請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7827
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李綱(Kang Li) | |
dc.contributor.author | Bo-Chun Hsu | en |
dc.contributor.author | 許博鈞 | zh_TW |
dc.date.accessioned | 2021-05-19T17:55:02Z | - |
dc.date.available | 2022-02-08 | |
dc.date.available | 2021-05-19T17:55:02Z | - |
dc.date.copyright | 2017-02-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-10-11 | |
dc.identifier.citation | [1] J. Van Mierlo, G. Maggetto, E. Van de Burgwal, and R. Gense, 'Driving style and traffic measures-influence on vehicle emissions and fuel consumption,' Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 218, pp. 43-50, 2004.
[2] M. Taniguchi, 'Eco-driving and fuel economy of passenger cars,' in Proc. of Annual Meeting of IEE Japan S, 2008, pp. 5-8. [3] T. Bär, R. Kohlhaas, J. M. Zöllner, and K.-U. Scholl, 'Anticipatory driving assistance for energy efficient driving,' in Integrated and Sustainable Transportation System (FISTS), 2011 IEEE Forum on, 2011, pp. 1-6. [4] T. J. Daun, D. G. Braun, C. Frank, S. Haug, and M. Lienkamp, 'Evaluation of driving behavior and the efficacy of a predictive eco-driving assistance system for heavy commercial vehicles in a driving simulator experiment,' in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013, pp. 2379-2386. [5] C. Vagg, C. J. Brace, D. Hari, S. Akehurst, J. Poxon, and L. Ash, 'Development and field trial of a driver assistance system to encourage eco-driving in light commercial vehicle fleets,' IEEE Transactions on Intelligent Transportation Systems, vol. 14, pp. 796-805, 2013. [6] B. Beusen, S. Broekx, T. Denys, C. Beckx, B. Degraeuwe, M. Gijsbers, et al., 'Using on-board logging devices to study the longer-term impact of an eco-driving course,' Transportation research part D: transport and environment, vol. 14, pp. 514-520, 2009. [7] Y. Kim, I. Lee, and S. Kang, 'Eco Assist Techniques through Real-time Monitoring of BEV Energy Usage Efficiency,' Sensors, vol. 15, pp. 14946-14959, 2015. [8] M. Ferreira and P. M. d'Orey, 'On the impact of virtual traffic lights on carbon emissions mitigation,' IEEE Transactions on Intelligent Transportation Systems, vol. 13, pp. 284-295, 2012. [9] F. Jiménez and W. Cabrera-Montiel, 'System for road vehicle energy optimization using real time road and traffic information,' Energies, vol. 7, pp. 3576-3598, 2014. [10] D.-W.-I. S. Gausemeier and I. K.-P. Jäker, 'Multi-objective optimization of a vehicle velocity profile by means of dynamic programming,' IFAC Proceedings Volumes, vol. 43, pp. 366-371, 2010. [11] S. Mandava, K. Boriboonsomsin, and M. Barth, 'Arterial velocity planning based on traffic signal information under light traffic conditions,' in 2009 12th International IEEE Conference on Intelligent Transportation Systems, 2009, pp. 1-6. [12] C. Manzie, H. Watson, and S. Halgamuge, 'Fuel economy improvements for urban driving: Hybrid vs. intelligent vehicles,' Transportation Research Part C: Emerging Technologies, vol. 15, pp. 1-16, 2007. [13] M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, 'Ecological vehicle control on roads with up-down slopes,' IEEE Transactions on Intelligent Transportation Systems, vol. 12, pp. 783-794, 2011. [14] M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, 'Model predictive control of vehicles on urban roads for improved fuel economy,' IEEE Transactions on Control Systems Technology, vol. 21, pp. 831-841, 2013. [15] M. Kamal, M. Mukai, J. Murata, and T. Kawabe, 'Ecological driving based on preceding vehicle prediction using MPC,' IFAC Proceedings Volumes, vol. 44, pp. 3843-3848, 2011. [16] N. J. Kohut, J. K. Hedrick, and F. Borrelli, 'Integrating traffic data and model predictive control to improve fuel economy,' IFAC Proceedings Volumes, vol. 42, pp. 155-160, 2009. [17] J. Wollaeger, S. A. Kumar, S. Onori, D. Filev, Ü. Özgüner, G. Rizzoni, et al., 'Cloud-computing based velocity profile generation for minimum fuel consumption: A dynamic programming based solution,' in 2012 American Control Conference (ACC), 2012, pp. 2108-2113. [18] T. van Keulen, G. Naus, B. de Jager, R. van de Molengraft, M. Steinbuch, and E. Aneke, 'Predictive cruise control in hybrid electric vehicles,' World Electric Vehicle Journal, vol. 3, 2009. [19] C. Zhang, A. Vahidi, P. Pisu, X. Li, and K. Tennant, 'Role of terrain preview in energy management of hybrid electric vehicles,' IEEE transactions on Vehicular Technology, vol. 59, pp. 1139-1147, 2010. [20] N. H. T. S. Administration, 'Preliminary statement of policy concerning automated vehicles,' Washington, DC, pp. 1-14, 2013. [21] C. Chien and P. Ioannou, 'Automatic vehicle-following,' in American Control Conference, 1992, 1992, pp. 1748-1752. [22] E. Hellström, A. Fröberg, and L. Nielsen, 'A real-time fuel-optimal cruise controller for heavy trucks using road topography information,' SAE Technical Paper 0148-7191, 2006. [23] E. Hellström, J. Åslund, and L. Nielsen, 'Design of a well-behaved algorithm for on-board look-ahead control,' IFAC Proceedings Volumes, vol. 41, pp. 3350-3355, 2008. [24] F. Lattemann, K. Neiss, S. Terwen, and T. Connolly, 'The predictive cruise control–a system to reduce fuel consumption of heavy duty trucks,' SAE Technical paper 0148-7191, 2004. [25] T. Schwickart, H. Voos, J.-R. Hadji-Minaglou, and M. Darouach, 'An efficient nonlinear model-predictive eco-cruise control for electric vehicles,' in 2013 11th IEEE International Conference on Industrial Informatics (INDIN), 2013, pp. 311-316. [26] A. Mihály and P. Gáspár, 'Look-ahead cruise control considering road geometry and traffc flow,' in Computational Intelligence and Informatics (CINTI), 2013 IEEE 14th International Symposium on, 2013, pp. 189-194. [27] S. Park, H. Rakha, K. Ahn, and K. Moran, 'Predictive eco-cruise control: Algorithm and potential benefits,' in Integrated and Sustainable Transportation System (FISTS), 2011 IEEE Forum on, 2011, pp. 394-399. [28] H. Banvait, S. Anwar, and Y. Chen, 'A rule-based energy management strategy for plug-in hybrid electric vehicle (PHEV),' in 2009 American control conference, 2009, pp. 3938-3943. [29] X. Wang, H. He, F. Sun, X. Sun, and H. Tang, 'Comparative study on different energy management strategies for plug-in hybrid electric vehicles,' Energies, vol. 6, pp. 5656-5675, 2013. [30] A. M. Phillips, M. Jankovic, and K. E. Bailey, 'Vehicle system controller design for a hybrid electric vehicle,' in Control Applications, 2000. Proceedings of the 2000 IEEE International Conference on, 2000, pp. 297-302. [31] A. Sciarretta, M. Back, and L. Guzzella, 'Optimal control of parallel hybrid electric vehicles,' IEEE Transactions on control systems technology, vol. 12, pp. 352-363, 2004. [32] F.-C. Chou, K. Li, L.-W. Jeng, and C.-H. Li, 'Model predictive control based optimal torque distribution strategy for a compound electric vehicle,' in Automatic Control Conference (CACS), 2013 CACS International, 2013, pp. 417-422. [33] H. A. Rakha, K. Ahn, K. Moran, B. Saerens, and E. Van den Bulck, 'Virginia tech comprehensive power-based fuel consumption model: model development and testing,' Transportation Research Part D: Transport and Environment, vol. 16, pp. 492-503, 2011. [34] R. E. Bellman and S. E. Dreyfus, Applied dynamic programming: Princeton university press, 2015. [35] T. D. Gillespie, 'Fundamentals of vehicle dynamics,' SAE Technical Paper1992. [36] H. Lorenz, Trassierung und Gestaltung von Straßen und Autobahnen: Bauverlag, 1971. [37] 周芳杰, '使用車載資通訊之電動車智慧節能行駛技術之研究,' 2013. [38] 顏良喜, '運用車載資通訊技術之插電式混合動力電動車智慧化力矩分配策略研究,' 2015. [39] 孫允中, '多動力元件組合之插電式串並聯式複合動力電動車能量管理研究,' 2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7827 | - |
dc.description.abstract | 本論文針對插電式混合動力電動車(PHEV)之智慧節能行車技術進行研究,以期提升插電式混合動力車之行駛效能,藉以增加續航力與競爭力。本研究提出一套以巡航控制為基礎之節能行車控制方法,此方法透過調節傳統定速巡航控制系統之參考車速,以改變PHEV動力系統之動態負載,此行車控制系統根據地形變化、道路參數與前方交通動態資訊等調整車速,使動力系統運作於高效區與車輛行駛於安全範圍。本論文所提出之節能行車控制器採用非線性模型預測控制Nonlinear Model Predictive Control (NMPC)與瞬時功率最小化策略instantaneous power minimization (IPM)分別進行車速最佳化與馬達系統之動力分配,MiL/ HiL結果顯示此套節能巡航控制技術可減少5~10%之行車能耗。 | zh_TW |
dc.description.abstract | An eco-driving system for the plug-in hybrid electric vehicle (PHEV) to improve the energy economy is presented. This research proposes an eco-cruise controller (eco-CC), it is able to adjust cruising speed by receiving and analyzing terrain information and then furthermore to reduce the consumption of energy. The nonlinear model predictive control technique (NMPC) is used to optimally control vehicle speed and the instantaneous power minimization (IPM) strategy is adopted to deal with the torque distribution of multi-motor system. The research also takes the safety and comfort into consideration. The eco-CC deals with the design of an adaptive cruise control system considering the safety as well as comfort aspects of corner road. At last, this research has been proven with real motors response, these simulations demonstrate that eco-CC improves the total energy cost about 5~10%. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:55:02Z (GMT). No. of bitstreams: 1 ntu-105-R03522836-1.pdf: 20239297 bytes, checksum: 6f6c66e5e399677aa26eb46844ac8bcf (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 II
Abstract III 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 符號表 XV 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究貢獻 9 第二章 系統架構與模型 10 2.1 系統架構 10 2.2 系統模型 13 2.2.1 引擎模型 13 2.2.2 馬達模型 15 2.2.3 減速齒輪箱模型 16 2.2.4 車輛縱向模型 17 第三章 智慧節能駕駛單元控制系統設計 19 3.1 插電式混合動力車動力模式 20 3.1.1 行車動力模式-引擎模式(ICE mode) 21 3.1.2 行車動力模式-純電模式(EV、RE mode) 21 3.2 節能巡航控制車速最佳化設計 22 3.2.1 成本函數 23 3.2.2 預測模型 24 3.2.3 限制條件 27 3.3 模型預測控制 28 3.4 最佳化-動態規劃法 30 3.5 適應性巡航控制系統 38 3.6 瞬時功率最小化策略 39 第四章 模型迴路模擬 45 4.1 節能巡航控制 45 4.1.1 上坡道路速度調節 46 4.1.2 下坡道路速度調節 53 4.1.3 結合地圖資料-五股楊梅高架橋路段 60 4.1.4 差異分析-權重比較 64 4.1.5 差異分析-不同巡航車速與權重關係 73 4.1.6 差異比較-調節車速區間大小 74 4.2 節能巡航安全與跟車 79 4.2.1 安全過彎車速調節 79 4.2.2 節能巡航ECC/適應性巡航ACC切換 83 4.2.3 節能巡航跟車 87 第五章 硬體迴路模擬 90 5.1 馬達動力平台耗能實驗量測 90 5.1.1 馬達動力平台 90 5.1.2 實驗設備 93 5.1.3 TN 轉換 95 5.1.4 馬達效率圖建立 96 5.1.5 力矩命令查表建立 98 5.1.6 實驗情境-短程 99 5.1.7 實驗情境-20km 105 第六章 結論與未來工作建議 110 6.1 結論 110 6.2 未來工作建議 112 參考文獻 113 | |
dc.language.iso | zh-TW | |
dc.title | 插電式混合動力電動車之智慧節能巡航控制研究 | zh_TW |
dc.title | Research of the Intelligent Eco-Cruise Control for Plug-in Hybrid Electric Vehicles | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏家鈺(Jia-Yush Yen),楊士進(Shih-Chin Yang) | |
dc.subject.keyword | 插電式混和動力車,節能行車,巡航控制,模型預測控制,多馬達動力系統, | zh_TW |
dc.subject.keyword | Plug-in Hybrid Electric Vehicle,Eco-Driving,Cruise Control,Model Predictive Control,Multi-Motor System, | en |
dc.relation.page | 116 | |
dc.identifier.doi | 10.6342/NTU201603605 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2016-10-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf | 19.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。