親和性,直接影響股交換反應的速率。在利用單分子栓球分析方法探討RNA作為離去股之入侵反應中,發現同源重組蛋白仍具有促使股交換反應進行之能力,並且與典型反應同樣擁有5端的入侵偏好性以及相似的中間體滯留時間,指出此二反應具有相似的反應機制。由於DNA-RNA複合體的存在反應到基因體的不穩定,RecA蛋白可以催化ssDNA取代雙股中RNA鏈的反應,顯現出RecA同源重組酶具有調控DNA-RNA複合體代謝之功能。 | zh_TW |
| dc.description.abstract | RecA recombinase plays an essential role in double-strand DNA break repair (DSBR) in E. coli. RecA participates in every step of homologous recombination, including presynapsis, synapsis, and postsynapsis. At the first step, RecA binds to single-stranded DNA to form nucleoprotein filament responsible for searching homologous double-stranded DNA, and for carrying out the following strand exchange reaction. During the synaptic stage, RecA protein interacts with both the invading ssDNA as well as dsDNA (leaving strand and complementary strand). It has been recently suggested that recombinases also involve in regulating the formation and stability of DNA-RNA hybrids, but the mechanism has not been elucidated. We used both ensemble-based and single-molecule methods to study reactions involving RecA protein and RNA. We showed that RecA-ssRNA has lower affinity and stability, directly resulting in the inefficient recombination reaction when RNA served as an invading strand. Using two ensemble-based fluorescence resonance energy transfer experiments, we observed the kinetics associated with the pairing and strand displacement steps. We showed that the lower affinity of RecA-RNA affects the strand exchange progresstion if RNA strand is the complementary strand. When RNA is the displaced strand, the homologous recombination can proceed and has the same 5'-end invasion preference seen in the typical DNA substrates. Together, we proposed that RecA can regulate the metabolism of DNA-RNA hybrid. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-11T14:49:17Z (GMT). No. of bitstreams: 1 U0001-1008202015195600.pdf: 4033342 bytes, checksum: c44e44d582c5e419572674c60e718176 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 i 摘要 ii Abstract iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 緒論 1 1-1 RecA蛋白 1 1-2 DNA-RNA複合體 8 1-3 研究動機 13 第二章 實驗方法與設計 14 2-1 蛋白質來源 14 2-2 核酸基質設計 14 2-3 溶液配方與製備 22 2-4 反應玻片製備 24 2-5 實驗流程 26 2-6 數據分析 31 第三章 實驗結果與討論 36 3-1 RNA參與之股交換反應 36 3-2 RecA在DNA與RNA形成核蛋白絲之比較 38 3-3 螢光共振能量轉移實驗探討RNA做為互補股與離去股反應 44 3-4 單分子栓球實驗探討RNA作為離去股之反應 48 第四章 實驗總結與未來展望 52 4-1 實驗總結 52 4-2 未來展望 60 參考文獻 61 附錄 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | R環 | zh_TW |
| dc.subject | 單分子螢光共振能量轉移 | zh_TW |
| dc.subject | 單分子栓球 | zh_TW |
| dc.subject | 同源重組 | zh_TW |
| dc.subject | RecA | zh_TW |
| dc.subject | DNA-RNA複合體 | zh_TW |
| dc.subject | R-loop | en |
| dc.subject | smFRET | en |
| dc.subject | Tether particle motion | en |
| dc.subject | Homologous recombination | en |
| dc.subject | RecA | en |
| dc.subject | DNA-RNA hybrid | en |
| dc.title | RecA同源重組酶調控DNA-RNA複合體的機制研究 | zh_TW |
| dc.title | Regulation of DNA-RNA Hybrid by RecA Recombinases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 冀宏源(Hung-Yuan Chi),王廷方(Ting-Fang Wang),高承福(Cheng-Fu Kao) | |
| dc.subject.keyword | R環,DNA-RNA複合體,RecA,同源重組,單分子栓球,單分子螢光共振能量轉移, | zh_TW |
| dc.subject.keyword | R-loop,DNA-RNA hybrid,RecA,Homologous recombination,Tether particle motion,smFRET, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202002815 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202015195600.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
